
Design and Evaluation of a
Compiler Algorithm for Prefetching

Todd C. Mowry, Monica S. Lam and Anoop Gupta

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Software-controlled data prefetching is a promising technique for
improving the performance of the memory subsystem to match
today’s high-performance processors. While prefctching is useful in
hiding the latency, issuing prefetches incurs an instruction overhead
and can increase the load on the memory subsystem. As a resu 1~

care must be taken to ensure that such overheads do not exceed the
benefits.

This paper proposes a compiler algorithm to insert prefetch
instructions into code that operates on dense matrices. Our algo-
rithm identiEes those references that are likely to be cache misses,
and issues prefetches only for them. We have implemented our
algorithm in the SUfF (Stanford University Intermediate Form) opti-
mizing compiler. By generating fully functional code, we have been
able to measure not only the improvements in cache miss rates, but
also the oversdl performance of a simulated system. We show that
our algorithm significantly improves the execution speed of our
benchmark programs-some of the programs improve by as much
as a factor of two. When compared to an algorithm that indiscrim-
inately prefetches alf array accesses, our algorithm can eliminate
many of the unnecessary prefetches without any significant decrease
in the coverage of the cache misses.

1 Introduction

With ever-increasing clock rates and the use of instruction-level
parallelism, the speed of microprocessors has and will continue to
increase dramatically. WMt numerical processing capabilities that
rival the processing power of older generation supercomputers, these
microprocessors are particularly attractive as scientific engines due
to their cost-effectiveness. In addition, these processors can be used
to build large-scale multiprocessors capable of an aggregate peak
rate surpassing that of current vector machines.

Unfortunately, a high computation bandwidth is meaningless
unless it is matched by a similarly powerful memory subsystem.
These microprocessors tend to rely on caches to reduce their effect-
ive memory access time. While the effectiveness of caches has
been welf c.stablished for general-purpose code, their effectiveness
for scientiEc applications has not. One manifestation of thk is that
several of the scalar machines designed for scientific computation
do not use caches[6, 7].

1.1 Cache Performance on Scientific Code

To illustrate the need for improving the cache performance of
microprocessor-based systems, we present results below for a set
of scientific programs. For the sake of concreteness, we pattern our
memory subsystem after the MIPS R4000. The architecture consists

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notics and ths

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ASPLOS V - 10/92 /MArUSA
@ 1992 ACM 0.8979 J.535-6/92/00~ O\0062. %,$J ,50

62

of a single-issue processor running at a 100 MHz internal clock.
The processor has an on-chip primary data cache of 8 Kbytes, and
a secondary cache of 256 Kbytes. Both caches are direct-mapped
and use 32 byte lines. The penalty of a primary cache miss that hits
in the secondary cache is 12 cycles, and the total penalty of a miss
that goes all the way to memory is 75 cycles. To limit the coni-
plexity of the simulation, we assume that all ins~ctions execute in
a single cycle and that all instructions hit in the primary instruction
cache.

We present results for a collection of scientiEc programs drawn

from several benchmark suites. This collection includes NASA7
and TOMCATV from the SPEC benchmarks[27], OCEAN – a uni-
processor version of a SPLASH benchmark[25], and CG (conjugate
gradient), EP (embarrassingly parallel), IS (integer sort), MG (mtrlti-
grid) from the NAS Parallel Benchmarks[3]. Since the NASA7
benchmark really consists of 7 independent kernels, we study each
kernel separately (MXM, CFFT2D, CHOLSKY, BTRIX, GMTRY,
EMIT and VPENTA). The performance of the benchmarks was sim-
ulated by instrumenting the MIPS object code using pixie[26] and
piping the resulting trace into our cache simulator.

Figure 1 breaks down the total program execution time into
instruction execution and stalls due to memory accesses. We
observe that many of the programs spend a significant amount of
time on memory accesses. In fact, 8 out of the 13 programs spend
more than half of their time stalled for memory accesses.

1.2 Memory Hierarchy Optimizations

Various hardware and software approaches to improve the memory
performance have been proposed recently [15]. A promising tech-
nique to mitigate the impact of long cache miss penalties is software-
controlled prefetching[5, 13, 16, 22 23]. Software-controlled

prefetching requires support from both hardware and software. The
processor must provide a special “prefetch” instruction. The soft-
ware uses this instruction to inform the hardware of its intent
to use a particular data item, if the data is not cumently in the
cache, the data is fetched in from memory. The cache must be
lockup-free[171; that is, the cache must allow multiple outstrmd-
ing misses. While the memory services the data miss, the program
can continue to execute as long as it does not need the requested
data. While prefetching does not reduce the latency of the memory
access, it hides the memory latency by overlapping the access with
computation and other accesses. Prefetches on a scalar machine
are analogous to vector memory accesses on a vector machine. In
both cases, memory accesses are overlapped with computation and
other accesses. Furthermore, similar to vector registers, prefetching
allows caches in scalar machines to be managed by software. A
major difference is that while vedor machines can only operate on
vectors in a pipelined manner, scalar machines can execute arbitrary
sets of scalar operations well.

Another useful memory hierarchy optimization is to improve data

Figure 1: Brealcdown of execution of scientific code,

locality by reordering the execution of iterations. One important
example of such a transform is blocking[l, 9, 10, lZ 21, 23, 29].
Instead of operating on entire rows or columns of an array, blocked
algorithms operate on submatrices or blocks, so that datu loaded
into the faster levels of the memory hkmarchy are reused. Other
useful transformations include unimodular loop transforms such as
interchange, skewing and reversal[29]. Since these optimization
improve the @de’s data locality, they not only reduee the effeet-
ive memory access time but also reduce the memory bandwidth
requirement. Memory hierarchy optimization such as prefetching
and blocking are crucial to turn high-performance microprocessors

into effective scientific engines.

1.3 An Overview

This paper proposes a compiler algorithm to insert prefetch instruc-
tions in scientific code. In particular, we focus on those numerical
algorithms that operate on dense matrices. Various algorithms have
previously been proposed for this problem [13, 16, 23]. In this work,
we improve upon previous algorithms and evrduate our algorithm in
the context of a full optimizing compiler. We also study the inter-
action of prefetching with other data locality optimizations such as
cache blocking.

There are a few important concepts useful for developing prefetch
algorithms. Refetches are possible only if the memory addresses
can be &termined ahead of time. Prefetches are unnecessary if the
data are already in the cache (or me being fetched into the cache)
at the time of prefetch. Even if a necessary prefetch is issued it
may not be effective; itmay be too early and the prefetched datum
is replaced from the cache before it is use@ it may be too late and
the datum is used before it has been fetched from memory.

The domain of this work is the set of amay accesses whose in-
dices are affine (i.e. linear) functions of the loop indices. A sub-

stantial number of data references in scientific code belong to this
domain. These references have the property that their addresses
can be &termined ahead of time, and prefetching these locations is
therefore possible.

Whiie these accesses are responsible for many of the cache
misses, a significant number of them are also hhs, as shown in
Table 1. This table suggests that if prefetches were issued for all
the affine array accesses, then over 60% of the prefetches would be
unnecessary for most of the programs. It is important to minimize
unnecessary prefetches[23]. Umecessary prefetches incur a compu-
tation overhead due to rhe prefetches themselves and instructions
needed to calculate the addresses. Prefetching can also increase
the demand for memory bandwidth, which can result in delays for
normal memory accesses as well as prefetches.

We have developed a compiler algorithm that uses locality

anuZysis to selectively prefetch only those references that are likely

Table 1: Hh rates of affine array accesses.

Affi ne Access
Benchmark Hh Rate (%) II

to cause cache misses. To schedule the prefetch instructions early
enough, we use the concept of software pipelining, where the
computation of one iteration overlaps with the prefetches for a future
iteration.

We have implemented our prefetch algorithm in the SUIF
(Stanford University Intermediate Form) compiler. The SUIF com-
piler includes many of the standard optimization and generates
mde competitive with the MIPS compiler[28]. Using this compiler
system, we have been able to generate fully functional and opti-
mized code with prefetching. (For the sake of simulation, prefetch
instructions are encoded as loads to RO.) By simulating the code
with a detailed architectural model, we cart evaluate the effect of
prefetchlng on overall system performance. It is important to focus
on the overall performance, because simple characterizations such
as the miss rates alone are often misleading. We have also evalu-
ated the interactions between prefetching and locality optimizstions
such as blocking[29] .

The organization of the rest of the paper is as follows. Section 2
&scribes our compiler algorithm, Section 3 describes our exper-
imental framework, and Section 4 presents our results In Section 4,
we evaluate the effectiveness of our compiler algorithm on tsvo vari-
ations of hardware suppo~ and characterize the robustness of the
algorithm with respect to ita compile-time parameters. We also eval-
uate the interaction between prefetching and blocking. Section 5
discusses related work and includes a comparison between soft-
ware and hardware prefetching techniques. Section 6 describes

future work to improve our algorithm, and finally, we conclude
in Section 7.

63

2 A Prefetch Algorithm

Io thissection, we will use the code in Figure 2(a) as a running
example to illustrate our prefetch algorithm. We assume, for this
example, that the cache is 8K bytes, the prefetch latency is 100
cycles and the cache line size is 4 words (two double-word array ele-
ments to each cache line), In this case, the set of references that will
cause cache misses can be determined by inspection (Figure 2(b)).
In Figure 2(d), we show code that issues all the useful prefetches
early enough to overlap the memory accesses with computation on
other data. (This is a source-level representation of the actual co&
generated by our compiler for this case). The first three loops cor-
respond to the computation of the i=O iteration, and the remaining
code executes the remaining iterations. This loop splitting step is
necessary because the prefetch pattern is different for the different
iterations. Furthermore, it takes three loops to implement the inner-
most loop. The first loop is the prolog, which prefetches data for
the initial set of iterations; the second loop is the steady state where
each iteration executes the code for the iteration and prefetches for
future iterations; the third loop is the epilog that executes the last
iterations. This so~are pipelining transformation is necessary to
issue the prefetches enough iterations shead of their use[18, 24].

This example illustrates the three major steps in the prefetch
algorithm

1. For each reference, determine the accessesthat are likely to be
cache misses and therefore need to be prefetched.

2. Isolate the predicted cache miss instances through loop split-
ting. This avoids the overhead of adding conditional statements
to the loop bodies.

3. Software pipeliie prefetches for all cache misses.

In the following, we describe each step of the algorithm and show
how the algorithm develops the prefetch code for the above example
systematically.

2.1 Locality Analysis

The tirst step determines those references that are likely to cause a
cache miss, This locality analysis is broken down into two substeps.
The tirst is to discover the intrinsic data reuses within a loop nest;
the second is to determine the set of reuses that cart be exploited
by a cache of a particular size.

2.1.1 Reuse Analysis

Reuse analysis attempts to discover those instances of array accesses
that refer to the same cache line. There are three kinds of reuse:
temporal, spatial and group. In the above example, we say that
the reference A [i] [j] has spatiaZ reuse within the innermost loop
since the same cache line is used by two consecutive iterations in
the innermost loop. The reference B [j] [O] has temporal reuse in
the outer loop since iterations of the outer loop refer to the same
locations. Lastly, we say that different accesses B [j 1 [01 and

B [j+ 1] [O] have group reuse because many of the instances of
the former refer to locations accessed by the latter.

Trying to determine accurately all the iterations that use the same
data is too expensive. We can succinctly capture our intuitive char-
acterization that reuse is carried by a specific loop with the follow-
ing mathematical formulation. We represent an n-dimensional loop
nest as a polytope in an n-dimensional iteration space, with the
outermost loop represented by the first dimension in the space. We
represent the’ shape of the set of iterations that use the same data
by a reuse vector space[291.

For example, the access of b [j] [O] in our example is rep-

[0 ll[;lresented as B (~ ~), so reuse occurs between iterations

(a)

for(i = O; i < 3; i++)
for(j = O; j < 100; j++)

A[i] [j] = B[jl[Ol + B[j+ll [o];

(b)
● Cache Hk

0 Cache Miss

A[il [j]
‘k,

B[j+l] [0]
‘b,

B[j] [0]
‘Wj

(c)

Reference Locality Prefetch Predicate

i none
A[i] [j]

-j. = spatial
(jmod2)=0

B[j+ll [0] : = te::::l i=o
-J-

(d)

prefetch (& AI O] [O]);
for(j = O; j<6; j += 2) {

prefetch(&B[j+ll [01) ;
prefetch(&B[j+21 [01) ;
prefetch(&AIO] [j+ll) ;

}
for(j = O; j<94; j += 2) {

prefetch(&B[j+7] [0]) ;
prefetch(& B[j+8] [O]);
prefetch(&AIO] [j+7]) ;
AI O] [j] = B[j][O]+B[j+l][Ol;
AI O][j+l] = B[j+l][O] +B[j+2] [O];

}
for(j = 94; j<100; j += 2) {

AI O] [j] = B[j][O]+B[j+l] [O];
AI O][j+l] = B[j+l][o] +B[j+2] [o];

}
for(i = 1; i<3; i++) {

prefetch(&A[i] [0]);
for(j = O; j<6; j += 2)

prefetch(&A[i] [j+ll) ;
for(j = O; j<94; j += 2) {

prefetch(&A[i.] [j+7]) ;
A[i] [j] = B[jl[O]+B[j+l] [O];
A[i][j+l] = B[j+l][O]+B[j+2]

}
for(j = 94; j<100; j += 2) {

A[i] [j] = B[j][O]+B[j+l] [O];
A[i.][j+l] = B[j+l][O]+B[j+21

1}

o];

o] ;

Figure 2: Example of selective prefetching algorithm.

64

(il,jl) and (iz,jz) whenever

That is, temporal reuse occurs whenever the difference between

the two iterations lies in the nullspace of [101
oo’~a’~’

span {(1, O)}. We refer to this vector space as the temporal reuse
vector space. This mathematical approach succinctly captures the
intuitive concept that the direction of reuse of B [j 1 [01 lies along
the outer loop. This approach can handle more complicated access
patterns such as C [i+ j] by representing their reuse vector space
as Span{ (l, -1)}.

Similar analysis can be used to find spatial reuse. For reuse
among different array references, Gannon et al. observe that data
reuse is exploitable only if the references are uniformly generated,
that is, references whose array index expressions differ in at most
the constant term[ll]. For examplq references B [j 1 [01 and
B [j+ 1] [O] are uniformly generatd, references C [i] and C [j]

are not. Pairs of uniformly generated references can be analyzed in
a similar fashion[29]. For our example in Figure 2(a), our algorithm
will determine that A [i] [j] has spatird reuse on the inner loop,
and both B[j] [0] and B[j+l] [0] share group reuse wtd also
have temporal reuse on the outer loop.

2.1.2 Localized Iteration Space

Reuses translate to locality only if the subsequent use of data occurs
before the data are displaced from the cache. Factors that determine
if reuse translates to locality include the loop iteration count (since
that determines how much data are brought in between reuses), the
cache size, its set associativity and replacement policy.

We begin by considering the first two factors: the loop iteration
count and the cache size. In the example above, reuse of B [j 1 [01
lies along the outer dimension. If the iteration count of the inner-
most loop is large relative to the cache size (e.g., if the upper bound
of the j loop in Figure 2(a) was 10,000 rather than 100), the data
may be flushed from the cache before they are used in the next outer
iteration. It is impossible to determine accurately whether data will
remain in the cache due to factors such as symbolic loop iteration
counts and the other cache characteristics. Instead of trying to rep-
resent exactly which reuses would result in a cache hi~ we capture
only the dimensionality of the iteration space that has data local-

ity [’291. We define the localized iteration space to be the set of
loops that can exploit reuse. For example, if the localized iteration
space consists of only the innermost loop, that means data fetched
will be available to iterations within the same innermost loop, but
not to iterations from the outer loops.

The localized iteration space is simply the set of innermost loops
whose volume of data accessed in a single iteration does not exceed
the cache size. We estimate the amount of &ta used for each level
of loop nesting, using the reuse vector information. Our algorithm
is a simplified version of those proposed previously[8, 11, 23]. We
assume loop iteration counts that cannot be determined at compile
time to be small-this tends to minimize the number of prefetches.
(Later, in Section 4.2, we present results where unknown loop it-
eration counts are assumed to be large). A reuse can be exploited
only if it lies within the localized iteration space. By representing
the localized iteration space also as a vector space, locality exists

only if the reuse vector space is a subspace of the localized vector
space.

Consider our example in Figure 2(a). In this case, the loop bound
is known so our algorithm can easily determine that the volume of
data used in each loop fits in the cache. Both loops are within
the localized iteration space, and the localized vector space is rep-
resented as span {(1, O), (O, 1)}. Since the reuse vector space is

necessarily a subspace of the localizad vector space, the reuses will
correspond to cache hits, and it is not necessary to prefetch the
reuses.

Similar mathematical treatment determines whether spatial reuse
translates into spatial locality. For group reuses, our algorithm
determines the sets among the group that can exploit locality using

a similar technique. Furthermore, it determines for each set its

leading reference, the reference that accesses new data first and is
thus likely to incur cache misses. For example, of B [j 1 [01 and
B[j+ll [01, B[j+l] [01 is the first reference that accesses new
&ta. The algorithm need only issue prefetches for B [j+ 11 [O]
andnot B[jl [01.

In the dkcussion so far, we have ignored the effects of cache
conflicts. For scientific programs, one important source of cache
conflicts is due to accessing data in the same matrix with a constant
stride. Such conflicts can be predicted, and can even be avoided by
embedding the matrix in a larger matrix with dimensions that are
less problemztic[19]. We have not implemented this optimization in
our compiler. Since such interference can greatly disturb our simu-
lation results, we manually changed the size of some of the matrices
in the benchmarks (details are given in Section 3.) Conflicts due
to interference between two different matrices are more difficult to
analyze. We cumently approximate this effect simply by setting the
“effective” cache size to be a fraction of the actual cache size, We
will discuss the robustness of this model in Section 4.2 and suggest
some further optimization in Section 6.

2.1.3 The Prefetch Predicate

The benefit of locality differs according to the type of reuse. If an
access has temporal locality within a loop nest, only the first access
will possibly incur a cache miss. If an access has spatial locality,
only the ftrst access to the same cache line will incur a miss.

To simplify this exposition, we assume here that the iteration
count starts at O, and that the data arrays are aligned to start on
a cache line boundary. Without any locality, the default is to
prefetch all the time. However, the presence of temporal locali-
ty in a loop with index i means that prefetching is necessary only
when i = O. The presence of spatial locality in a loop with index
i means that prefetching is necessary only when (i mod 1) = O,
where 1 is the number of array elements in each cache line, Each of
these predicates reduces the instances of iterations when data need
to be prefetched. We define the prefetch predicate for a reference
to be the predicate that determines if a particular iteration needs to
be prefetched. The prefetch predieate of a loop nest with multi-
ple levels of locality is simply the conjunction of all the predicates
imposed by each form of locality within the loop nest.

Figure 2(c) summarizes the outcome of the first step of our
prefetch algorithm when applied to our example. Because of the
small loop iteration coun~ all the reuse in this case results in locality.
The spatial and temporal locality each translate to different prefetch
predicates. Finally, since B [j] [O] and B [j +1] [O] share group
reuse, prefetches need to be generated only for the leading reference
B[j+l] [0].

2.2 Loop Splitting

Ideally, only iterations satisfying the prefetch predicate should issue
prefetch instructions. A naive way to implement this is to enclose
the prefetch instructions inside an IF statement with the prefetch
predicate as the condition. However, such a statement in the inner-
most loop can be costly, and thus defeat the purpose of reducing
the prefetch overhead. We can eliminare this overhead by decom-
posing the loops into different sections so that the predicates for
all instances for the same section evaluate to the same value. This
process is known as loop splitting. In general, the predicate i = O
requires the first iteration of the loop to be peeled. The predicate
(i mod 1) = O requires the loop to be unrolled by a factor of 1.

65

Peeling and unrolling can be applied recursively to handle predi-
cates in nested loops.

Going back to our example in Figure 2(a), the i = O predicate

causes the compiler to peel the i loop. The (j mod 2) = O predicate
then causes the j loop to be unrolled by a factor of 2-both in the
peel and the main iterations of the i loop.

However, peeling and unrolling multiple levels of loops can
potentially expand the code by a signitieant amount. This may
reduce the effectiveness of the instruction cachq also, existing opti-
mizing compilers are often ineffective for large procedure bodies,
Our algorithm keeps track of how large the loops are growing. We
suppress peeling or unrolling when the loop becomes too large.
This is made possible because prefetch instructions are only hints,
and we need not ksue those and only those satisfying the prefetch
predicate, For temporal locality, if the loop is too large to peel,
we simply drop the prefetches. For spatial locality, when the loop
becomes too large to unroll, we introduce a conditional statement.
When the loop body has become this large, the cost of a conditional
statement is relatively small.

2.3 Scheduling Prefetches

Prefetches must be issued early enough to hide memory latency.
They must not be issued too early lest the data fetched be flushed
out of the cache before they are used. We choose the number of
iterations to be the unit of time scheduling in our algorithm. The
number of iterations to prefetch ahead is

H1

s

where 1 is the prefetch latency and s is the length of the shortest
path through the loop body.

In our example in Figure 2(a), the latency is 100 cycles, the
shortest path through the loop body is 36 instructions long, therefore,
the j loops are software-pipelined three iterations ahead. Once the
iteration count is deterrnine~ the co& transformation is mechanical.

Since our scheduling quantum is an iteration, this scheme pre-
fetches a data item at least one iteration before it is used. If a single
iteration of the loop can fetch so much data that the prefetched data
may be replaced, we suppress issuing the prefetch.

3 Experimental Framework

To experiment with prefetching, we extend our base R4000 architec-
ture (described previously in Section 1.1) as follows. We augment
the instruction set to include a prefetch instruction that uses a base-
plus-offset addressing format and is defined to not take any memory
exceptions. Both levels of the cache are lockup-free[171 in the sense
that multiple prefetches can be outstanding. The primary cache is
checked in the cycle the prefetch instruction is executed. If the
line is already in the cache, the prefetch is discarded. Otherwise,
the prefetch is sent to a prefetch issue buffer, which is a structure
that maintains the state of outstanding prefetches. For our study,
we assume a rather aggressive design of a prefetch issue buffer
that contains 16 entries. ff the prefetch issue buffer is already full,
the processor is stalled until there is an available entry. (Later, in
Section 4.3, we compare this with an architecture where prefetches
are simply dropped if the buffer is full.) The secondary cache is
also checked before the prefetch goes to memory. We model con-
tention for the memory bus by assuming a maximum pipelining rate
of one access every 20 cycles. Once the prefetched line returns, it
is placed in both levels of the cache hierarchy. Filling the primary
cache requires 4 cycles of exclusive access to the cache tags-during
this time, the processor cannot execute any loads or stores.

Since regular cache misses stall the processor, they are given
priority over prefetch accesses both for the memory bus and the

cache tags. We assume, however, that an ongoing prefetch access
cannot be interrupted. As a resul~ a secondary cache miss may
be delayed by as many as 20 cycles (memory pipeline occupancy
time) when it tries to access memory. Similarly the processor may
be stalled for up to 4 cycles (cache-tag busy time) when it executes
a load or store, If a cache miss occurs for a line for which there
is an outstanding prefetch waiting in the issue buffer, the miss is
given immdlate priority and the prefetch request is removed horn
the buffer. If the prefetch has already been issued to the memory
system, any partial latency hiding that might have occurred is taken
into account.

As we mentioned before in Section 1, the benchmarks evahrated
in this paper are all scientific applications taken from the SPEC,
SPLASH and NAS Parallel benchmark suites. For four of the
benchmarks (MXM, CFFT2D, VPENTA and TOMCATV), we man-
ually changed the alignment of some of the matrices to reduce the
number of cache conflicts.

The prefetching algorithm has a few compile-time parameters,
which we consistently set as follows: cache line size = 32 bytes,
effective cache size = 500 bytes, and prefetch latency = 300 cycles.
As discussed in Section 2.1.2, we choose an effective cache size to
be a fraction of the actual size (8 Kbytes) as a tlrst approximation
to the effects of cache conflicts (we consider the effects of varying
this parameter in Section 4.2). The prefetch latency indicates to the
compiler how many cycles in advance it should try to prefetch a ref-
erence. The prefetch latency is larger than 75 cycles, the minimum
miss-to-memory penalty, to account for bandwidth-related delays.

4 Experimental Results

We now present results from our simulation studies. We start by
evaluating the effectiveness of our compiler algorithm, including the
key aspeets of locality analysis, loop splitting and software pipetii-
ing, We evaluate the sensitivity of our performance results to varia-
tions in the architectural parameters used by the compiler. We then
compare two different architectural policies for handling situations
when the memory subsystem is saturated with prefetch requests and
cannot accept any more. Finally, we explore the interaction between
prefetching and locality optimization such as cache blocking.

4.1 Performance of Prefetching Algorithm

The results of our first set of experiments are shown in Figure 3
and Table 2. Figure 3 shows the overall performance improve-

ment achieved through our selective prefetching algorithm. For each
benchmark the two bars correspond to the cases with no prefetch-
irtg (N) and with selective prefetching (S). In each bar, the bottom
section is the amount of time spent executing instructions (includ-
ing instruction overhead of prefetching), and the section above that
is the memory stall time. For the prefetching cases, there is also
a third component—stall time due to memory overheads caused by
prefetching. Specifically, the stall time corresponds to two situa-
tions: (1) when the processor attempts to issue a prefetch but the
prefetch issue buffer is already full, and (2) when the processor
attempts to execute a load or store when the cache tags are already
busy with a prefetch fill.

As shown in Figure 3, the speedup in overall performance ranges
from 5% to 100%, with 6 of the 13 benchmarks improving by over
45%. The memory stall time is significantly reduced in all the
cases. Table 2 indicates that this is accomplished by reducing both
the primary miss-rate and the average primary-miss penalty. The
miss penalty is reduced because even if a prefetched line is replaced
from the primary cache before it can be referenced it is still likely
to be present in the secondary cache. Also, the miss latency may
be partially hidden if the miss occurs while the prefetch access is
still in progress. Overall, 5070 to 90% of the original memory stall
cycles are eliminated.

66

Figure 3: Overall performanm of the selective prefetching algorithm (N = no prefetching, and S =

Table 2 Memory performance improvement for the selective
prefetching algorithm.

No Prefetc.h Selectwe Prefetch
Average Average Memory

Refs MISS Miss Miss MISS Statl
oer Rate Perraltv Rate Penaltv Reduction

n II 055 I 5.s3 1 5’32 II 1.29 I 53.4 I 76.5 H

U Benctmaark II irrst I (%) I (cycle;) II (%) I (cycld) I (%) u

---- .-. .
1 , H

1 : ‘023i-io5i59s‘031’“~! ~: il
--

G II 0:60 I 2:09 I 33:0 II 1:54 I 15:

Having established the benefits of prefetching, we now focus on
the costs, Figure 3 shows that the instruction overhead of prefetch-
ing causes less than a 15% increase in instruction count in over half
of the benchmdcs. In fac~ in two of those cases (MXM and IS) the
number of instructions actually decreased due to savings through
loop unrolling. In other cases (CHOLSKY, BTRIX, VPENTA,
TOMCATV, OCEAN), the number of instructions increased by 25%
to 50%. Finally, the stalls due to prefetching memory overhead are
typically small-never more than 15% of original execution time.
In each case, we observe that the overheads of prefetching are low
enough compared to the gains that the net improvement remains
large. In the following subsections, we present a detailed evalua-
tion of each aspect of our selective prefetching algorithm.

4.1.1 Locality Analysis

The goal of using locality analysis is to eliminate prefetching over-
head by prefetching only those references that cause cache misses.
To evaluate the effectiveness of this analysis, we performed the
following experiment. We implemented a compiler algorithm which
prefetches all data references within our domain (i.e. array refer-
ences whose indices are affme functions of loop indices). We refer
to this algorithm as indiscriminate (as opposed to selective) prefetch-
ing. The indiscriminate algorithm uses the same software pipelining
technique as selective prefetching to schedule prefetches far enough
in advance. However, it has no need for locality analysis or loop
splitting.

ifff
prafetch memory overhead
memory aoeaaa stalls

jyj$jjjinatruct ions

CG EP MG

selective prefetching).

The results of thw experiment are shown in Figure 4 and in Tables
3 and 4. The ideal selective prefetch algorithm would achieve the
same level of memory stall reduction while decreasing the overheads
associated with issuing unnecessary prefetches.

Figure 4 shows that the speedup offered by prefetching selec-
tively rather than indiscriminately ranges from 1% to 100%. In 6
of the 13 cases, the speedup is greater than 2090. Table 3 shows
that most of the benchmarks sacrifice very little in terms of memory
stall reduction by prefetching selectively. On the other hand Figure
4 shows that indiscriminate prefetching suffers more from both in-
creased instruction overhead and stress on the memory subsystem.
Overall, selective prefetching is effective. In some cases (CFFT2D
and MG), selectiveness even turns prefetching from a performance
loss into a performance gain.

Table 3: Memory performance improvement for the indiscriminate
and selective prefetching algorithms.

We evaluate the selective algorithm in more detail by using the
following two concepts. The coverage fwtor is the fraction of
original misses that are prefetched. A prefetch is ‘necessary if the
line is already in the cache or is cumently being fetched. An ideal
prefetching scheme would provide a coverage factor of 100% and
would generate no unnaessary prefetches.

Table 4 contains several statistics about the effectiveness of the

two prefetching algorithms. This includes the percentage of pre-

fetches issued that are unnecessary, and a breakdown of the impact

of prefetching on the original cache misses. This breakdown con-

tains three categorim (1) those that are prefetched and subsequently

hit in the primary cache @$-hit), (2) those that are prefetched but

67

NIS
MG

Figure 4 Overall performance comparison between the indiscriminate and selective prefetching algorithms (N = no prefetching, I = indM-
criminate prefetching, and S = selective prefetching).

Table 4: Prefetching effectiveness for the indiscriminate and selective prefetching algorithms.

remained misses (pf-mis$), and (3) those that are not prefetched
(nopf-miss). The coverage factor is equal to the sum of the pf-hir

and pf-nu”ss categories.

The coverage factor of the indiscriminate case is interesting, since
it representa the fraction of cache misses that are within the domain
of our analysis in most cases. Looking at Table 4, we notice that
in 5 of the 13 cases the coverage factor is well over 90Y0, but in
5 of the other cases it is less than 50%. In the case of CC, the
coverage is only 3870 because it is a sparse matrix algorithm and
we are ordy prefetching the dense index arrays. The same is true for
IS. MXM (a blocked matrix multiplication kernel) is a surprising
ease, since all of the important references are obviously affine, yet
the coverage factor is only 65%. This is a result of the way we
account for prefetches in our experimen~ we associate a prefetch
only with the very next reference to the same cache line. Suppose
the algorithm issues two prefetches for the same line followed by
references to two consecutive words in that cache line, we say that
the tirst reference is prefetched but not the second. In the case
of MXM, cache wnflicts between accesses to different arrays can
cause the sceond access to the same cache tine to miss. Simiku

behavior also occurs in TOMCATV, OCEAN, and MC. Finally, in
the cases of EMIT and EP, many of the remaining cache misses
occur in library routines rather than the programs themselves.

Table 4 shows that a large fraction of prefetches issued under
the indiscriminate scheme are unnecessary. In all but one case, this
fraction ranged from 60% to 95%. These unnecessary prefetches
can lead to large instruction overheads (MG) or significant delays
due to a saturated memory subsystem (CFFT2D and CC).

A selective algorithm is successful if it can maintain a simi-
lar coverage while lowering the number of unnecessary prefetches.
Table 4 shows that in 11 of the 13 cases, the wverage is reduced by
less than 10%o. Table 3 also supports this by showing that the miss

rates have not increased substantially, and the reduction in memory
stall cycles is wmparable. In the cases where the coverage did
go down, the problem is typically due to the presence of cache
conflicts. Comparing the percentages of unnecessary prefetches in
Table 4, we see that the improvement from selective prefetching is
dramatic in many eases (CFFT2D, CHOLSKY, IS, EP, MC). (Note
that these percentages are computed with respect to the number of
prefetches issue~ which changes between the two cases.)

The advantage of selective prefetching is summarized by the ratio
of indiscriminate to selective prefetches in Table 4. Prefetching
selectively can reduce the number of prefetches by as much as
a factor of 21. At the same time, the wverage factor remains
wmpetitive. Overall, this selection process appears to be quite
successful.

4.1.2 Loop Splitting

The goal of loop splitting is to isolate the cache miss instances while
introducing as little instruction overhead as possible. To quantify the
advantage of loop splitting, we implemented the naive alternative
for isolating cache miss instances-placing conditional statements
inside the loops. Figure 5 shows that for 5 of the 13 benchmarks
(MXM,BTRIX,VPENTA,CG and MG), the performance advantage
of loop splitting is greater than 25 ‘%0.

A good measure of the success of loop splitting is the instmc-
tion overhead per prefetch issued. Ideally, isolating the cache miss
instances will not increase the instruction overhead. One of the
advantages of having implemented the prefetching schemes in the
compiler is that we can quantify this instruction overhead. Previous
studies have only been able to estimate instruction overhead [4].

Table 4 shows the number of instructions required to issue each

68

Figure 5: Loop splitting effectiveness@=
with loop splitting).

Loop poliCy:N La&e S;all

MG
(a)

Figure 6: Sensitivity of results

100

NCS
CG EP MG

no prefetching, C = selective prefetching with conditional statements, and S = selective prefetching

o 130 r m prefetchmemory overhead

I memorv accese stalls

Eff Cache Size: 8 KB 500 B

CFFT2D
(b)

PF Latency: 100 300 1000
CHOLSKY

(c)

to compile-time parameters (N = no prefetching, S = selective prefetching variationa).

prefetch. For the indiscriminate prefetching scheme, the overhead
per prefetch ranges from 1 to 4 instructions. This is well within the
bounda of what one would intuitively expect. One of the instructions
is the prefetch itself, and the rest are for address calculation. For the
selective prefetching scheme, Table 4 shows the prefetch instruction
overhead both with respect to the original code and with respect to
code where the loop splitting transformations are performed but no
prefetches are inserted, Loop splitting generally increases the over-
head per prefetch. In a few cases, the overhead has become quite
large (OCEAN and MG). In other cases, the overhead with respect
to the original code is actually negative, due to the savings through
loop unrolling (MXM, IS and CG). In the case of OCEAN, the
loop bodies are quite large, and the combination of loop unrolling
and software pipelining makes it necessary for the compiler to spill
registers. The penalty for register spills is averaged over just the
prefetches, rmd this penalty can become quite high. In the case of
MG, the number of prefetches haa been drastically reduced (by a
factor of 21). Averaging all the loop and transformation overheads
over only a small number of prefetches results in a high instmction-
per-prefetch overhead. In most of the cases, however, the overhead
per prefetch remains low.

4.1.3 Software Pipelining

The effectiveness of the software pipelining algorithm is reftected
by the pf-miss figures in Table 4. A large number means that the
prefetches are either not issued early enough, in which case the line
does not return to the primary cache by the time it is referencerL
or not issued late enough, in which case the line has already been
replaced in the cache before it is referenced. The results indicate that

the scheduling algorithm is generally effective. The exceptions are
CHOLSKY and TOMCATV, where over a third of the prefetched
references are not found in the cache. The problem in these cases is
that cache conflicts remove prefetched data from the primary cache
before it can be referenced. However, there is still a performance
advantage since the data tends to remain in the secondary cache,
and therefore the primary-miss penalty is reduced as shown earlier
in Table 2.

4.1.4 Summary

To summarize, we have seen that in most cases the selective
prefetching scheme perfop-ns noticeably better than the indiscrimi-
nate scheme. The advantage comes primarily from a reduction in
prefetching overhead while still maintaining a comparable savings
in memory stall time.

4.2 Sensitivity to Compile-Time Parameters

The selective prefetching algorithm uses several compile-time pa-
rameters to model the behavior of the memory subsystem. Specifi-
cally these parameters include the following: (1) cache line size, (2)
whether unknown loop bounds are assumed to be large or small, (3)
effective cache size, and (4) prefetch latency. The most concrete of
these parameters is the cache line size, which can be set precisely.
The other parameters, however, are more heuristic in nature. To

)
evaluate the ro ustness of our algorithm, we measured the effects
of varying ties 1less obvious parameters.

The Sm w~piler performs aggressive inter-procedural constant

69

140

1s0L ii?lprefeich memory ovwiwad
memory access airdls

*;:jy”*wti-

NIS
EMIT

Figure 7: Frefetches are dropped (rather than stalling) when issue buffers are full (N= no prefetching, I = indiscriminate prefetching, and S
= selective prefetching).

propagation to statically determine as many loop bounds as possible.
When this fails, our current algorithm assumes unknown loop counts
to be small, which tends to overestimate what remains in the cache.
When the compiler assumes unknown iteration counts to be large,
it produces identical code for 11 of the 13 benchmarks-the two
benchmarks that change are OCEAN and MCI. For OCEAN, the
difference in performance is negligible, However, MG performs
4% worse with the large-loop policy, as shown in Figure 6(a). In
this case, the benefit of the extra prefetches is more than offset
by increased instruction overhead. Although assuming small loop
counts happens to be better in this case, the opposite could easily
be true in programs where unknown iteration counts are actually
large. One solution may be to resolve loop counts through profiling
feedback. However, the more interesting result of this experiment is
how rarely loop bound uncertainty affects performance. We observe
that while nearly half the benchmrdcs contain loops with unknown
bounds, in most cases this has no impact on locality, due to the
patterns of data reuse within those loops.

For our experiments so far, the effective cache size has been set
to 500 bytes, which is only a small fraction of the actual cache size
(8 Kbytes). When the effective cache size is set to the full 8 Kbytes,
our compiler generates identical code for 7 of the 13 benchmarks,
For 5 of the 6 benchmarks that do change, the difference in per-
formance is negligible. The one case that changes significantly is
CFFT2D, as shown in Figure 6(b). In this case, fewer prefetches
are issued with the larger effective cache size. However, the pre-
fetches that are eliminated happen to be useful, since they fetch data
that is replaced due to cache conflicts. As a resul~ the performance
suffers, ~ we see Figure 6(b). (Note that this is in contrast with the
effect we see in Figure 6(a), where issuing more prefetches hurts
performanm.) In the case of CFFT2D, many critical loops refer-
ence 2 Kbytes of data, and these loops happen to suffer from cache
conflicts. An effective cache size of 500 bytes produces the desired
result in this case. Overall, however, the results are robust with
respect to effective cache size.

Finally, for our experiments in Section 4.1, we set the prefetch
latency to 300 cycles. We chose a value greater than 75 cycles to
account for bandwidth-related delays. To evaluate whether this was

a good choice, we compiled each benchmark again using prefetch
latencies of 100 and 1000 cycles. In nearly all the cases, the impact
on performance is small. In many cases, the 100-cycle case is
slightly worse than the 300-cycle case due to bandwidth-related
delays. The most interesting case is CHOLSKY, as shown in Figure
6(c). In this case, prefetched data tends to be replaced horn the
cache shortly after it anives, so ideally it should arrive “just in
time”, Therefore, the lowest prefetch latency (100 cycles) offers
the best the performance, as we see in Figure 6(c). However, in
such cases the best approach may be to eliminate the cache conflicts
cause this behavior[19].

In summary, the performance of our selective algorithm was
affected noticeably in only one of the 13 benchmarks for each

parameter we varied. Overall, the algorithm appears to be quite
robust.

4.3 Dropping Prefetches vs. Stalling

In the architectural model presented so far, the memory subsys-
tem has a finite (16-entry) prefeteh issue buffer to hold outstanding
prefetch requests. Our model includes a few hardware optimiza-
tion to help mitigate the negative effects of the finite buffer size.
In particular, a prefetch is only inserted into the buffer if it misses in
the primary cache and there is not already an outstanding prefetch
for the same cache line. Also, a prefetch is removed from the issue
buffer as soon as it completes (i.e. the buffer is not a FIFO queue).
However, in spite of these optimization, the buffer may still fdl up
if the processor issues prefetches faster than the memory subsystem
can service them.

Once the prefetch issue buffer is full, the processor is unable
to issue further prefetches. The model we use so far stalls the
processor until a buffer entry becomes available. An alternative
is to simply drop the prefetch and continue executing. Intuitive

arguments might be presented to support either approach. On one
han~ if the data is needed in the future and is not presently in the
cache (since only prefetches that miss go into the buffer), it may

appw to be cheaper to stall now until a single entry is free rather
than to suffer an entire cache miss sometime in the firture. On the
other hand, since a prefetch is only a perfortnanw hint, perhaps it
is better to continue executing useful instructions.

To understand this issue, we ran each of our benchmarks again
using a model where prefetches are dropped rather than stalling the
processor when the prefetch issue buffer is full. The results of this
experiment are shown in Figure 7, Comparing this with Figure 4,
we see that there is a difference in performance for seven of the cas-
es (CFFT2D, CHOLSKY, BTRIX, GMTRY, VPENTA, TOMCATV,
and CG). In each of these cases, the performance of the indw-
criminate prefetching algorithm is improved by dropping prefetches,
The improvement is dramatic in the two cases that had previously
stalled the most due to full buffers (CFFT2D and CG). The selective
prefetch algorithm, however, did not improve from dropping pre-
fetches since it suffered very little from full prefetch issue buffers in
the first place. In fac~ in three of the cases (CHOLSKY, BTRIX and
GMTRY), the selective algorithm performed slightly worse when
prefetches are dropped. Dropping prefetches has the effect of sac-
rificing some amount of coverage (and therefore memory stall re-
duction) for the sake of reducing prefetch issue overhead. This
effect is most clearly illustrated in the case of CG (compare the I
bars in Figures 4 and 7), where memory stall time doubles for the
indiscriminate algorithm once prefetches are dropped.

There are two reasons why the performance improves substan-
tially for the indiscriminate prefetching algorithm. The tirst reason
is that dropping prefetches increases the chances that future pre-

70

ifiii
prefetch memory overhead
memory aoeeea atalla

X&f tnatructions

59

Hilprefetch memory overheed
memory acceaa etalla

MM inetructione

70

N s
OriJinai Lo!aiity-t!)ptim~ed

GMTRY

N s
OriJinai Lo}aiity-/)ptim~ed

VPENTA

Figure 8: Results with locality-optimizer (N = no prefetching, I = indiscriminate prefetching, and S = selective prefetching).

fetches will find open slots in the prefetch issue buffer. The second
is that since the indiscriminate algorithm has a larger number of re-
dundant (i.e. unnecessary) prefetches, dropping a prefetch does not
necessarily lead to a cache miss, It is possible that the algorithm
will issue a prefetch of the same line before the line is referenced.
Since selective prefetching has eliminated much of this redun&ncy,
it is more likely that dropping a prefetch would translate into a sub-
sequent cache miss. However, as we have already seen in Figure
4, the selective algorithm tends to suffer very little from full issue
buffers, and therefore performs well in either case.

4.4 Interaction with Locality-Optimizer

Since prefetching hi&s rather than reduces latency, it can only
improve performance if additional memory bandwidth is available.
This is because prefetching does not decrease the number of memory
accesses-it simply tries to perform them over a shorter period of
time. Therefore, if a program is already memory-bandwidth limit~
it is impossible for prefetching to increase performance. Locality
optimization such as cache blocking, however, actually &crease
the number of accesses to memory, thereby reducing both latency
and required bandwidth. Therefore, the best approach for coping
with memory latency is to first reduce it as much as possible, and

then hiuk whatever latency remains. Our compiler can do both
things automatically by first applying locality optimizations and then
inserting prefetches.

We compiled each of the benchmarks with the locality optimizer
enabled [29]. In two of the cases (GMTRY and VPENTA) there
was a significant improvement in locality. Both of those cases are
presented in Figure 8. In the figure, we show the three original
Perforrnanw bars (seen previously in Figure 4) as well as three new
cases which include locality optimization by itself and in combina-
tion with the two prefetching schemes,

In the case of GMTRY, the locality optimizer is able to block the
critical loop nest. With this locality optimization alone, 90% of the
original memory stall time is eliminated. Comparing blocking with
prefetching, we see that blocking had better overall performance
than prefetching in this case. Although prefetching reduces more of
the memory stall cycles, blocking has the advantage of not suffering
eny of the instruction or memory overhead of prefetching. Compar-

ing the prefetching schemes before and after blocking, we see that
blocking has improved the performance of both schemes. One rea-
son is that memory overheads associated with prefetching have been
eliminated with blocking since less memory bandwidth is consumed.
Also, the selective prefetching scheme reduces its instruction over-

head by recognizing that blocking has occurred and thereby issuing
fewer prefetches. The best performance overall occurs with bleck-
ing, both alone and in combination with selective prefetching.

For VPENTA, the locality optimizer introchws spatial locality
for every reference in the inner loop by interchanging two of the
surrounding loops. So rather than missing on every iteration, the
references only miss when they cross cache line boundaries (every
fourth iteration). Wkh this locality optimization alone, the perfor-
mance improves significantly. However, the selective prefetching
scheme without this optimization still performs better, since it man-
ages to eliminate almost all memory stall cycles. Comparing the
prefetching schemes before and after the loop interchange, we see
that the indiscriminate prefetching scheme changes very little while
the selective prefetching scheme improves considerably. The selec-
tive scheme improves because it recognims that after loop inter-
change it only has to issue one fourth as many prefetches. Conse-
quently it is able to reduce its instruction overhead accordingly,
The best overall performance, by a substantial margin, comes only
through the combination of both locality optimization and prefetch-
ing.

Finally, we would liie to note that thk is the first time that experi-
mental results have been presented where both locality optimization
and prefetch insertion have been handled fully automatically by the
compiler. The results have demonstrated the complementary inter-
actions that cart occur between locality optimizations and prefetch-
ing. Locality optimizations help prefetchirtg by reducing the amount
of data that needs to be prefetched, and prefetching helps locality
optimizations by hiding any latency that could not be eliminated.

5 Related Work

Several strategies for utilizing prefetching have been presented in
the past. Some of these approaches use software support to issue
prefetches, while others are strictly hardware-based. In this section,
we discuss previous work in both categories.

5.1 Software Prefetching

Porterfield [4, 23] presented a compiler olgorithm for inserting pre-
fetches. He implemented it as a preprocessing pass that inserted
prefetching into the source code. His initial algorithm prefetched all
array references in inner loops one iteration ahead. He recognized
that this scheme was issuing too many unnecessary prefetches, and
presented a more intelligent scheme based on dependence vectors

71

and overflow iterations. Since the simulation occurred at a fairly
abstract level, the prefetchlng overhead was estimated rather than
presented, Overall performance numbers were not presented. Also,
the more sophisticated scheme was not automated (the overflow it-
erations were calculated by hand) and did not take cache line reuse
into account.

Klaiber and Levy [16] extended the work by Porterfield by rec-
ognizing the need to prefetch more than a single iteration ahead.
They included several memory system parameters in their equation
for how many iterations ahead to prefetch, and inserted prefetches
by hand at the assembly-code level. The results were presented in
terms of average memory access latency rather than overall perfor-
mance. Also, in contrast with our study, they proposed prefetching
into a separate ~etchbufler rather than directly into the cache. How-
ever, our results have demonstrated that prefetching directly into the
cache can provide impressive speedups, and without the disadvan-
tage of sacrificing cache size to accommodate a fetchbuffer.

Gomish, Granston and Veidenbaum [13, 14] presented an
algorithm for determining the earliest time when it is safe to prefetch
shared data in a multiprocessor with software-controlled cache co-
herency. This work is targeted for a block prefetch instruction,
rather than the single-line prefetches considered in this paper.

Chen et al. [5] considered prefetching of non-scientific co&.
They attempt to move address generation back as far as possible be-
fore loads to hide a small cache miss latency (10 cycles). The paper
also suggested that prefetch buffers would be helpful for reducing
the effects of cache pollution. It is consi&rably more difficult to
generate addresses early in non-scientific code where the access
patterns can be very irregular. At the same time, these applications

tend to make better use of the cache in a uniprocessor.

5.2 Hardware Prefetching

While software-controlled prefetching schemes require support from
both hardware and software, several schemes have been proposed
that are strictly hardware-based. Porterfield [23] evaluated several
cacheline-based hardware prefetching schemes. In some cases they
were quite effective at reducing miss rates, but at the same time
they often increased memory traffic substantially, Lee [20] pro-
posed an elaborate lookahead scheme for prefetching in a multi-
processor where all shared data is uncacheable. He found that the
effectiveness of the scheme was limited by branch prediction and by
synchronization. Baer and Chen [2] proposed a scheme that uses a
history buffer to detect strides. In their scheme, a “look ahead PC”
speculatively walks through the program ahead of the normal PC
using branch prediction. When the look ahead PC finds a match-
ing stri& entry in the table, it issues a prefetch. They evaluated
the scheme in a memory system with a 30 cycle miss latency and
found good results.

Hardware-based prefetching schemes have two main advantages
over software-based schemes: (1) they have better dynamic infor-
mation, and therefore can recognize things such as unexpected cache
conflicts that are difficult to predict in the compiler, and (2) they do
not add any instruction overhead to issue prefetches.

However, the hardware-based schemes have several important
disadvantages. The primary difficulty is detecting the memory
access patterns. The only case where it does reasonably well is
for constant-stride accesses. However, for the types of applications
where constant-stride accesses are dominant, the compiler is quite
successful at understanding the access patterns, as we have shown.
Additionally, in the future our compiler will be able to prefetch com-
plex access patterns such as indirection which the hardware will not
be able to recognize. Hardware-based schemes also suffer from a
limited scope. Branch prediction is successful for speculating across
a few branchea, but when memory latency is on the order of hun-
dreds of cycles, there is little hope of predicting that many branches
correctly. Also, hardware-based schemes must be “hard-wired” into
the processor. For a commercially available microprocessor that is

targeted for many different memory systems, this lack of flexibility
can be a serious limitation-not only in terms of tuning for different
memory latencies, but also a prefetching scheme that is appropriate
for a uniprocessor maybe entirely inappropriate for a multiproces-
sor [22]. Finally, while hardware-based schemes have no software
cos~ they may have a significant hardware COSL both in terms of
chip area and possibly gate delays.

6 Future Work

The scope of this compiler algorithm was limited to affine array
accesses within scientific applications. By prefetchlng only the
affine accesses, we covered over go~o of the cache misses for rough-
ly half of the benchmarks, while the coverage was closer to 50%
of the misses for the remaining benchmarks. In order to increase
our coverage, we need to handle more complex access patterns. A
good starting point would be sparse matrices, which would account
for many of the remaining misses in CG.

Another problem we observed was the large number of conflicts
that can occur in direct-mapped caches. These conflicts can have
a severe impact on memory performance, regardless of whether
prefetching is used. In the case of our algorithm, random conflicts
make it even more difficult to predict the contents of the cache, For
our experiments, we alleviated this problem by manually changing
the alignment of some matrices in four of the applications. How-
ever, the burden of fixing such problems should not rest entirely on
the programmer.

The use of profiling feedback might also improve the accuracy of
our algorithm. As we mentioned earlier in Section 4.2, contiol-flow
profiling information could be used to resolve unknown iteration
counts. Also, techniques for profiling memory performance may
give the compiler more insight into the caching behavior of the
program. At one extreme, the exact miss rates of each reference
could be measured-however, this would require simulating the
application, which may be prohibitively expense. On the other hart~
less expensive profiling techniques may provide the compiler with
enough useful information, such as which loops suffer the greatest
memory penalty. We are currently evaluating this tradeoff between
the cost of collecting profiling information and benefit offered in
terms of performance.

7 Conclusions

TMs paper focuses on translating the concept of prefetchlng into real
performance. Software-controlled prefetching not only incurs an
instruction overhead but can also increase the load on the memory
subsystem. It is important to reduce the prefetch overhead by elimi-
nating prefetches for data already in the cache. We have developed
an algorithm that identifies those references that are likely to be
cache misses, and only issues prefetches for them.

Our experiments show that our algorithm can greatly improve
performance—for some programs by as much as a factor of two.
We also demonstrate that our algorithm is significantly better than

an algorithm that prefetches indiscriminately. Our algorithm re-

duces the total number of prefetches without decreasing much of
the coverage of the cache misses. Finally, our experiments show
that software prefetching can complement blocking in achieving
better overall performance.

Future microprocessors, with their even faster computation rates,
must provide support for memory hierarchy optimizations. We
advocate that the architecture provide lockup-free caches and
prefetch instructions. More complex hardware prefetching appears
unnecessary.

72

8 Acknowledgments

We thank the entire SUIF compiler team for developing and sup-
porting the SUIF compiler. We particularly thank Michael Wolf

for the locality optimizer, and Steve Tjiang for the scalar optimizer.
This research is supported by DARPA Contract N00039-91-C-0138.
Anoop Gupta is also supported by an NSF Presi&ntial Young In-
vestigator Award.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

W. Abu-Sufah, D. J. Kuc~ and D. H. Lawrie. Automatic
program transformations for virtual memory computers. Proc.
of the 1979 National Computer Conference, pages 969-974,
June 1979.

J-L. Baer and T-F. Chen. An effective on-chip preloading
scheme to reduce data access penalty. In Proceedings of Su-
percomputing ’91, 1991.

D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
Parallel Benchmarks. Technical Report RNR-91-002, NASA
Ames Research Center, August 1991.

D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programtru”ng Languages
and Operating Systems, pages 40-52, April 1991.

W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu’.
Data access microarchitectures for superscalar processors with
compiler-assisted data prefetchittg. In Proceedings of Micro-
computing 24, 1991.

R. P. Colwell, R, P, Nix, J. J. O’Donnell, D, B. Papworth,
and P. K. Rodman. A vliw architecture for a trace scheduling
compiler. In Proc. Second Intl. Conf. on Architectural Sutwort
for Programming Languages and ‘Operating Systemr, ~;ges
180-192, Oct. 1987.

J. C. Dehne@ P. Y.-T. Hsu, and J, P. Bratt. Overlapped loop
support in the cydra 5. In Third International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS 111), pages 26-38, April 1989.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and
enhancing cache effectiveness. In Fourth Workshop on Lan-
guages and Compilers for Parallel Computing, Aug 1991.

K. Gallivatt, W. Jalby, U. Meier, and A. Sameh. The impact of
hierarchical memory systems on linear algebra algorithm de-
sign. Technical Report UIUCSRD 625, University of Illittios,
1987.

D. Gannon and W. Jalby. The influence of memory hierarchy
on algorithm organization: Programming FFTs on a vector
multiprocessor. In The Characteristics of Parallel Algorithm.
MIT Press, 1987.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and
local memory management by global program transformation.
Journal of Parallel and Distributed Computing, 5:587+516,
1988.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 1989.

E. Gomish, E. Granston, and A. Vei&nbaum. Compiler-
Directed Data Prefetching in Multiprocessors with Memory
Hierarchies. In International Conference on Supercornputing,
1990.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

E. H. Gomish. Compile time analysis for data prefetching.
Master’s thesis, University of Illinois at Urbana-Champaign,
December 1989.

A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W-D.
Weber, Comparative evaluation of latency reducing and toler-
ating techniques. In Proceedings of the 18th Annual Interna-
tional Symposium on Computer Architecture, pages 254-263,
May 1991.

A. C, Klaiber and H. M. Levy. Architecture for software-
controlled data prefetching. In Proceedings of the18thAnnual
International Symposium on Computer Architecture, pages 43-
63, May 1991.

D. Kroft. Lockup-free instruction fetch/prefetch cache organi-
zation. In Proceedings of the 8th Annual International Sym-
posium on Computer Architecture, pages 81-85, 1981.

M. S. Lam. Software pipelining: An effective scheduling tech-
nique for vliw machines. In Proc. ACM SIGPLAN 88 Confer-
ence on Prograrnrru”ng Language Design and Implementation,
pages 318-328, June 1988.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache perfor-
mance and optimization of blocked algorithms. In Proceed-
ings of the Fourth International Conference on Architectural
Support for Programnu”ng Languages and Operating Systems,
pages 63–74, April 1991.

R. L. Lee. The Effectiveness of Caches and Data Prefetch
Buffers in Lurge-Scale Shared Memory Multiprocessors. PhD
thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, May 1987.

A. C. McKeller and E. G. Coffman. The orgrmiration of ma-
trices and matrix operations in a paged multiprogramming en-
vironment. CACM, 12(3):153-165, 1969.

T. Mowry and A. Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors.
Journal of Parallel and Distributed Computing, 12(2):87–106,
1991.

A. K. Porter field. Software Methods for Improvement of Cache
Performance on Supercomputer Applications. PhD thesis, De-
partment of Computer Science, Rice University, May 1989.

B. R, Rau and C. D. Glaeser. Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High
Performance Scientific Computing. In Proceedings of the 14th
Annual Workshop on Microprogr~”ng, pages 183-198, Oc-
tober 1981.

J. P, Singh, W-D. Weber, and A. Gupta. Splash Stanford par-
allel applications for shared memory. Technical Report CSL-
TR-91-469, Stanford University, April 1991.

M. D. Smith. Tracing with pixie. Technical Report CSL-TR-
91-497, Stanford University, November 1991.

SPEC. The SPEC Benchmark Report. Waterside Associates,
Fremong CA, January 1990.

S. W. K. Tjiang and J. L. Hennessy. Sharlic A tool for buildlng
optimizers. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1992.

M. E. Wolf and M, S. Lam. A data locality optimizing
algorithm. In Proceedings of the SIGPL4N ‘91 Conference
on Progr~”ng Language Design and Implementation, pages
30-44, June 1991.

73

