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1. Potpourri [55 points]

(a) Caches, caches, caches [5 points]

Assume you have two choices in designing the L1 cache of your company’s next super-duper
processor:

A. a 32KB 4-way associative sectored cache with 64-byte blocks and 8-byte subblocks
B. a 32KB 4-way non-sectored cache with 8-byte blocks

You have done extensive performance evaluations and you have found that performance of both
of these options is the same for the workloads you care about.

Which cache design would you pick? Circle one.
A B
Why? (in no more than 15 words)

Fewer bits needed for tag.

(b) Synonyms and homonyms [5 points]

Your sleepy friend is designing the shared last-level (L3) cache of a 16-core processor that imple-
ments an ISA with 4KB pages. The block size of the cache he is considering is 128 bytes. Your
friend would like to make the cache very large (64MB), but he is concerned that the synonym
problem, which we extensively covered in a lecture, would complicate the design of the cache.
What solution would you suggest to your friend?

L3 cache should have no synonym/homonym problem (as it is physically addressed).

(c) DRAM bitlines [5 points]
Why are the bitlines long in commodity DRAM chips?

To amortize the high cost of sense amplifiers (to achieve higher density)
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(d) Prefetching algorithms and minimalist hardware [15 points]

Suppose you have a memory access pattern that looks like this (all addresses are cache block
addresses):
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The different letter addresses have nothing to do with each other (i.e., they come from random
locations in the physical address space). The pattern continues for a long time.

Assume you have a fully-associative cache that can hold 16 blocks and implements LRU replace-
ment.

i) What is the hit rate of this cache?

100%

ii) You would like to design a prefetcher to prefetch data into the cache. What kind of a prefetcher
would you choose to use for this pattern?

Prefetcher type:

None Alternatively, if you answer 0% in part i) Markov prefetcher

Justification:

The correct answer for this part is there should be no problem with this access pattern
Alternatively, if you answer 0% in part i) Markov Prefetcher will prefetch the requested
block into the cache on the next time the same cache address is fetched.

iii) Now, assume you do not want a prefetcher and you would like to keep the cache the same.
However, you are allowed to add very small hardware to minimize the cache miss rate for this
program. What kind of a hardware structure would you add? (Hint: we discussed this in a
lecture.)

Structure name:

None
Alternatively, if you answer 0% in part i), a victim cache

Justification:

The correct answer for this part is there should be no problem with this access pattern
Alternatively, if you answer 0% in part i) A victim cache will cache the block that get
thrashed.
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()

Multiprocessor type potpourri [16 points]
i) In tightly coupled multiprocessors, memory address space is shared across all processors.
ii) “In tightly-coupled multiprocessors, memory can be physically distributed across processors.”

Is the above statement correct? Circle one: YES NO

yes |

iii) There are three major reasons why the parallel portion of a program is not perfectly parallel:
1) synchronization, 2) load imbalance, 3) resource contention. List those reasons that apply to
the following two types of multiprocessors:

Tightly-coupled:

synchronization, resource contention, load imbalance

Loosely-coupled:

synchronization, resource contention, load imbalance

iv) “A cache coherence mechanism is required to keep caches consistent in the presence of multiple
processors.” Circle the type(s) of multiprocessors to which this statement applies:

Tightly-coupled multiprocessors

Loosely-coupled multiprocessors

’ Both types

v) “Loosely-coupled multiprocessors do not require synchronization operations.”

Is the above statement correct? Circle one: YES NO

[no |

vi) “Hardware contexts in a multithreaded processor have to be tightly coupled.”

Is the above statement correct? Circle one: YES NO

[ no |

Directory [11 points]

Assume we have a processor that implements the directory based cache coherence protocol we
discussed in class. The physical address space of the processor is 32GB (23° bytes) and a cache
block is 128 bytes. The directory is equally distributed across randomly selected 32 nodes in the
system.

You find out that the directory size in each of the 32 nodes is a total of 200 MB.

How many total processors are there in this system? Show your work.
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Total number of lines in each nodes = 23°~7-5 = 223

200M B = 25 * 223 bytes = 25 * 226bits
This means that each cache block is 25 % 8 = 200 bits. This means that there are 199
processors (199 bits for each processor and one present bit).
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2. Cache Coherence [40 points]

We have a system with 4 byte-addressable processors. Each processor has a private 256-byte, direct-
mapped, write-back L1 cache with a block size of 64 bytes. Coherence is maintained using the MESI
protocol we discussed in class. Accessible memory addresses range from 0x30000000 - Ox3FFFFFFF.
We show below the initial tag store state of the four caches.

Initial State

Cache 0 Cache 1

Tag MESI State Tag MESI State
Set 0 | 0x3FFFFF S Set 0 | 0x3FFFFF S
Set 1 | 0x000000 I Set 1 | 0x300000 E
Set 2 | 0x330000 E Set 2 | 0x300004 E
Set 3 | 0x300000 I Set 3 | 0x330000 E

Cache 2 Cache 3

Tag MESI State Tag MESI State
Set 0 | 0x3FFFFF S Set 0 | 0x000000 I
Set 1 | 0x330000 E Set 1 | 0x000000 I
Set 2 | 0x32FFFF M Set 2 | 0x000000 I
Set 8 | 0x32FFFF E Set 8 | 0x000000 I

After 5 memory instructions are executed in this system, we find the final tag store state of the four
caches to be as follows:

Final State

Cache 0 Cache 1
Tag MESI State Tag MEST State
Set 0 | 0x3FFFFF I Set 0 | 0x3FFFFF I
Set 1 | 0x300000 M Set 1 | 0x300000 I
Set 2 | 0x330000 E Set 2 | 0x32FFFF S
Set 8 | 0x333333 E Set 8 | 0x330000 E
Cache 2 Cache 3
Tag MESI State Tag MESI State
Set 0 | 0x3FFFFF I Set 0 | 0x3FFFFF M
Set 1 | 0x330000 E Set 1 | 0x000000
Set 2 | 0x32FFFF S Set 2 | 0x000000 I
Set 3 | 0x32FFFF S Set 8 | 0x32FFFF S

Assume that the offset within a cache block is 0 for all requests. In the below diagram, you are given
partially what happened with each of the 5 memory instructions. In particular, we show you whether
the instruction caused an eviction or a write-back in any cache and which cache the instruction was
serviced by. We ask you to complete three pieces of information: 1) address of each request (Address),
2) whether the request is a Read or a Write (R/W), 3) which caches the request caused an eviction

from if an eviction occurred due to the request (Evicted from cache 0, 1, 2, 3).

Instruction Evicted from cache Request served by cache
Order | Address [ R/W | Eviction? [ 0 [ 1 | 2 [ 3 | Write back? | 0 [ 1 [ 2] 3
1 0x3FFFFF00 W Yes XXX No
2 0x32FFFF80 R No Yes X
3 0x32FFFFCO0 R No No X
4 0x30000040 W Yes X No X
5 0x333333C0 R No No X
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3.

TL-DRAM [40 points]

In class, we have seen the idea of the tiered-latency DRAM, TL-DRAM. Recall that in TL-DRAM,
the bitline of a subarray is segmented into two portions by adding isolation transistors inbetween,
creating two segments on the bitline: the near segment and the far segment. The near segment is
close to the sense amplifiers whereas the far segment is far away.

(a)

(b)

()

Why is access to a row in the near segment faster in TL-DRAM compared to a commodity DRAM
chip?

The bitline is shorter (thus lower capacitance) than commodity DRAM

Why is access to a row in the far segment slower in TL-DRAM compared to a commodity DRAM
chip?

There is an additional resistance from the isolation transistor

Now, assume that we have a system that uses the near segment as a cache to the far segment,
and far segment contains main memory locations. Near segment is not visible to software and the
rows that are cached in it are completely managed by the memory controller. The far segment
is inclusive of the near segment. The far segment has 960 rows, whereas the baseline commodity
DRAM has 1024 rows in a subarray.

What is the capacity loss in main memory size when we use TL-DRAM as opposed to commodity
DRAM? Express this as a fraction of total memory capacity lost (no need to simplify the fraction).

64
1024

What is the tag store size that needs to be maintained on a per subarray basis in the DRAM
controller if the near segment is used as a fully-associative write-back cache? Assume the replace-
ment algorithm is not MRU and use the minimum number of bits possible to implement the
replacement algorithm. Show your work.

Answer:

774 bits

Show your work here:

1 valid bit, 1 dirty bit, 10 bits tags, 64 different entries (one for each row)
Then add 6 bits to point where the MRU is
Total size = 64*12 + 6 = 768 + 6 = 774 bits
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Now assume near segment and far segment are exclusive. In other words both contain memory
rows and a memory row can be only in one of the segments. When a memory row in the far
segment is referenced, it is brought into the near segment by exchanging the non-MRU row in the
near segment with the row in the far segment.

What is the capacity loss in main memory size when we use TL-DRAM as opposed to commodity
DRAM?Y Express this as a fraction of total memory capacity lost (no need to simplify the fraction).

0%

What is the tag store size that needs to be maintained on a per subarray basis in the DRAM
controller if the near segment is used as a fully-associative write-back cache? Assume the replace-
ment algorithm is not MRU and use the minimum number of bits possible to implement the
replacement algorithm. Show your work.

Answer:

10246 bits

Show your work here:

Near segment: (10 bits tags) * 64row = 640 + 6 MRU bits = 646 bits

A row swap can lead to any physical pages in the subarray getting mapped to any row
in the subarray. This means we need the tag bits in each of the far segment rows.

Far segment: 10 bits tags * 960 rows = 9600 bits

Total size = 10246 bits

Now, assume we decide to increase the number of rows in the near segment, while keeping the
total number of rows in the subarray constant. Explain what happens to the following parameters
(i.e., whether each increases, decreases or stays roughly the same). State your assumptions.

Near segment access latency:

increases

Far segment access latency:

stays roughly the same

Near segment access energy:

increases

Far segment access energy:

stay roughly the same

Hit rate in the near segment:

increases
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4. Multith

Assume you have three multithreaded in-order processors with 16-bit physical address space. We
will compare their performance in executing two threads. Each processor has a 256-byte, 2-way set-
associative L1 cache. The cache line is 16 bytes. The cache uses the LRU replacement policy and
takes 5 cycles to determine whether the cache is a hit or a miss. If the access is a hit, the data is
returned at the same time as the hit/miss signal. If the access is a miss, it takes 50 more cycles to

reading [40 points]

service the cache miss (i.e., the data is returned 55 cycles after the cache access starts).

(a) How many bits are used for tag, index and byte in block for this cache?

Tag:

9 bits

Index:

3 bits

Byte in block:

4 bits

The following table shows the operations performed by the two threads that are used to evaluate the
performance of the three processors. Assume all operations are independent. Assume that between
each memory access there are 20 independent add instructions. Assume that each add instruction
takes one cycle and the processor always starts execution with Thread 1. The cost of a context switch

from one thread to another is 10 cycles, unless otherwise stated.

|

Thread 1

Thread 2

Memory read from address 0x1020

Memory read from address 0x2020

20 add instructions

20 add instructions

Memory read from address Ox11a2

Memory read from address 0x2122

20 add instructions

20 add instructions

Memory read from address 0x1021

Memory read from address 0x2021

20 add instructions

20 add instructions

Memory read from address Ox11a3

Memory read from address 0x2123

20 add instructions

20 add instructions

Memory read from address 0x1022

Memory read from address 0x2220

20 add instructions

20 add instructions

Memory read from address Ox1lal

Memory read from address 0x2322

20 add instructions

20 add instructions

Memory read from address 0x1023

Memory read from address 0x2221

20 add instructions

20 add instructions

Memory read from address Ox11a2

Memory read from address 0x2323
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(b) Assume Processor 1 first executes Thread 1 to completion and then executes Thread 2. What are

the individual execution times and the total execution time (in cycles) of the two threads on this
processor?

Thread 1:

280 cycles

Thread 2:

670 cycles
Alternatively, if you assume that thread 2 starts after thread 1 finishes: 380 cycles

Total:

2 misses and 6 hits from thread 1 = 140 cycles 4 misses and 4 hits from thread 2 = 240
cycles

total time for memory instructions = 380 cycles

total time for compute instructions = 14*20 = 280 cycles

total execution time is 670 cycles (660 + 10 context switch penalty)

Assume Processor 2 employs fine-grained multithreading, with no context switch penalty between
threads. The cache is single ported. What are the individual execution times and the total
execution time (in cycles) of the two threads on this processor?

Thread 1:

1105 cycles (Total - 55 cycles cache miss from the last cache miss in thread 2)

Thread 2:

1160 cycles

Total:

All cache accesses are misses in the cache. Total time = 16*55 = 880 cycles
total time for compute instructions = 14*20 = 280 cycles
total execution time is 1160 cycles
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(d) Assume Processor 2 employs switch-on-event multithreading. The processor switches to the other
thread when the currently-executing thread incurs a cache miss. The cache is dual-ported. What
are the individual execution times and the total execution time (in cycles) of the two threads on
this processor?

Thread 1:

580 cycles (Total - 35 cycles cache miss from the last cache miss in thread 2)

Thread 2:

615 cycles

Total:

Total time = 525+90 = 615 cycles

Show your work:

5 cycles : first cache miss in thread 1

10 cycles: context switch to thread 2

5 cycles : first cache miss in thread 2

10 cycles: context switch back to thread 1

25 cycles: the first cache miss in thread 1 is done

20 cycles: finish executing 20 compute instructions in thead 1
—— 75 cycles

5 cycles : reach the second cache miss in thread 1

10 cycles: context switch to thread 2

0 cycles : finish the first cache miss in thread 2

20 cycles: finish executing 20 compute instructions in thread 2
5 cycles : reach the second cache miss in thread 2

10 cycles: context switch to thread 1

5 cycles : the second cache miss in thread 1 is done

20 cycles: finish executing 20 compute instructions in thread 1
—— 75 cycles

Repeat this 75 cycles 5 times = 375 cycles

5 cycles : reach the eigth cache miss in thread 1

10 cycles: context switch to thread 2

0 cycles : finish the seventh cache miss in thread 2

20 cycles: finish executing 20 compute instructions in thread 2
5 cycles : reach the eigth cache miss in thread 2

10 cycles: context switch back to thread 1

5 cycles : finish the eigth cache miss in thread 1

10 cycles: context switch to thread 2

25 cycles: finish the eigth cache miss in thread 2

— 90 cycles

Total time = 525+90 = 615 cycles
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5. Tracing the Cache [55 points]

Assume you have three toy CPUs: 6808-D, 6808-T, and 6808-F. All three CPUs feature one level
of cache. The cache size is 128 bytes, the cache block size is 32 bytes, and the cache uses LRU
replacement. The only difference between the three CPUs is the associativity of the cache:

e 6808-D uses a direct mapped cache.
e 6808-T uses a two-way associative cache.
e 6808-F uses a fully associative cache.

You run the SPECMem3000 program to evaluate the CPUs. This benchmark program tests only
memory read performance by issuing read requests to the cache. Assume that the cache is empty
before you run the benchmark.

The cache accesses generated by the program are as follows, in order of access from left to right:

A,B,AH, B, G H H A EHDHG,CCG,CABHDECCBADEF

Each letter represents a unique cache block. All 8 cache blocks are contiguous in memory.
However, the ordering of the letters does not necessarily correspond to the ordering of the cache
blocks in memory.

For 6808-D, you observe the following cache misses in order of generation:

A,B,AH B, G A ED,HC,G,CB,DA,F

(a) By using the above trace, please identify which cache blocks are in the same set for the 6808-D
processor. Please be clear.

A and B
C and G
Hand D
E and F
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(b) Please write down the sequence of cache misses for the 6808-F processor in their order of genera-
tion. (Hint: You might want to write down the cache state after each request).

By simulating the cache and using the requests

Reqg: ABAHBGHHAEHDHGCCGCABHDETCCBADETF
M? : X X X X X X X X X X X X X X X X X X X
MRU: ABAHBGHHAEHDHGCCGCABHDETCCBADETF
: - ABAHBGGHAEHDUHGGCGCABHDEZET CBADE
: - - - BAHBBGHAEEDHHHHGCABHDDETCBAD
LRU: - - = — - AAABGGAAEDDDDHGCABHHDETCIZBA

(¢) For 6808-T, you observed the following five cache misses in order of generation:

A, B, H G, E

But, unfortunately, your evaluation setup broke before you could observe all cache misses for the
6808-T.

Using the given information, which cache blocks are in the same set for the 6808-T processor?

We first simulate the cache up to the point it breaks. By simulating the cache and using the

requests

Reqg A BAHBGHHAE
M? X X X X X
MRUO: A B AABBDBBAE
LRUO: - ABBAAAABA
MRUl: - - - HHGHHHH
LRUl: - = = = = HGGGG

If H was in the same set as A and B, then the B right after H would have missed. Similarly
if G was in the same set as A and B, the A right before E would have missed. Using this
information and the sets calculated in part (a), the sets are respectively

A/ B, E, and F
H, G, C, and D
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(d) Please write down the sequence of cache misses for the 6808-T processor in their order of genera-

tion.
Reqg ABAHBGHHAEHDHGCCGCABHDET CCBADTETF
M? : X X X X b X X X X X X X X X X X
MRUO: ABAABBBBAEEEEETEEEZEABBBEEEDBAAETF
IRUO: - ABBAAAABAAAAAAAAAEAAABIBIDBEZBIBATE
MRUl: - - - HHGHHHHHDHGCCGCCCHDDT CCCCDTDTD
LRUl: - - - - -HGGGGGHDHGGCGGGCHHDDDDTCTCZC

(e) What is the cache miss rate for each processor?

6808-D:

6808-T"

16
30

6808-F:

19
30
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6. Memory Request Scheduling [45 points]

To serve a memory request, the memory controller issues one or multiple DRAM commands to access
data from a bank. There are four different DRAM commands as discussed in class.

e ACTIVATE: Loads the row (that needs to be accessed) into the bank’s row-buffer. This is called
opening a row. (Latency: 15ns)

e PRECHARGE: Restores the contents of the bank’s row-buffer back into the row. This is called
closing a row. (Latency: 15ns)

e READ/WRITE: Accesses data from the row-buffer. (Latency: 15ns)

The following figure shows the snapshots of the memory request buffers (in the memory controller) at
time to. Assume all requests are read requests. Each request is annotated with the address (or index)
of the row that the request needs to access (e.g., R means that the request is for the 3"¢ row). The
letter above each request represents which application issued the request. There are three applications
running at this time: A, B and C. Assume each application is running on a separate core.

A B A B C B A A A A A A
Channelo (R4)(R11R4IR3IR7IRSIR4IR11R4lR4lR7IR1)

Bank 0 | <=

Oldest Youngest

Channel1l| ~ A~ B B A B c B A B B B
(Rz R 'R )R Ra X Rg J(R10) Rs ' Ra JCR: JCRe X R4 )

Bank 0 | <«

Oldest Youngest

A memory request is considered to be served when the READ command is complete (i.e., 15ns after
the request’s READ command had been issued). Each application (A, B, or C) is considered to be
stalled until all of its memory requests (across all the request buffers) have been served. Assume that,
initially (at to) Channel 0 Bank 0 has the 4" row and Channel 1 Bank 0 has the 7" row loaded in
their respective row-buffers. Finally, assume no additional requests from any of the applications arrive
at the memory controller.
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(a) Using the FR-FCFS (or, row-hit-first) scheduling policy we discussed in class, what is the stall
time of each application?

Application A:

255ns

Application B:

330ns

Application C:

285ns

Show your work:

Application A: max( 8 Hits + 3 Misses, 3 Hits + 1 Misses) = 255ns
Application B: max( 8 Hits + 4 Misses, 7 Hits + 5 Misses) = 330ns
Application C: max( 7 Hits + 3 Misses, 7 Hits + 4 Misses) = 285ns

A TA looks at Application C, and sees that it is a non-memory intensive program. To speed up C,
the TA suggests using a very simple batching technique. The idea is that in each bank, the first N
requests received in time are prioritized over the younger requests. Then, the next IV requests are
prioritized, and so on. Thus, the new scheduling policy for each bank is as follows.

e Create a batch of the N oldest memory requests if there isn’t already a batch with remaining
requests.

e Within the active batch, follow the FR-FCFS scheduling policy.
(b) Describe how this might improve the performance of Application C.

Improves fairness as non-memory intensive applications do not have to wait for younger
row hits from memory-intesive applications to be fulfilled.

(¢) Describe one advantage and one disadvantage of using such a mechanism over FR-FCFS on an
arbitrary memory request pattern.

Advantage:

Better fairness/better performance/reduced starvation for computation intensive appli-
cations

Disadvantage:

Fewer row hits/increased latency for memory intensive applications when run with mul-
tiple applications
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(d) Assume the TA simulates the suggested batching algorithm, and observes the following stall times
for each application.

e Application A stall time was 4 Row Hits + 8 Row Misses

e Application B stall time was 3 Row Hits + 9 Row Misses

e Application C stall time was 2 Row Hits + 5 Row Misses
What are possible values of N7

N=3and N =4

(e) For the given access pattern, what values of N can be chosen such that the stall time of Application
C is lower than its stall time when using FR-FCFS?

1<=N<=11
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7. [Extra credit] Building Multicore Processors [40 points]

You are hired by Amdahl’s Nano Devices (AND) to design their newest multicore processor.
Ggl, one of AND’s largest customers, has found that the following program can predict people’s
happiness.

for (i = 12; i < 2985984; i++) {
past = A[i-12]
current = A[i]
past x= 0.37
current x= 0.63
A[i] = past + current

}

A is a large array of 4-byte floating point numbers, gathered by Ggl over the years by harvesting
people’s private messages. Your job is to create a processor that runs this program as fast as possible.

Assume the following:

e You have magically fast DRAM that allows infinitely many cores to access data in parallel. We
will relax this strong assumption in parts (d), (e), (f).

e Each floating point instruction (addition and multiplication) takes 10 cycles.
e Each memory read and write takes 10 cycles.

e No caches are used.

e Integer operations and branches are fast enough that they can be ignored.

(a) Assuming infinitely many cores, what is the maximum steady state speedup you can achieve for
this program? Please show all your computations.

The cycle counts are extra information that are not necessary.

Instead, the loop body is sequential, while 12 consecutive iterations are parallel. Notice
that the 13th iteration is dependent on the 1st iteration.

Therefore 1—12 of the program is serial. Using Amdahl’s law, this solves to a maximum
speedup of 12.
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(b) What is the minimum number of cores you need to achieve this speedup?

12 cores are needed.

(c¢) Briefly describe how you would assign work to each core to achieve this speedup.

Assign iteration i to processor 1%12.

It turns out magic DRAM does not exist except in Macondﬂ As a result, you have to use cheap,
slow, low-bandwidth DRAM. To compensate for this, you decide to use a private L1 cache for each
processor. The new specifications for the DRAM and the L1 cache are:

e DRAM is shared by all processors. DRAM may only process one request (read or write) at a
time.

DRAM takes 100 cycles to process any request.
e DRAM prioritizes accesses of smaller addresses and write requests. (Assume no virtual memory)

e The cache is direct-mapped. Each cache block is 16 bytes.

It takes 10 cycles to access the cache. Therefore, a cache hit is processed in 10 cycles and a
cache miss is processed in 110 cycles.

All other latencies remain the same as specified earlier. Answer parts (d), (e), (f) assuming this new
system.

(d) Can you still achieve the same steady state speedup as before? Circle one: YES NO

Please explain.

No. Notice that the serial bottleneck is now caused by the DRAM. In steady state,
only one memory access is performed for every four iterations. So four iterations take
100 + 200 = 300 cycles. 12 iterations requires 900 cycles.

In order to achieve 12x speedup, each core needs to complete each iteration in 75 cycles.
However, fetching from memory alone requires 100 cycles. Therefore, it is not possible.

By just saying that it is now slower than before is not enough, since the single core
baseline is also slower.

1An imaginary town featured in One Hundred Years of Solitude by the late Colombian author Gabriel Garcia
Mérquez (1927-2014).
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(e) What is the minimum number of cores your processor needs to provide the maximum speedup?

3 cores are needed to take the maximum advantage of each cache hit, and a maximum
speed up of almost 3 can be achieved.

Core 1 calculates iterations i+0, i+1, i4+-2, i+3, core 2 calculates iteration i+4, i+5, i+6,
i+7, and core 3 calculates iteration i48, i+9, i+10, i+11.

(f) Briefly describe how you would assign work to each core to achieve this speedup.

3 cores are needed to take the maximum advantage of each cache hit, and a maximum
speed up of almost 3 can be achieved.

Core 1 calculates iterations i4-0, i+1, i+2, i4-3, core 2 calculates iteration i+4, i+5, i46,
i+7, and core 3 calculates iteration i+8, i4+9, i+10, i+11.
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