
18-447
Computer Architecture

Lecture 1: Introduction and Basics

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/13/2014

I Hope You Are Here for This

!  How does an assembly

program end up executing as
digital logic?

!  What happens in-between?
!  How is a computer designed

using logic gates and wires
to satisfy specific goals?

2

18-213/243

18-240

“C” as a model of computation

Digital logic as a
model of computation

Programmer’s view of a
computer system works

HW designer’s view of a
computer system works

Architect/microarchitect’s view:
How to design a computer that

meets system design goals.
Choices critically affect both

the SW programmer and
the HW designer

Levels of Transformation

3

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

The Power of Abstraction
!  Levels of transformation create abstractions

"  Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

"  E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

!  Abstraction improves productivity
"  No need to worry about decisions made in underlying levels
"  E.g., programming in Java vs. C vs. assembly vs. binary vs. by

specifying control signals of each transistor every cycle

!  Then, why would you want to know what goes on
underneath or above?

4

Crossing the Abstraction Layers
!  As long as everything goes well, not knowing what happens

in the underlying level (or above) is not a problem.

!  What if
"  The program you wrote is running slow?
"  The program you wrote does not run correctly?
"  The program you wrote consumes too much energy?

!  What if
"  The hardware you designed is too hard to program?
"  The hardware you designed is too slow because it does not provide the

right primitives to the software?

!  What if
"  You want to design a much more efficient and higher performance

system?
5

Crossing the Abstraction Layers

!  Two key goals of this course are

"  to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

"  to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

6

An Example: Multi-Core Systems

7

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

Unexpected Slowdowns in Multi-Core

8

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

A Question or Two
!  Can you figure out why there is a disparity in slowdowns if

you do not know how the processor executes the
programs?

!  Can you fix the problem without knowing what is
happening “underneath”?

9

10

Why the Disparity in Slowdowns?

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

DRAM Bank Operation

11

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

12

DRAM Controllers

!  A row-conflict memory access takes significantly longer
than a row-hit access

!  Current controllers take advantage of the row buffer

!  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

!  This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

13

The Problem
!  Multiple threads share the DRAM controller
!  DRAM controllers designed to maximize DRAM throughput

!  DRAM scheduling policies are thread-unfair
"  Row-hit first: unfairly prioritizes threads with high row buffer locality

!  Threads that keep on accessing the same row

"  Oldest-first: unfairly prioritizes memory-intensive threads

!  DRAM controller vulnerable to denial of service attacks
"  Can write programs to exploit unfairness

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

14

A Memory Performance Hog

STREAM

-  Sequential memory access
-  Very high row buffer locality (96% hit rate)
-  Memory intensive

RANDOM

-  Random memory access
-  Very low row buffer locality (3% hit rate)
-  Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

15

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Now That We Know What Happens Underneath

!  How would you solve the problem?

!  What is the right place to solve the problem?
"  Programmer?
"  System software?
"  Compiler?
"  Hardware (Memory controller)?
"  Hardware (DRAM)?
"  Circuits?

!  Two other goals of this course:
"  Enable you to think critically
"  Enable you to think broadly

16

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

If You Are Interested … Further Readings
!  Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

!  Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

17

Takeaway
!  Breaking the abstraction layers (between components and

transformation hierarchy levels) and knowing what is
underneath enables you to solve problems

18

Another Example
!  DRAM Refresh

19

DRAM in the System

20

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A DRAM Cell

!  A DRAM cell consists of a capacitor and an access transistor
!  It stores data in terms of charge in the capacitor
!  A DRAM chip consists of (10s of 1000s of) rows of such cells

wordline

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

(row enable)

DRAM Refresh

!  DRAM capacitor charge leaks over time

!  The memory controller needs to refresh each row periodically
to restore charge
"  Activate each row every N ms
"  Typical N = 64 ms

!  Downsides of refresh
 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling
 22

Refresh Overhead: Performance

23

8%	

46%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

24

15%	

47%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

How Do We Solve the Problem?
!  Do we need to refresh all rows every 64ms?

!  What if we knew what happened underneath and exposed
that information to upper layers?

25

Underneath: Retention Time Profile of DRAM

26 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Taking Advantage of This Profile
!  Expose this retention time profile information to

"  the memory controller
"  the operating system
"  the programmer?
"  the compiler?

!  How much information to expose?
"  Affects hardware/software overhead, power consumption,

verification complexity, cost

!  How to determine this profile information?
"  Also, who determines it?

27

An Example: RAIDR
!  Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

!  Key idea: Refresh rows containing weak cells
 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

!  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
"  74.6% refresh reduction @ 1.25KB storage
"  ~16%/20% DRAM dynamic/idle power reduction
"  ~9% performance improvement
"  Benefits increase with DRAM capacity

28
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

If You Are Interested … Further Readings
!  Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012. Slides (pdf)

!  Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

29

Takeaway
!  Breaking the abstraction layers (between components and

transformation hierarchy levels) and knowing what is
underneath enables you to solve problems and design
better future systems

!  Cooperation between multiple components and layers can
enable more effective solutions and systems

30

Recap: Some Goals of 447
!  Teach/enable/empower you you to:

"  Understand how a processor works
"  Implement a simple processor (with not so simple parts)
"  Understand how decisions made in hardware affect the

software/programmer as well as hardware designer
"  Think critically (in solving problems)
"  Think broadly across the levels of transformation
"  Understand how to analyze and make tradeoffs in design

31

Agenda
!  Intro to 18-447

"  Course logistics, info, requirements
"  What 447 is about
"  Lab assignments
"  Homeworks, readings, etc

!  Assignments for the next two weeks
"  Homework 0 (due Jan 22)
"  Homework 1 (due Jan 29)
"  Lab 1 (due Jan 24)

!  Basic concepts in computer architecture

32

Handouts for Today
!  Online

"  Homework 0
"  Syllabus

33

Course Info: Who Are We?
!  Instructor: Prof. Onur Mutlu

"  onur@cmu.edu
"  Office: CIC 4105
"  Office Hours: W 2:30-3:30pm (or by appointment)
"  http://www.ece.cmu.edu/~omutlu
"  PhD from UT-Austin, worked at Microsoft Research, Intel, AMD
"  Research and teaching interests:

!  Computer architecture, hardware/software interaction
!  Many-core systems
!  Memory and storage systems
!  Improving programmer productivity
!  Interconnection networks
!  Hardware/software interaction and co-design (PL, OS, Architecture)
!  Fault tolerance
!  Hardware security
!  Algorithms and architectures for bioinformatics, genomics, health applications
 34

Course Info: Who Are We?
!  Teaching Assistants

"  Rachata Ausavarungnirun
!  rachata@cmu.edu
!  Office hours: Wed 4:30-6:30pm

"  Varun Kohli
!  vkohli@andrew.cmu.edu
!  Office hours: Thu 4.30-6.30pm

"  Xiao Bo Zhao
!  xiaoboz@andrew.cmu.edu
!  Office hours: Tue 4:30-6:30pm

"  Paraj Tyle
!  ptyle@cmu.edu
!  Office hours: Fri 3-5pm

35

Your Turn
!  Who are you?

!  Homework 0 (absolutely required)
"  Your opportunity to tell us about yourself
"  Due Jan 22 (midnight)
"  Attach your picture (absolutely required)
"  Submit via AFS

!  All grading predicated on receipt of Homework 0

36

Where to Get Up-to-date Course Info?
!  Website: http://www.ece.cmu.edu/~ece447

"  Lecture notes
"  Project information
"  Homeworks
"  Course schedule, handouts, papers, FAQs

!  Your email

!  Me and the Tas

!  Piazza

37

Lecture and Lab Locations, Times
!  Lectures:

"  MWF 12:30-2:20pm
"  Scaife Hall 219
"  Attendance is for your benefit and is therefore important
"  Some days, we may have recitation sessions or guest lectures

!  Recitations:
"  T 10:30am-1:20pm, Th 1:30-4:20pm, F 6:30-9:20pm
"  Hamerschlag Hall 1303
"  You can attend any session
"  Goals: to enhance your understanding of the lecture material,

help you with homework assignments, exams, and labs, and
get one-on-one help from the TAs on the labs.

38

Tentative Course Schedule
!  Tentative schedule is in syllabus
!  To get an idea of topics, you can look at last year’s

schedule, lectures, videos, etc:
"  http://www.ece.cmu.edu/~ece447/s13

!  But don’t believe the “static” schedule
!  Systems that perform best are usually dynamically

scheduled
!  Static vs. Dynamic scheduling
!  Compile time vs. Run time

39

What Will You Learn
!  Computer Architecture: The science and art of

designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

!  Traditional definition: “The term architecture is used
here to describe the attributes of a system as seen by the
programmer, i.e., the conceptual structure and functional
behavior as distinct from the organization of the dataflow
and controls, the logic design, and the physical
implementation.” Gene Amdahl, IBM Journal of R&D, April
1964

40

Computer Architecture in Levels of Transformation

!  Read: Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proceedings of the IEEE 2001.

41

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

Levels of Transformation, Revisited

42

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

!  A user-centric view: computer designed for users

!  The entire stack should be optimized for user

Logic
 Circuits
Electrons

What Will You Learn?
!  Fundamental principles and tradeoffs in designing the

hardware/software interface and major components of a
modern programmable microprocessor
"  Focus on state-of-the-art (and some recent research and trends)
"  Trade-offs and how to make them

!  How to design, implement, and evaluate a functional modern
processor
"  Semester-long lab assignments
"  A combination of RTL implementation and higher-level simulation
"  Focus is on functionality (and some focus on “how to do even better”)

!  How to dig out information, think critically and broadly
!  How to work even harder!

43

Course Goals
!  Goal 1: To familiarize those interested in computer system

design with both fundamental operation principles and design
tradeoffs of processor, memory, and platform architectures in
today’s systems.
"  Strong emphasis on fundamentals and design tradeoffs.

!  Goal 2: To provide the necessary background and experience to
design, implement, and evaluate a modern processor by
performing hands-on RTL and C-level implementation.
"  Strong emphasis on functionality and hands-on design.

44

A Note on Hardware vs. Software
!  This course is classified under “Computer Hardware”

!  However, you will be much more capable if you master
both hardware and software (and the interface between
them)
"  Can develop better software if you understand the underlying

hardware
"  Can design better hardware if you understand what software it

will execute
"  Can design a better computing system if you understand both

!  This course covers the HW/SW interface and
microarchitecture
"  We will focus on tradeoffs and how they affect software

45

What Do I Expect From You?
!  Required background: 240 (digital logic, RTL implementation,

Verilog), 213/243 (systems, virtual memory, assembly)

!  Learn the material thoroughly
"  attend lectures, do the readings, do the homeworks

!  Do the work & work hard
!  Ask questions, take notes, participate
!  Perform the assigned readings
!  Come to class on time
!  Start early – do not procrastinate
!  If you want feedback, come to office hours

!  Remember “Chance favors the prepared mind.” (Pasteur)
46

What Do I Expect From You?
!  How you prepare and manage your time is very important

!  There will be an assignment due almost every week
"  7 Labs and 7 Homework Assignments

!  This will be a heavy course
"  However, you will learn a lot of fascinating topics and

understand how a microprocessor actually works (and how it
can be made to work better)

47

How Will You Be Evaluated?

!  Six Homeworks: 10%
!  Seven Lab Assignments: 35%
!  Midterm I: 15%
!  Midterm II: 15%
!  Final: 25%
!  Our evaluation of your performance: 5%

"  Participation counts
"  Doing the readings counts

48

More on Homeworks and Labs
!  Homeworks

"  Do them to truly understand the material, not to get the grade
"  Content from lectures, readings, labs, discussions
"  All homework writeups must be your own work, written up

individually and independently
!  However, you can discuss with others

"  No late homeworks accepted

!  Labs
"  These will take time.
"  You need to start early and work hard.
"  Labs will be done individually unless specified otherwise.
"  A total of five late lab days per semester allowed.

49

A Note on Cheating and Academic Dishonesty

!  Absolutely no form of cheating will be tolerated

!  You are all adults and we will treat you so

!  See syllabus, CMU Policy, and ECE Academic Integrity Policy
"  Linked from syllabus

!  Cheating # Failing grade (no exceptions)
"  And, perhaps more

50

Homeworks for Next Two Weeks
!  Homework 0

"  Due next Wednesday (Jan 22)

!  Homework 1
"  Due Wednesday Jan 29
"  ARM warmup, ISA concepts, basic performance evaluation

51

Lab Assignment 1
!  A functional C-level simulator for a subset of the ARM ISA
!  Due Friday Jan 24, at the end of the Friday recitation session

!  Start early, you will have a lot to learn
!  Homework 1 and Lab 1 are synergistic

"  Homework questions are meant to help you in the Lab

52

Readings for Next Time (Wednesday)
!  Patt, “Requirements, Bottlenecks, and Good Fortune:

Agents for Microprocessor Evolution,” Proceedings of the
IEEE 2001.

!  Mutlu and Moscibroda, “Memory Performance Attacks:
Denial of Memory Service in Multi-core Systems,” USENIX
Security Symposium 2007.

!  P&P Chapter 1 (Fundamentals)
!  P&H Chapters 1 and 2 (Intro, Abstractions, ISA, MIPS)

!  Reference material throughout the course
"  ARM Reference Manual
"  (less so) x86 Reference Manual

53

A Note on Books
!  None required

!  But, I expect you to be resourceful in finding and doing the
readings…

54

Recitations This and Next Week
!  ARM ISA Tutorial

"  Rachata, Varun, Xiao, Paraj
"  You can attend any recitation session

55

