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ABSTRACT

Main memory is a major shared resource among cores in a
multicore system. If the interference between different appli-
cations’ memory requests is not controlled effectively, system
performance can degrade significantly. Previous work aimed
to mitigate the problem of interference between applications
by changing the scheduling policy in the memory controller,
i.e., by prioritizing memory requests from applications in a
way that benefits system performance.

In this paper, we first present an alternative approach
to reducing inter-application interference in the memory
system: application-aware memory channel partitioning
(MCP). The idea is to map the data of applications that are
likely to severely interfere with each other to different mem-
ory channels. The key principles are to partition onto sep-
arate channels 1) the data of light (memory non-intensive)
and heavy (memory-intensive) applications, 2) the data of
applications with low and high row-buffer locality.

Second, we observe that interference can be further re-
duced with a combination of memory channel partitioning
and scheduling, which we call integrated memory partition-
ing and scheduling (IMPS). The key idea is to 1) always
prioritize very light applications in the memory scheduler
since such applications cause negligible interference to oth-
ers, 2) use MCP to reduce interference among the remaining
applications.

We evaluate MCP and IMPS on a variety of multi-
programmed workloads and system configurations and com-
pare them to four previously proposed state-of-the-art mem-
ory scheduling policies. Averaged over 240 workloads on a
24-core system with 4 memory channels, MCP improves sys-
tem throughput by 7.1% over an application-unaware mem-
ory scheduler and 1% over the previous best scheduler, while
avoiding modifications to existing memory schedulers. IMPS
improves system throughput by 11.1% over an application-
unaware scheduler and 5% over the previous best scheduler,
while incurring much lower hardware complexity than the
latter.
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1. INTRODUCTION
Applications executing concurrently on a multicore chip

contend with each other to access main memory, which has
limited bandwidth. If the limited memory bandwidth is not
managed well, different applications can harmfully interfere
with each other, which can result in significant degrada-
tion in both system performance and individual application
performance [11, 12, 17, 19, 20, 22]. Several techniques to
improve system performance by reducing memory interfer-
ence among applications have been proposed [11, 12, 17,
19, 20, 22, 24]. Fundamentally, these proposals viewed the
problem as a memory access scheduling problem, and conse-
quently focused on developing new memory request schedul-
ing policies that prioritize the requests of different applica-
tions in a way that reduces inter-application interference.
However, such application-aware scheduling algorithms re-
quire (non-negligible) changes to the existing memory con-
trollers’ scheduling logic [12, 30].

In this paper, we present and explore a fundamentally-
different alternative approach to reducing inter-application
interference in the memory system: controlling the mapping
of applications’ data to memory channels. Our approach is
based on the observation that multicore systems have mul-
tiple main memory channels [2, 4], each of which controls
a disjoint portion of physical memory and can be accessed
independently without any interference. This reveals an in-
teresting trade-off. On the one hand, interference between
applications could (theoretically) be completely eliminated if
each application’s data were mapped to a different channel,
assuming there were enough channels in the system. But,
on the other hand, even if so many channels were available,
mapping each application to its own channel would under-
utilize memory bandwidth and capacity (some applications
may need less bandwidth/capacity than they are assigned,
while others need more) and would reduce the opportunity
for bank/channel-level parallelism within each application’s
memory access stream. Therefore, the main idea of our ap-
proach is to find a sweet spot in this trade-off by mapping the
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data (i.e., memory pages) of applications that are likely to
cause significant interference (i.e., slowdown) to each other,
to different memory channels.

We make two major contributions. First, we explore the
potential for reducing inter-application memory interference
purely with channel partitioning, without modifying the mem-
ory scheduler. To this end, we develop a new application-
aware Memory Channel Partitioning (MCP) algorithm
that assigns preferred memory channels to different applica-
tions. The goal is to assign to different channels the data
of any two applications whose interference would cause sig-
nificant slowdowns. Our algorithm operates using a set of
heuristics that are guided by insight about how applications
with different memory access characteristics interfere with
each other. Specifically, we show in Sec 3 that applications
with largely divergent memory-intensities or row-buffer-hit
rates should preferably be separated to different channels
because they cause significant slowdowns when mapped to
the same channel.

Second, we show that MCP and application-aware mem-
ory request scheduling are orthogonal in the sense that both
concepts can beneficially be applied together. Specifically,
whereas our MCP algorithm is agnostic to the memory sched-
uler (i.e., we assume an unmodified, commonly used row-hit-
first memory scheduler [25, 32]), we show that additional
gains are possible when using MCP in combination with
a minimal-complexity application-aware memory scheduling
policy. We develop an Integrated Memory Partitioning
and Scheduling (IMPS) algorithm that seamlessly divides
the work of reducing inter-application interference between
the memory scheduler and the system software’s page map-
per based on what each can do best.

The key insight underlying the design of IMPS is that
interference suffered by very low memory-intensity applica-
tions is more easily mitigated by prioritizing them in the
memory scheduler, than with channel partitioning. Since
such applications seldom generate requests, prioritizing their
requests does not cause significant interference to other ap-
plications, as previous work has also observed [11, 12, 20,
14]. Furthermore, explicitly allocating one or more channels
for such applications can result in a waste of bandwidth.
Therefore, IMPS prioritizes requests from such applications
in the memory scheduler, without assigning them dedicated
channels, while reducing interference between all other ap-
plications using channel partitioning.

Overview of Results: We evaluated MCP and IMPS
on a wide variety of multi-programmed applications and
systems and in comparison to a variety of pure memory
scheduling algorithms. Our first finding is that, on a 24-core
4-memory controller system with an existing application-
unaware memory scheduler, MCP provides slightly higher
performance than the best previous memory scheduling al-
gorithm, Thread Cluster Memory Scheduling (TCM) [12]:
7.1% performance improvement vs. 6.1% for TCM. This
performance improvement is achieved with no modification
to the underlying scheduling policy. Furthermore, we find
that IMPS provides better system performance than current
state-of-the-art memory scheduling policies, pure MCP, as
well as combinations of MCP and state-of-the-art schedul-
ing policies: 5% over TCM, while incurring smaller hardware
complexity.

Our main conclusion is that the task of reducing harmful
inter-application memory interference should be divided be-

tween the memory scheduler and the system software page
mapper. Only the respective contributions of both entities
yields the best system performance.

2. BACKGROUND
We present a brief background about the DRAM main

memory system; more details can be found in [6, 19, 25]. A
modern main memory system consists of several channels.
Each channel has an address and a data bus and can be ac-
cessed independently, i.e., accesses to different channels can
proceed in parallel. A channel consists of one or more ranks.
A rank is a set of DRAM chips that collectively respond to
a command. Each rank consists of multiple banks, each
of which is a two-dimensional DRAM data array. Multiple
banks within a channel can be accessed in parallel, but they
share the address and data bus of the channel. As a result,
data from only one bank can be sent through the channel in
a given cycle.

A DRAM bank has a 2D structure consisting of rows and
columns. A column is the smallest addressable unit of mem-
ory, and a large number of columns make up a row. When a
unit of data has to be accessed from a bank, the entire row
containing the data is brought into a small internal buffer
called the row-buffer. If a subsequent memory access request
is to the same row, it can be serviced faster (2-3 times) than
if it were to a different row. This is called a row-hit.
Memory Request Scheduling Policy. FR-FCFS [25,
32] is a commonly used scheduling policy in current com-
modity systems. It prioritizes row-hits over row-misses, to
maximize DRAM throughput and within each category, it
prioritizes older requests. The analyses in this paper assume
the FR-FCFS scheduling policy, but our insights are applica-
ble to other scheduling policies as well. Sec 7 describes other
memory scheduling policies and qualitatively compares our
approach to them.
OS Page Mapping Policy. The Operating System (OS)
controls the mapping of a virtual address to a physical ad-
dress. The address interleaving policy implemented in the
memory controller in turn maps the physical address to a
specific channel/bank in main memory. Row interleaving
and cache line interleaving are two commonly used inter-
leaving policies. In the row interleaving policy, consecutive
rows of memory are mapped to consecutive memory chan-
nels. We assume equal sizes for OS pages and DRAM rows
in this work and use the terms page and row interchange-
ably, without loss of generality.1 Pure cache line interleav-
ing maps consecutive cache lines in physical address space
to consecutive memory channels. MCP cannot be applied
on top of this, as a page has to stay within a channel for
MCP. However, we can potentially apply MCP on top of a
restricted version of cache line interleaving that maps con-
secutive cache lines of a page to banks within a channel.

Commonly used OS page mapping and address interleav-
ing policies are unaware of inter-application interference and
map applications’ pages across different channels. The OS
does not consider application characteristics like cache miss
rate and row-buffer locality that affect inter-application in-
terference while mapping a virtual page to a physical page.
We build our discussions, insights and mechanisms assum-
ing such an interference-unaware OS page mapping policy

1Our mechanism works as long as the row size is greater
than the OS page size, as is the case in typical systems.
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and a row interleaved address mapping policy. However, we
also evaluate MCP on top of cache line interleaving across
banks in Sec 9.4.
Memory Related Application Characteristics. We
characterize memory access behavior of applications using
two attributes. Memory Access Intensity is defined as the
rate at which an application misses in the last level on-chip
cache and accesses memory – calculated as Misses per Kilo
Instructions (MPKI). Row-Buffer Locality is defined as the
fraction of an application’s accesses that hit in the row-
buffer. This is calculated as the average Row-Buffer Hit
Rate (RBH) across all banks.

3. MOTIVATION
In this section, we motivate our partitioning approach by

showing how applications with certain characteristics cause
more interference to other applications, and how careful
mapping of application pages to memory channels can ame-
liorate this problem.
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Figure 1: Conceptual example showing benefits of map-

ping data of low and high memory-intensity applications

to separate channels

In Figure 1, we present a conceptual example showing the
performance benefits of mapping the pages of applications
with largely different memory-intensities to separate chan-
nels. Application A on Core 0 has high memory-intensity,
generating memory requests at a high rate; Application B

on Core 1 has low memory-intensity, generating requests at
a much lower rate. Figures 1(a) and 1(b) show characteristic
examples of what can happen with conventional page map-
ping (where the pages of applications A and B are mapped
to the same channels) and with application-aware channel
partitioning (where the pages of applications A and B are
mapped to separate channels), respectively. In the first case,
B’s single request is queued behind three of A’s requests in
Bank 0 of Channel 0 (see Fig 1(a)). As a result, Applica-
tion B stalls for a long period of time (four time units) until
the three previously scheduled requests from A to the same
bank get serviced. In contrast, if the two applications’ data
are mapped to separate channels as shown in Figure 1(b),
B’s request can be serviced immediately, enabling its faster
progress (from four time units to one time unit). Appli-
cation A’s access latency improves (from five to four time
units) because the interference caused to it by B’s single
request is eliminated.
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Figure 2: Application slowdowns due to interference

between high and low memory-intensity applications
To determine to what extent such effects occur in practice,

we run a large number of simulation experiments2 with ap-
plications of vastly different memory-intensities and present
a representative result: We run four copies each of milc
and h264 (from the SPEC CPU2006 suite [1]) on an eight-
core, two-channel system. Figure 2 shows the effects of
conventional channel sharing: h264, the application with
lower memory-intensity, is slowed down by 2.7x when shar-
ing memory channels with milc compared to when it is run
alone. On the other hand, if milc’s and h264 ’s data are
partitioned and mapped to Channels 0 and 1, respectively,
h264 ’s slowdown is reduced to 1.5x. Furthermore, milc’s
slowdown also drops from 2.3x to 2.1x, as its queueing de-
lays reduce due to eliminating the interference from h264.
This substantiates our intuition from the example: sepa-
rating the data of low memory-intensity applications from
that of the high memory-intensity applications can largely
improve the performance of the low memory-intensity appli-
cation without significantly degrading the performance of the
high memory-intensity application, thereby improving over-
all system performance.

Memory-intensity is not the only characteristic that de-
termines the relative harmfulness of an application (i.e.,
propensity to slowdown others). In Figure 3, we show po-
tential benefits of mapping memory-intensive applications
with significantly different row-buffer localities onto sepa-
rate channels. In the example, Application A accesses the
same row, Row 5, repeatedly and hence has much higher
row-buffer locality than Application B, whose accesses are
to different rows, incurring many row misses.

Figure 3(a) shows a conventional page mapping approach,
while Figure 3(b) shows a channel partitioning approach.
With conventional page mapping, the commonly used row-
hit-first memory scheduling policy prioritizes A’s requests
over B’s to Rows 7 and 3, even though B’s requests had
arrived earlier than one of A’s (Figure 3(a)). This leads
to increased queueing delays of B’s requests, causing B to
slow down. On the other hand, if the pages of A and B are
mapped to separate channels (Figure 3(b)), the interference
received by B is reduced and consequently the queueing de-
lay experienced by B’s requests is also reduced (by two time
units). This improves Application B’s performance without
affecting Application A’s.

A representative case study from among our experiments
is shown in Figure 4. We ran four copies each of mcf and
libquantum, two memory-intensive applications on an eight-
core two-channel system. Mcf has a low row-buffer hit rate
of 42% and suffers a slow down of 20.7x when sharing mem-
ory channels with libquantum, which is a streaming applica-
tion with 99% row-buffer hit rate. The row-hit-first memory

2Our simulation methodology is described in Sec 8.
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Figure 4: Application slowdowns due to interference be-

tween high and low row-buffer hit rate memory-intensive

applications

scheduling policy starves mcf ’s memory requests for a long
time by prioritizing libquantum’s row-hit requests. On the
other hand, if the data of mcf is isolated from libquantum’s
data and given a separate channel, mcf ’s slowdown drops
significantly, to 6.5x from 20.7x. Even though there is still
interference between four copies of mcf mapped to the same
channel, this interference is much smaller than the starva-
tion caused by libquantum to mcf if they were mapped to
the same channel.

Libquantum’s small performance loss of 4% shows the
trade-off involved in channel partitioning: The drop is due
to the loss in bank-level parallelism resulting from assigning
only one channel to libquantum. In terms of system perfor-
mance, however, this drop is far outweighed by the reduction
in slowdown of mcf. We therefore conclude that isolating ap-
plications with low row-buffer locality from applications with
high row-buffer locality by means of channel partitioning im-
proves the performance of applications with low row-buffer
locality and the overall system.

Based on these insights, we next develop MCP, an OS-
level mechanism to partition the main memory bandwidth
across the different applications running on a system. Then,
we examine how to best combine memory partitioning and
scheduling to minimize inter-application interference and ob-
tain better system performance.

4. MEMORY CHANNEL PARTITIONING
Our Memory Channel Partitioning (MCP) mechanism con-

sists of three components: 1) profiling of application behav-
ior during run time, 2) assignment of preferred channels to
applications, 3) allocation of pages to the preferred chan-

nel. The mechanism proceeds in periodic intervals. During
each interval, application behavior is profiled (Sec 4.1). At
the end of an interval, the applications are categorized into
groups based on the characteristics collected during the in-
terval, and each application is accordingly assigned a pre-
ferred channel (Sec 4.2). In the subsequent interval, these
preferred channel assignments are applied. That is, when an
application accesses a new page that is either not currently
in DRAM or not in the application’s preferred channel, MCP
uses the preferred channel assignment for that application:
the requested page is allocated in the preferred channel (see
Sec 4.3).

In summary, during the Ith interval, MCP applies the pre-
ferred channel assignment which was computed at the end of
the (I − 1)th interval, and also collects statistics, which will
then be used to compute the new preferred channel assign-
ment to be applied during the (I + 1)th execution interval.3

Note that although MCP provides a preferred channel as-
signment to reduce interference, it does not constrain the
memory capacity usage of applications. An application can
use the entire DRAM capacity, if it needs so.

4.1 Profiling of Application Characteristics
As shown in Sec 3, memory access intensity and row-buffer

locality are key factors determining the level of harm caused
by interference between applications. Therefore, during ev-
ery execution interval, each application’s Misses Per Kilo
Instruction (MPKI) and Row-Buffer Hit Rate (RBH) statis-
tics are collected. To compute an application’s inherent row-
buffer hit rate, we use a per-core shadow row-buffer index for
each bank, as in previous work [8, 12, 19], which keeps track
of the row that would have been present in the row-buffer
had the application been running alone.

4.2 Preferred Channel Assignment
At the end of every execution interval, each application

is assigned a preferred channel. The assignment algorithm

3The very first interval of execution is used for profiling
only and we call it the profile interval. We envision it to
be shorter than the subsequent execution intervals, and its
length is a trade off between minimizing the number of pages
that get allocated before the first set of channel preferences
are established and letting the application’s memory access
behavior stabilize before collecting statistics. Sec 9.7 evalu-
ates sensitivity to profile interval length.
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Figure 5: MCP: Application Grouping
is based on the insights derived in Sec 3. The goal is to
separate as much as possible 1) the data of low memory-
intensity applications from that of high memory-intensity
applications, and, 2) among the high memory-intensity ap-
plications, the data of low row-buffer locality applications
from that of high row-buffer locality applications. To do so,
MCP executes the following steps in order:

1. Categorize applications into low and high memory-
intensity groups based on their MPKI. (Sec 4.2.1)

2. Further categorize the high memory-intensity applica-
tions, based on their row-buffer hit rate (RBH) values
into low and high row-buffer hit rate groups. (Sec 4.2.2)

3. Partition the available memory channels among the
three application groups. (Sec 4.2.3)

4. For each application group, partition the set of chan-
nels allocated to this group between all the applica-
tions in that group, and assign a preferred channel to
each application. (Sec 4.3)

4.2.1 Intensity Based Grouping

MCP categorizes applications into low and high memory-
intensity groups based on a threshold parameter, MPKIt,
as shown in Fig 5. MPKIt is determined by averaging the
last level cache Misses Per Kilo Instructions (MPKI) of all
applications and multiplying it by a scaling factor. Applica-
tions are categorized as low memory-intensity if their MPKI
is lower than MPKIt and high memory-intensity otherwise.
The use of the average value of MPKI allows the threshold to
adapt to workload memory intensity, while the scaling fac-
tor regulates the number of applications in the low memory-
intensity group. We empirically found that a scaling factor
of 1 provides an effective separation point and good system
performance (Sec 9.7).

4.2.2 Row-Buffer Locality Based Grouping

MCP further classifies the high memory-intensity appli-
cations into either low or high row-buffer locality groups
based on a threshold parameter, RBHt, as shown in Fig 5.
For every application i, if its RBHi is less than RBHt, then
it is classified as a low row-buffer locality application. In
this case, we do not take an average or use a scaling fac-
tor, as we observe that inter-application interference due to
row-buffer locality differences are more pronounced between
applications with very low and high row-buffer localities, un-
like memory-intensity where there is interference across the
continuum. We empirically observe that an RBHt value of
50% provides effective interference reduction and good per-
formance (Sec 9.7).

4.2.3 Partitioning of Channels between Application
Groups

After thus categorizing applications into three groups,
MCP partitions the available memory channels between
the groups. It is important to note that at this stage of
the algorithm, memory channels are assigned to applica-
tion groups and not to individual applications. MCP han-
dles the preferred channel assignment to individual applica-
tions in the next step (Sec 4.2.4). Channels are first parti-
tioned between low and high memory-intensity groups. The
main question is how many channels should be assigned to
each group. One possibility is to allocate channels propor-
tional to the total bandwidth demand (e.g., sum of appli-
cations’ MPKIs) of each group (bandwidth-proportional al-
location). This amounts to balancing the total bandwidth
demand across the available channels. Alternatively, chan-
nels could be allocated proportional to the number of ap-
plications in that group (application-count-proportional al-
location). In the former case, the low memory-intensity ap-
plications which constitute a very low proportion of total
bandwidth demand might be assigned no channels. This
fails to achieve their isolation from high memory-intensity
applications, leading to low system performance. In con-
trast, the latter scheme may result in bandwidth wastage as
the low memory-intensity applications seldom generate re-
quests and the bandwidth of the channels they are assigned
to would have been better utilized by the high memory-
intensity applications. We found that the isolation bene-
fits of application-count-proportional allocation outweighs
the potential bandwidth wastage caused by allocating low-
intensity applications to one or more channels.4 Therefore,
we use the application-count-proportional channel allocation
strategy for MCP. However, bandwidth wastage caused by
potentially allocating very low intensity applications dedi-
cated channels remains. We will show that eliminating this
wastage by handling these applications in the scheduler in
an integrated scheduling and partitioning mechanism is ben-
eficial (Sec 5).

The channels allocated to the high memory-intensity
group are further partitioned between the low and high
row-buffer locality application groups. The applications in
the high memory-intensity group are bandwidth sensitive,
meaning they each need a fair share of bandwidth to make
progress. To ensure this, MCP assigns a number of channels
to each of these two groups proportionately to the band-
width demand (sum of MPKIs) of the group.

4.2.4 Preferred Channel Assignment within an
Application Group

As a final step, MCP determines which applications within
a group are mapped to which channels, when more than one
channel is allocated to a group. Within a group, we balance
the total bandwidth demand across the allocated channels.
For each group, we maintain a ranking of applications by
memory-intensity. We start with the least intensive applica-
tion in the group and map applications to the group’s first
allocated channel until the bandwidth demand allocated to
it (approximated by sum of MPKIi of each application i

allocated to it) is Sum of MPKIs of applications in the group

Number of channels allocated to the group
. We

then move on to the next channel and allocate applications

4We found that bandwidth-proportional allocation results
in a 4% performance loss over the baseline since it increases
memory interference.
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to it. We repeat this procedure for every group and eventu-
ally, each application is assigned a preferred channel.

4.3 Allocation of Pages to Preferred Channel
Once each application is assigned a preferred channel,

MCP attempts to enforce this preference. For each page,
there are two possibilities. First, the accessed page may not
be resident in any memory channel (page fault). In this case,
the page fault handler attempts to allocate the page in the
preferred channel. If there is a free page in the preferred
channel, the new page is allocated there. Otherwise, a mod-
ified version of the CLOCK replacement policy, as described
in [7] is used. The baseline CLOCK policy keeps a circular
list of pages in memory, with the hand (iterator) pointing to
the oldest allocated page in the list. There is a Referenced
(R) bit for each page, which is set to ‘1’ when the page is
referenced. The R bits of all pages are cleared periodically
by the operating system. When a page fault occurs and
there are no free pages, the hand moves over the circular list
until an unreferenced page (a page with R bit set to ‘0’) is
found. The goal is to choose the first unreferenced page as
the replacement. To allocate a page in the preferred chan-
nel, the modified CLOCK algorithm looks ahead N pages
beyond the first replacement candidate to potentially find
an unreferenced page in the preferred channel. If there is
no unreferenced page within N pages, the first unreferenced
page in the list across all channels is chosen as the replace-
ment candidate. We use an N value of 512.

Second, the accessed page may be present in a channel
other than the preferred channel, which we observe to be
very rare in our workloads, since application behavior is rel-
atively constant within an interval. In this case, dynamically
migrating the page to the preferred channel could be ben-
eficial. However, dynamic page migration incurs TLB and
cache block invalidation overheads as discussed in [3]. We
find that less than 12% of pages in all our workloads go
to non-preferred channels and hence migration likely does
not gain much performance over allowing some pages of an
application to potentially remain in the non-preferred chan-
nels. Thus, our default implementation of MCP does not
use page migration. However, if needed, migration can be
incorporated into our mechanism.

5. INTEGRATED MEMORY

PARTITIONING AND SCHEDULING
MCP aims to solve the inter-application memory inter-

ference problem entirely with the system software’s page
mapper (with the support of additional hardware counters
to collect MPKI and RBH metrics for each application).
It does not require any changes to the memory schedul-
ing policy. This approach is in contrast to the various ex-
isting proposals, which try to solve the problem purely in
hardware. These proposals aim to reduce memory interfer-
ence entirely in the memory controller hardware using so-
phisticated scheduling policies (e.g., [11, 12, 19, 20]). The
question is whether either extreme alone (i.e., page map-
ping alone and memory scheduling alone) can really provide
the best possible interference reduction. Based on our ob-
servations below, the answer is no. Specifically, we devise
an integrated memory partitioning and scheduling (IMPS)
mechanism that aims to combine the interference reduction
benefits of both the system software page mapper and the

memory request scheduling hardware.
The key observation underlying IMPS is that applications

with very low memory-intensity, when prioritized over other
applications in the memory scheduler, do not cause signifi-
cant slowdowns to other applications. This observation was
also made in previous work [11, 12]. These applications sel-
dom generate memory requests; prioritizing these requests
enables the applications to quickly continue with long com-
putation periods and utilize their cores better, thereby sig-
nificantly improving system throughput [11, 12]. As such,
scheduling can very efficiently reduce interference experi-
enced by very low memory-intensity applications. In con-
trast, reducing the interference against such applications
purely using the page mapper is inefficient. The mapper
would have to dedicate one or more channels to such low-
memory-intensity applications, wasting memory bandwidth,
since these applications do not require significant memory
bandwidth (yet high memory-intensity applications would
likely need the wasted bandwidth, but cannot use it). If the
mapper did not dedicate a channel to such applications, they
would share channels with high memory-intensity applica-
tions and experience high interference with an unmodified
memory scheduler.

The basic idea and operation of IMPS is therefore simple.
First, identify very low memory-intensity applications (i.e.,
applications whose MPKI is smaller than a very low thresh-
old, 1.5 in most of our experiments (Sec 9.7)) at the end of an
execution interval, prioritize them in the memory scheduler
over all other applications in the next interval, and allow the
mapping of the pages of such applications to any memory
channel. Second, reduce interference between all other ap-
plications by using memory channel partitioning (MCP), ex-
actly as described in Sec 4. The modification to the memory
scheduler is minimal: the scheduler only distinguishes the re-
quests of very low memory-intensity applications over those
of others, but does not distinguish between requests of in-
dividual applications in either group. The memory schedul-
ing policy consists of three prioritization rules: 1) prioritize
requests of very low memory-intensity applications, 2) pri-
oritize row-hit-first requests, 3) prioritize older requests.

Note that MCP is still used to classify the remaining ap-
plications as low and high memory-intensity, as only the very
low memory-intensity applications are filtered out and pri-
oritized in the scheduler. MCP’s channel partitioning still
reduces interference and consequent slowdowns of the re-
maining applications.

6. IMPLEMENTATION
Hardware support. MCP requires hardware support

to estimate MPKI and row-buffer hit rate of each appli-
cation, as described in Sec 4.1. These counters are read-
able by the system software via special instructions. Ta-
ble 1 shows the storage cost incurred for this purpose. For
a 24-core system with 4 memory controllers (each control-
ling 4 memory banks and 16384 rows per bank), the hard-
ware overhead is 12K bits. IMPS requires an additional
bit per each request (called low-intensity bit) to distinguish
very low-memory-intensity applications’ requests over oth-
ers, which is an additional overhead of only 512 bits for a
request queue size of 128 per MC. IMPS also requires small
modifications to the memory scheduler to take into account
the low-intensity bits in prioritization decisions. Note that,
unlike previous application-aware memory request schedul-
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Storage Description Size (in bits)

Storage Overhead for MCP - per-core registers

MPKI-counter A core’s last level cache misses per kilo instruction Ncore × log2MPKImax = 240
Storage Overhead for MCP - per-core registers in each controller

Shadow row-buffers Row address of a core’s last accessed row Ncore ×Nbanks × log2Nrows = 1344
Shadow row-buffer hit counters Number of row-hits if the application were running alone Ncore ×Nbanks × log2Countmax = 1536

Additional Storage Overhead for IMPS - per request register in each controller

Very low memory-intensity indicator Identify requests from very low-intensity applications 1×Queuemax = 128

Table 1: Hardware storage required for MCP and IMPS

ing policies, IMPS 1) does not require each main memory re-
quest to be tagged with a thread/application ID since it does
not distinguish between individual applications’ requests, 2)
adds only a single new bit per request for the memory sched-
uler to consider, 3) does not require application ranking as
in [11, 12, 20] – ranking and prioritization require hard-
ware logic for sorting and comparisons [18]. As such, the
hardware complexity of IMPS is much lower than previous
application-aware memory scheduling policies.

System software support. MCP and IMPS require
support from system software to 1) read the counters pro-
vided by the hardware, 2) perform the preferred channel
assignment, at the end of each execution interval, as al-
ready described. Each application’s preferred channel is
stored as part of the system software’s data structures, lead-
ing to a very modest memory overhead of NAppsInSystem ×

NMemoryChannels bits. The page fault handler and the page
replacement policy are modified slightly, as described in
Sec 4.3. The proposed mechanisms do not require changes
to the page table. The time overhead of the modified re-
placement policy is small. First, only on a page fault are
up to N (512) entries in the circular page list scanned to
find a suitable replacement candidate. Next, compared to
the baseline cost of a page fault (on the order of millions of
cycles), the extra overhead of scanning the list is extremely
small. A quick back-of-the-envelope calculation shows that,
assuming a page table entry size of 4 bytes, bringing in 512
entries (i.e., 2KB) from memory to cache (to check their
Referenced bits) takes less than 10,000 cycles.

7. RELATED WORK AND QUALITATIVE

COMPARISONS
To our knowledge, this paper is the first to propose and

explore memory page mapping mechanisms as a solution to
mitigate inter-application memory interference and thereby
improve system performance.

Memory Scheduling. The problem of mitigating in-
terference has been extensively addressed using application-
aware memory request scheduling. We briefly describe the
two approaches we compare our mechanisms to in Section 9.
ATLAS [11] is a memory scheduling algorithm that improves
system throughput by prioritizing applications based on their
attained memory service. Applications that have smaller
attained memory service are prioritized over others because
such threads are more likely to return to long compute pe-
riods and keep their cores utilized. Thread cluster memory
scheduling (TCM) [12] improves both system performance
and fairness. System performance is improved by allocating
a share of the main memory bandwidth for latency-sensitive
applications. Fairness is achieved by shuffling scheduling
priorities of memory-intensive applications at regular inter-
vals to prevent starvation of any application. These and
other application-aware memory schedulers [17, 19, 20, 22,
24, 18] attempt to reduce inter-application memory inter-

ference purely through memory request scheduling. As a
result, they require significant modifications to the mem-
ory controller’s design. In contrast, we propose 1) an alter-
native approach to reduce memory interference which does
not require changes to the scheduling algorithm when em-
ployed alone, 2) combining our channel partitioning mech-
anism with memory scheduling to gain better performance
than either can achieve alone. Our quantitative comparisons
in Section 9 show that our proposed mechanisms perform
better than the state-of-the-art scheduling policies, with no
or minimal changes to the memory scheduling algorithm.

Application-unaware memory schedulers [10, 21, 25, 32],
including the commonly-employed FR-FCFS policy [25, 32],
aim to maximize DRAM throughput, These policies do not
attempt to reduce inter-application interference and there-
fore, lead to low system performance in multi-core systems,
as shown in previous work [11, 12, 17, 19, 20, 22].

OS Thread Scheduling. Zhuravlev et al. [31] aim to
mitigate shared resource contention between threads by co-
scheduling threads that interact well with each other on
cores sharing the resource, similar to [26]. Such solutions
require enough threads with symbiotic characteristics to ex-
ist in the OS’s thread scheduling pool. In contrast, our pro-
posal can reduce memory interference even if threads that
interfere significantly with each other are co-scheduled in
different cores and can be combined with co-scheduling pro-
posals to further improve system performance.

Page Allocation. Page allocation mechanisms have
been explored previously. Awasthi et al. [3] use page allo-
cation and migration to balance load across memory con-
trollers (MCs) in an application-unaware manner, to im-
prove memory bandwidth utilization and system perfor-
mance in a network-on-chip based system where a core
has different distances to different memory channels. Our
proposal, in comparison, performs page allocation in an
application-aware manner with the aim of reducing inter-
ference between different applications. We compare our ap-
proach to an adaptation of [3] to crossbar-based multicore
systems where all memory controllers are equidistant to any
core (in Section 9.3) and show that application-aware chan-
nel partitioning leads to better system performance than
balancing load in MCs. However, concepts from both ap-
proaches can be combined for further performance benefits.

In NUMA-based multiprocessor systems with local and
remote memories, page allocation mechanisms were used to
place data close to corresponding computation node [5, 29].
The goal was to reduce the average latency of accessing data
from memory, while still leveraging the memory capacity
provided by remote nodes, for a single application. Our goal
is completely different: to map data to different channels to
mitigate interference between different applications.

Sudan et al. [27] propose to colocate frequently used chunks
of data in the same rows, thereby improving row-buffer lo-
cality, by modifying OS page mapping mechanisms. Lebeck
et al. [13] and Hur et al. [10] propose page allocation mech-
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Processor Pipeline 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit Width 3 instructions per cycle in each core; 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte block size
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size
DRAM controller (on-chip) 128-entry request buffer, 64-entry write buffer, reads prioritized over writes, row interleaving
DRAM chip parameters DDR2-800 timing parameters, tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns, 4 banks, 4KB row-buffer
DIMM Configuration Single-rank, 8 DRAM chips put together on a DIMM to provide a 64-bit wide memory channel
DRAM Capacity 4KB/row * 16K rows/bank * 4 banks/channel * 4 channels = 1GB
Round-trip L2 miss latency For a 32-byte cache line

uncontended: row-buffer hit: 40ns (200 cycles), closed: 60ns (300 cycles), conflict: 80ns (400 cycles)
Cores and DRAM controllers 24 cores, 4 independent DRAM controllers, each controlling a single memory channel

Table 2: Default processor and memory subsystem configuration

No. Benchmark MPKI RBH No. Benchmark MPKI RBH No. Benchmark MPKI RBH

1 453.povray 0.03 85.2% 10 445.gobmk 0.6 71% 19 482.sphinx3 24.9 85.4%
2 400.perlbench 0.13 83.6% 11 435.gromacs 0.7 84.4% 20 459.GemsFDTD 25.3 28.8%
3 465.tonto 0.16 91% 12 464.h264 2.7 92.3% 21 433.milc 34.3 93.2%
4 454.calculix 0.20 87.2% 13 401.bzip2 3.9 53.8% 22 470.lbm 43.5 95.2%
5 444.namd 0.3 95.4% 14 456.hmmer 5.7 35.5% 23 462.libquantum 50 99.2%
6 481.wrf 0.3 91.9% 15 473.astar 9.2 76.2% 24 450.soplex 50.1 91.3%
7 403.gcc 0.4 73.2% 16 436.cactusADM 9.4 18% 25 437.leslie3d 59 82.6%
8 458.sjeng 0.4 11.5% 17 471.omnetpp 21.6 46% 26 429.mcf 99.8 42.9%
9 447.dealIII 0.5 81.2% 18 483.xalancbmk 23.9 73.2%

Table 3: SPEC CPU2006 benchmark characteristics

anisms to increase idleness and thus decrease energy con-
sumption in DRAM ranks/banks. Phadke et al. [23] pro-
pose a heterogeneous memory system where each memory
channel is optimized for latency, bandwidth, or power and
propose page mapping mechanisms to map appropriate ap-
plications’ data to appropriate channels to improve perfor-
mance and energy efficiency. None of these works consider
using page allocation to reduce inter-application memory in-
terference, and therefore they can be potentially combined
with our proposal to achieve multiple different goals.

Source Throttling. Ebrahimi et al. [8, 9] propose mech-
anisms to reduce inter-application interference by throttling
the request injection rate of those applications that slow
down others the most, at the source (core). Though our goal
is also to reduce inter-application interference, our approach
is complementary: channel partitioning. Source throttling
and channel partitioning can be employed synergistically to
further mitigate inter-application interference and we aim to
investigate this interaction as part of future work.

8. EVALUATION METHODOLOGY
Simulation Setup. MCP requires the MPKI and RBH

values to be collected for each application. These per-
application hardware counters, though easy to implement,
are not present in existing systems. Also, our evaluation
requires different system configurations with varying archi-
tectural parameters and comparison to new scheduling algo-
rithms. For these reasons, we are unable to evaluate MCP
on a real system and use an in-house cycle-level x86 multi-
core simulator. The front end of the simulator is based on
Pin [15]. Pin supplies virtual addresses. Our simulator mod-
els a virtual-to-physical address translator that allocates a
physical frame to a virtual page when the virtual page is first
touched. This simulator also models the memory subsystem
of a CMP in detail. It enforces channel, rank, bank, port and
bus conflicts, thereby capturing all the bandwidth limita-
tions and modeling both channel and bank-level parallelism
accurately. The memory model is based on DDR2 timing
parameters [16]. We model the execution in a core, includ-
ing the instruction-window. Unless mentioned otherwise, we
model a 24-core system with 4 memory channels/controllers.

Table 2 shows major processor and memory parameters.
Evaluation Metrics. We measure the overall throughput
of the system using weighted speedup [26]. We also report
harmonic speedup, which is a combined measure of perfor-
mance and fairness.

SystemThroughput = WeightedSpeedup = Σi
IPCshared

i

IPCalone
i

;

HarmonicSpeedup = Σi
N

IP Calone
i

IP Cshared
i

.

Our normalized results are normalized to the baseline with
FR-FCFS memory scheduler, unless stated otherwise.
Workloads. We use workloads constructed from the SPEC
CPU2006 benchmarks [1] in our evaluations. We compiled
the benchmarks using gcc with the O3 optimization flag. Ta-
ble 3 shows benchmarks’ characteristics. We classify bench-
marks into two categories: high memory-intensity (greater
than 10 MPKI) and low memory-intensity (less than 10
MPKI). We vary the fraction of high memory-intensity bench-
marks in our workloads from 0%, 25%, 50%, 75%, 100%
and construct 40 workloads in each category. Within each
memory-intensity category, we vary the fraction of high row-
buffer hit rate benchmarks in a workload from low to high.
We also create another category, V eryLow(V L) consisting
of 40 workloads. All benchmarks in these workloads have
less than 1 MPKI. We consider V L for completeness, al-
though these workloads have little bandwidth demand. For
our main evaluations and some analyses, we use all 240 work-
loads and run each workload for 300M cycles. For sensitiv-
ity studies, we use the 40 balanced (50% memory-intensive)
workloads, unless otherwise mentioned, and run for 100M
cycles to reduce simulation time.
Parameter Values. The default MPKI scaling factor and
RBHt values we use in our experiments are 1 and 50% re-
spectively. For the profile interval and execution interval, we
use values of 10 million and 100 million cycles, respectively.
We later study sensitivity to these parameters.

9. RESULTS
We first present and analyze the performance of MCP

and IMPS on a 24-core 4-memory-controller system. Fig-
ure 6 shows the system throughput and harmonic speedup
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Figure 6: MCP and IMPS performance (normalized)

across 240 workloads

averaged over all 240 workloads. The upper right part of the
graph corresponds to better system throughput and a better
balance between fairness and performance. MCP improves
system throughput by 7.1% and harmonic speedup by 11%
over the baseline. IMPS provides 4% better system through-
put (13% better harmonic speedup) over MCP, and 11%
better system throughput (24% better harmonic speedup)
over the baseline. We observe (not shown) that the schedul-
ing component of IMPS alone (without partitioning) gains
half of the performance improvement of IMPS. We conclude
that interference-aware channel partitioning is beneficial for
system performance, but dividing the task of interference re-
duction between channel partitioning and memory request
scheduling provides better system performance than employ-
ing either alone.
Effect of Workload Memory-Intensity. Figure 7 shows
the system throughput benefits of MCP and IMPS, for six
workload categories with different memory intensities.5 As
expected, as workload intensity increases (from left to right
in the figure), absolute system throughput decreases due to
increased interference between applications.
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Figure 7: MCP and IMPS performance across memory-

intensity categories. % gain values of IMPS over FR-

FCFS are labeled.

We make three major conclusions. First, MCP and IMPS
improve performance significantly over FR-FCFS in most of
the memory-intensity categories. Specifically, MCP avoids
interference between applications of both dissimilar and sim-
ilar intensities by isolating them to different channels, en-
abling benefits mostly regardless of workload composition.
Second, IMPS’s performance benefit over MCP is especially
significant in the lower-intensity workloads. Such workloads
have a higher number of very low memory-intensity appli-
cations and IMPS prioritizes them in the scheduler, which

5All categories except VL place a significant load on the
memory system, as the intensity cut off used to classify an
application as intensive is 10 MPKI, which is relatively large.

is more effective for system performance than reducing in-
terference for them by assigning them to their own chan-
nels, which wastes bandwidth as done by MCP. As the
workload memory-intensity increases, IMPS’ performance
benefit over MCP becomes smaller because the number of
low memory-intensity applications becomes smaller. Third,
when the workload mix is very non-intensive or very in-
tensive, MCP/IMPS do not provide much benefit. In the
V L category, load on memory and as a result interference
is very low, limiting the potential of MCP/IMPS. When
100% of applications in the workload are intensive, the sys-
tem becomes severely memory bandwidth limited and con-
serving memory bandwidth by exploiting row-buffer locality
(using simple FR-FCFS) provides better performance than
reducing inter-application interference at the expense of re-
ducing memory throughput. Any scheduling or partitioning
scheme that breaks the consecutive row-buffer hits results in
a system performance loss. In fact, it can be observed that
MCP/IMPS degrade performance only by 2.7% as compared
to previously proposed scheduling policies that degrade per-
formance by 40-50% (shown in Figure 9). Therefore, we
conclude that MCP and IMPS are effective for a wide vari-
ety of workloads where contention exists and the system is
not severely limited by memory bandwidth.

9.1 Comparison to Previous Scheduling
Policies

Figure 8 compares MCP and IMPS with previous memory
scheduling policies, FR-FCFS [25], PAR-BS [20], ATLAS
[11] and TCM [12] over 240 workloads. Two major conclu-
sions are in order. First, most application-aware scheduling
policies perform better than FR-FCFS, and TCM performs
the best among the application-aware scheduling policies,
consistent with previous work [20, 11, 12]. Second, MCP
and IMPS outperform TCM by 1%/5%, with no/minimal
changes to the scheduler.
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Figure 8: MCP and IMPS performance (normalized) vs.

previous scheduling policies avg. across 240 workloads

Figure 9 provides insight into where MCP’s and IMPS’
performance benefits are coming from by breaking down
performance based on workload intensity. As the work-
load memory intensity (thus contention) increases, MCP and
IMPS become more effective than pure memory scheduling
approaches. For low-intensity workloads (VL, 0%, 25%),
TCM performs slightly better than IMPS because TCM is
able to distinguish and prioritize between each individual ap-
plication in the memory scheduler (not true for MCP/IMPS),
leading to reduced interference between low and medium in-
tensity applications. For high memory-intensity workloads
(50%, 75%, 100%), reducing interference via channel par-
titioning is more effective than memory scheduling: both
MCP and IMPS outperform TCM, e.g. by 40% in the
100%-intensity workloads. In such workloads, contention
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for memory is very high as many high-intensity applica-
tions contend. Channel partitioning completely eliminates
interference between some applications by separating out
their access streams to different channels, thereby reducing
the number of applications that contend with each other.
On the other hand, TCM or a pure memory scheduling
scheme tries to handle contention between high-intensity
workloads purely by prioritization, which is more effective
at balancing interference but cannot eliminate interference
as MCP/IMPS does since all applications contend with each
other. We conclude that IMPS is a more effective solution
than pure memory scheduling especially when workload in-
tensity (i.e., memory load) is high, which is the expected
trend in future systems.
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Figure 9: MCP and IMPS performance vs previous

scheduling policies across memory-intensity categories.
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Note that IMPS’s performance benefits over application-
aware memory schedulers come at a significantly reduced
hardware complexity, as described in Section 6.

9.2 Interaction with Previous Scheduling
Policies

Figure 10 compares MCP and IMPS, when implemented
on top of FR-FCFS, ATLAS and TCM as the underlying
scheduling policy. When IMPS is implemented over AT-
LAS and TCM, it adds another priority level on top of the
scheduling policy’s priority levels: very-low-intensity appli-
cations are prioritized over others and the scheduling policy’s
priorities are used between very-low-intensity applications
and between the remaining applications.
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Figure 10: MCP and IMPS performance over different

scheduling policies (240 workloads)

Several conclusions are in order. First, adding
MCP/IMPS on top of any previous scheduling policy im-
proves performance (IMPS gains 7% and 3% over ATLAS
and TCM respectively) showing that our proposal is comple-
mentary to the underlying memory scheduling policy. Sec-
ond, MCP/IMPS over FR-FCFS (our default proposal) pro-

vides better performance than MCP/IMPS employed over
TCM or ATLAS. This is due to two reasons: 1) channel
partitioning decisions MCP makes are designed assuming an
FR-FCFS policy and not designed to take into account or
interact well with ATLAS/TCM’s more sophisticated thread
ranking decisions. There is room for improvement if we de-
sign a channel partitioning scheme that is specialized for
the underlying scheduling policy. We leave this for future
work. 2) MCP/IMPS isolates groups of similar applications
to different channels and ATLAS/TCM operate within each
channel to prioritize between/cluster these similar applica-
tions. However, ATLAS and TCM are designed to exploit
heterogeneity between applications and do not perform as
well when the applications they prioritize between are simi-
lar. We found that prioritizing similar-intensity applications
over each other as done in ATLAS/TCM creates significant
slowdowns because the applications are treated very differ-
ently. We conclude that MCP/IMPS can be employed on
top of any underlying scheduler to gain better performance
over using the scheduler alone. However, it performs best
when employed over an FR-FCFS baseline for which it is
designed.

9.3 Comparison with Balancing Memory Load
Across Multiple Memory Controllers

In [3], Awasthi et al. propose two page allocation schemes
to balance the load across multiple memory controllers: 1)
page allocation on first touch (Adaptive First Touch, AFT),
2) Dynamic Page Migration (DPM). AFT attempts to bal-
ance load by allocating a page to a channel which has the
minimum value of a cost function involving channel load,
row-buffer hit rate, and the distance to the channel. DPM
proposes to migrate a certain number of pages from the most
loaded to the least loaded channel at regular intervals, in ad-
dition to AFT. In our adaptation of AFT, we consider both
channel load and row-buffer hit rate but do not incorpo-
rate the channel distance, as we do not model a network-
on-chip. Figure 11 compares MCP/IMPS performance to
that of AFT and DPM on 40 workloads with 50% of ap-
plications memory intensive. First, AFT and DPM both
improve performance by 5% over the baseline, because they
reduce memory access latency by balancing load across dif-
ferent channels. The gains from the two schemes are similar
as the access patterns of the applications we evaluate do
not vary largely with time, resulting in very few invocations
of dynamic page migration. Second, our proposals outper-
form AFT and DPM by 7% (MCP) and 12.4% (IMPS), as
they proactively reduce inter-application interference by us-
ing application characteristics, while AFT and DPM are not
interference- or application-aware and try to reactively bal-
ance load across memory controllers. We conclude that re-
ducing inter-application interference by page allocation pro-
vides better performance than balancing load across memory
controllers in an application-unaware manner.

9.4 Effect of Cache Line Interleaving
We study the effect of MCP/IMPS on a system with a

restricted form of cache line interleaving that maps consec-
utive cache lines of a page across banks within a channel.
Figure 12 shows that MCP/IMPS improve the performance
of such a system by 5.1% and 11% respectively. We observed
(not shown) that unrestricted cache line interleaving across
channels (to which MCP/IMPS cannot be applied) improves
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ness compared to previous schedul-

ing policies (240 workloads)

performance by only 2% over restricted cache line interleav-
ing. Hence, using channel partitioning with MCP/IMPS
outperforms cache line interleaving across channels. This is
because the reduction in inter-application interference with
MCP/IMPS provides more system performance benefit than
the increase of channel-level parallelism with unrestricted
cache-line interleaving. We conclude that MCP/IMPS are
effective independent of the interleaving policy employed, as
long as the interleaving policy allows the mapping of an en-
tire page to a channel (which is required for MCP/IMPS to
be implementable).

9.5 Effect of MCP and IMPS on Fairness
The fairness metric we use, the maximum slowdown of a

workload, is defined as the maximum of the slowdowns (in-
verse of speedups) of all applications [11, 12, 28]; lower max-
imum slowdown values are more desirable. Figure 13 shows
performance vs. fairness of previously proposed scheduling
policies and our proposed schemes. IMPS has slightly bet-
ter fairness (3% lower maximum slowdown) than FR-FCFS.
While MCP and IMPS provide the best performance com-
pared to any other previous proposal, they result in higher
unfairness. Note that this is expected by design: MCP and
IMPS are designed for improving system performance and
not fairness. They make the conscious choice of placing high
memory-intensity (and high row-buffer locality) applications
onto the same channel(s) to enable faster progress of lower-
intensity applications, which sometimes results in the in-
creased slowdown of higher-intensity applications. Channel
partitioning based techniques that can improve both perfor-
mance and fairness are an interesting area for future work.

9.6 Effect of MCP and IMPS on Page Faults
We observe that MCP/IMPS do not increase and in fact

can reduce page faults due to two reasons. First, MCP does
not hard partition memory capacity between applications.
Hard partitioning would cause fragmentation across chan-
nels, which could lead to page faults in a channel whose
capacity is exhausted. However, MCP introduces only soft
partitions, so that if the preferred channel is exhausted, an
empty page from a non-preferred channel is allocated. Sec-
ond, we use a modified page replacement policy proposed
by Das et al. [7] (see Section 4.3). As also analyzed and
observed in [7], this replacement policy reduces interference
between pages allocated to different channels by preferen-
tially picking replacement candidates within the same chan-
nel, actually leading to a reduction in page faults.

9.7 Sensitivity Studies
Sensitivity to MCP/IMPS algorithm parameters.

We first vary the profile interval length to study its impact
on MCP and IMPS’ performance (Figure 14). A short initial
profile interval length leads to less stable MPKI and RBH
values, and hence potentially inaccurate estimation of ap-
plication characteristics. In contrast, a long profile interval
length causes a larger number of pages to be allocated prior
to computing channel preferences. A profile interval length
of 10M cycles balances these downsides of short and long
intervals and provides the best performance.

We also experimented with different execution interval
lengths (Figure 15). A shorter interval leads to better adap-
tation to changes in application behavior but could poten-
tially result in more pages being on non-preferred channels.
In contrast, a longer interval might miss changes in the be-
havior of applications. Though execution interval lengths of
100M and 200M cycles both provide similar (and the best)
system performance, because an interval length of 100M cy-
cles captures application phase changes better, we use that.

Figure 16 shows the sensitivity of MCP/IMPS to the
MPKIt scaling factor. As the MPKIt scaling factor
is increased beyond 1, more medium and high memory-
intensity applications get into the low memory-intensity
group, thereby slowing down the low-intensity applications
and resulting in lower throughput. We also varied RBHt,
the row-buffer hit rate threshold and the very low memory-
intensity threshold used in IMPS. System performance re-
mains high and stable over a wide range of these values, with
the best performance observed at an RBHt value of 50% and
a very low memory-intensity threshold value of 1.5.
Sensitivity to core count, cache sizes, MCs and
banks. Table 4 shows the performance of IMPS as number
of cores, L2 cache size, number of MCs and number of banks
are varied. The rest of the system remains the same and we
do not tune system/mechanism parameters. Even without
any parameter tuning, IMPS’ benefits are significant across
all configurations. IMPS’ performance gain in general in-
creases when the system is more bandwidth constrained, i.e.,
with higher number of cores and smaller number of MCs.
MCP shows similar trends as IMPS (not shown).

10. CONCLUSION
We presented the concepts and mechanisms of 1)

application-aware memory channel partitioning (MCP), a
fundamentally new approach to reducing inter-application
interference at the memory system, by mapping the data of
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scaling factor (40 workloads)

No. of Cores Private L2 Cache Size No. of MCs No. of Banks

16 24 32 256KB 512KB 1MB 2 4 8 16 4 8 16
15.8% 17.4% 31% 16.6% 17.4% 14.3% 18.2% 17.1% 10.7% 6.5% 17.1% 12.6% 4.6%

Table 4: IMPS system throughput improvement with different system parameters (averaged over 40 workloads)

interfering applications to separate channels, 2) integrated
memory channel partitioning and scheduling (IMPS), that
effectively divides the work of reducing inter-application in-
terference between the system software and the memory
scheduler. Our extensive qualitative and quantitative com-
parisons demonstrate that MCP and IMPS both provide
better system performance than the state-of-the-art mem-
ory scheduling policies, with no or minimal hardware com-
plexity. IMPS provides better performance than channel
partitioning or memory scheduling alone. We conclude that
inter-application memory interference is best reduced using
the right combination of page allocation to channels and
memory request scheduling, and that IMPS achieves this
synergy with minimal hardware complexity.
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