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4. Clearly indicate your final answer for each problem.

5. Please show your work when needed.

6. Please write your initials at the top of every page.

7. Please make sure that your answers to all questions (and all supporting work that is required)
are contained in the space required.

Tips:

• Be cognizant of time. Do not spend to much time on one question.

• Be concise. You will be penalized for verbosity.

• Show work when needed. You will receive partial credit at the instructors’ discretion.

• Write legibly. Show your final answer.
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1. Potpourri [90 points]

(a) Static scheduling [9 points]

Consider the following code example:

mul R1 <−− R5 , R6
add R3 <−− R1 , R2
beqz R3 , t a r g e t
add R5 <−− R6 , R7
s t R7(0) <−− R8
mul R8 <−− R8 , R8
ld R2 <−− R10 (0)
mul R11 <−− R11 , R11
mul R12 <−− R12 , R12
jmp reconv

t a r g e t :
add R13 <−− R13 , R13
mul R14 <−− R14 , R14
sub R15 <−− R13 , R14
s t R4(0) <−− R17
mul R16 <−− R16 , R16
mul R17 <−− R17 , R17
ld R2 <−− R10 (0)

reconv :
add R8 <−− R2 , R5
mul R8 <−− R8 , R8

Give three reasons as to why it could be difficult for the compiler to perform effective static
scheduling of instructions in the above code example. Refer to specific instructions when necessary
for clarity.

Reason 1:

Load/store addresses are unknown

Reason 2:

Branch direction is unknown to the compiler

Reason 3:

Load and store hit status is unknown to the compiler
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(b) Load Store Handling [36 points]

A modern out-of-order execution processor has a store buffer (also called a store queue) as dis-
cussed in class. Remember that this buffer is implemented as a searchable structure, i.e., content
addressable memory. Such a processor also has a load buffer (also called a load queue), which
contains all information about decoded but not yet retired load instructions, in program order.
Also as discussed in class, most modern processors intelligently schedule load instructions in the
presence of “unknown address” stores. The process of handling load/store dependencies and
scheduling is called “memory disambiguation”. For this question, assume a processor that aggres-
sively schedules load instructions even in the presence of older store instructions with unknown
addresses. Within this context, answer the following questions.

1. What is the purpose of the store buffer?

1) to enable in-order commit of stores 2) data forwarding for different loads

2. Exactly when is the store buffer searched (if at all)?

When the load instruction is scheduled.

3. What is the purpose of the load buffer?

To verify whether a load was correctly scheduled in the presense of previously unknown
address store

4. Exactly when is the load buffer searched (if at all)?

When a store instruction executes

5. You are given the following state of the store buffer and the load buffer at a given instant
of time. Assume the ISA allows unaligned loads and stores, registers are 4 bytes, and byte and
double-byte loads are sign-extended to fill the 4-byte registers. Assume no pipeline flushes during
the execution of the code that lead to this state. Starting addresses and sizes are denoted in bytes;
memory is little-endian. Data values are specified in hexadecimal format.
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Store buffer

Inst num. Valid Starting Address Size Data
3 Yes 10 1 x00000005
5 Yes 36 4 x00000006
6 Yes 64 2 x00000007
7 Yes 11 1 x00000004
9 Yes 44 4 x00000005
10 Yes 72 2 x00000006
11 Yes 12 1 x00000006
13 Yes 52 4 x00000008
14 Yes 80 2 x00000007
15 Yes 13 1 x00000006
32 Yes Unknown 4 x00000009

Load buffer

Inst num. Valid Starting Address Size Destination
8 Yes 10 2 R1
12 Yes 11 2 R2
22 Yes 12 4 R3
28 Yes 10 4 R4
29 Yes 46 2 R5
30 Yes 13 2 R6
36 Yes 10 4 R7
48 Yes 54 2 R8

What is the value (in hexadecimal notation) loaded by each load into its respective destination
register after the load is committed to the architectural state?

R1: 0x00000405

R2: 0x00000604

R3: 0xXXXX0606

R4: 0x06060405

R5: 0x00000000

R6: 0xXXXXXX06

R7: Unknown

R8: Unknown
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(c) Tomasulo’s Algorithm [15 points]

Remember that Tomasulo’s algorithm requires tag broadcast and comparison to enable wake-up
of dependent instructions. In this question, we will calculate the number of tag comparators and
size of tag storage required to implement Tomasulo’s algorithm, as described in Lecture 14, in a
machine that has the following properties:

• 8 functional units where each functional unit has a dedicated separate tag and data broadcast
bus

• 32 64-bit architectural registers

• 16 reservation station entries per functional unit

• Each reservation station entry can have two source registers

Answer the following questions. Show your work for credit.

a) What is the number of tag comparators per reservation station entry?

8*2

b) What is the total number of tag comparators in the entire machine?

16*8*2*8+8*32

c) What is the (minimum possible) size of the tag?

log(16 ∗ 8) = 7

d) What is the (minimum possible) size of the register alias table (or, frontend register file) in
bits?

72 ∗ 32 (64 bits for data, 7 bits for the tag, 1 valid bit)

e) What is the total (minimum possible) size of the tag storage in the entire machine in bits?

7 ∗ 32 + 7 ∗ 16 ∗ 8 ∗ 2

(d) Branch Prediction [4 points]

In class, we discussed the heterogeneous element processor (HEP), which used fine-grained mul-
tithreading. Assuming you can change only the branch predictor for this design, what branch
predictor would you choose for HEP?

No. No branch prediction necessary on an FGMT processor.
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(e) Philosophy [16 points]

In class, we have discussed many times the tradeoff between programmer versus microarchitect.
Among the following sets of two concepts, circle the one that makes programmer’s life harder and
at the same time microarchitect’s (or hardware designer’s) life easier. Interpret “programmer”
broadly as we did in class, e.g., a compiler writer is a programmer, too.

• Reduced instruction set versus complex instruction set

• VLIW versus superscalar execution

• Virtual memory versus overlays (i.e., no virtual memory)

• Multi-core processors versus single-core processors

• More addressing modes versus less addressing modes

• Dataflow execution model versus von Neumann execution model
Unclear

• Unaligned access support versus alignment requirements in hardware

• Warp-based SIMD execution versus traditional lock-step SIMD execution

(f) Virtual Memory [6 points]

What is the main purpose of a translation lookaside buffer (TLB)?

To accelerate page translation.

Draw a TLB entry below and identify its fields.

Valid bit VPN PPN Access control bits

(g) GPUs [4 points]

In a GPU, the unit of fetch and execution is at the granularity of a warp. A warp is a collection
of scalar threads that are at the same instruction pointer .

What is the key benefit of grouping threads together in a warp in this manner as opposed to
treating each thread as a completely separate entity?

Amortize the cost of fetch/decode of instructions across threads
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2. Tomasulo’s Dilemma [35 points]

Suppose an out-of-order dispatch machine implementing Tomasulo’s algorithm with the following
characteristics:

• The processor is fully pipelined with four stages: Fetch, decode, execute, and writeback

• The processor implements ADD and MUL instructions only.

• For all instructions, fetch takes 1 cycle, decode takes 1 cycle, and writeback takes 2 cycles.

• For ADD instructions, execute takes 1 cycle. For MUL instructions, execute takes 3 cycles.

• There are enough functional units to have 3 of each instructions executing at the same time.

• The machine implements precise exceptions using a reorder buffer and a future file.

• A reservation station entry and a reorder buffer entry are allocated for an instruction at the end
of its decode stage.

• An instruction broadcasts its results at the end of its first writeback cycle. This updates the
values in the reservation stations, future file, and reorder buffer.

• Writebacks of different instructions can happen concurrently.

Suppose the pipeline is initially empty and the machine fetches exactly 5 instructions. 7 cycles after
fetching the first instruction, the reservation stations and future file are as follows:

ADD Reservation Station
Tag V Tag Data V Tag Data
A 1 – 3 1 – 2
B 1 – 9 1 – 3
C 1 – 5 1 – 9

MUL Reservation Station
Tag V Tag Data V Tag Data
X 1 – 2 1 A 5
Y 1 B 12 1 – 2
Z 0 – – 0 – –

Future File
V Tag Data

R0 1 – 5
R1 1 – 2
R2 1 – 3
R3 0 C 12
R4 0 Y 1
R5 1 – 9
R6 1 – 0
R7 1 – 21

In the reservation stations, the youngest instruction is at the bottom and some instructions might
have already completed.
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(a) What are the 5 instructions? Please write them in program order and show all work for full credit.

ADD r0 <- r2, r1
MUL r3 <- r1, r0
ADD r3 <- r5, r2
MUL r4 <- r3, r1
ADD r3 <- r0, r5

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11| 12| 13| 14
ADD F | D | E | W | W
MUL F | D | E | E | E | W | W
ADD F | D | E | W | W
MUL F | D | E | E | E | W | W
ADD F | D | E | W | W

Now suppose this machine always raises a floating point exception after the last execute stage of MUL
instructions (the engineer who designed the multiplication unit did not verify his design).

(b) Please fill out the reorder buffer right after the first floating point exception is raised. Oldest
instructions should be on top and youngest instructions at the bottom. After an instruction is
retired, its reorder buffer entry should be marked as invalid. Use ? to indicate any unknown
information at that moment.

Reorder Buffer
Valid Tag Opcode Rd Dest. Value Dest. Value Ready Exception?

Reorder Buffer
Valid Tag Opcode Rd Dest. Value Dest. Value Ready Exception?

0 A ADD r0 5 1 0
1 X MUL r3 ? 0 1
1 B ADD r3 12 1 0
1 Y MUL r4 ? 0 ?
1 C ADD r3 ? 0 ?
0
0
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3. Dataflow [25 points]

Consider the dataflow graph on the following page and answer the following questions. Please restrict
your answer to 10 words or less.

What does the whole dataflow graph do (10 words or less)? (Hint: Identify what Module 1 and
Module 2 perform.)

The dataflow graph deadlocks unless the greatest common divisor (GCD) of A and B is the
same as the least common multiple (LCM) of A and B. If (GCD(A,B) == LCM(A,B))
then ANSWER = 1
If you assume that A and B are fed as inputs continuously, the dataflow graph finds the
least common multiple (LCM) of A and B.
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4. Mystery Instruction [40 points]

A pesky engineer implemented a mystery instruction on the LC-3b. It is your job to determine what
the instruction does. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 BaseR SR1 0 0 0 0 1 0

The instruction is only defined if the value of SR1 is greater than zero.

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the
attached figures (see the last four pages). We also provide the original LC-3b state diagram, in case
you need it. (As a reminder, the selection logic for SR2MUX is determined internally based on the
instruction.)

The additional control signals are

GateTEMP1/1: NO, YES

GateTEMP2/1: NO, YES

LD.TEMP1/1: NO, LOAD

LD.TEMP2/1: NO, LOAD

COND/3:
COND000 ;Unconditional
COND001 ;Memory Ready
COND010 ;Branch
COND011 ;Addressing mode
COND100 ;Mystery 1

The microcode for the instruction is given in the table below.

State Cond J Asserted Signals
001010 (10) COND000 001011 ALUK = PASSA, GateALU, LD.TEMP2,

SR1MUX = SR1 (IR[8:6])
001011 (11) COND000 110001 LD.MAR, SR1MUX = BaseR (IR[11:9]),

ADDR1MUX = BaseR, ADDR2MUX = 0,
MARMUX = ADDER, GateMARMUX

110001 (49) COND001 110001 LD.MDR, MIO.EN, DATA.SIZE=WORD
110011 (51) COND000 100100 GateMDR, LD.TEMP1, DATA.SIZE=WORD
100100 (36) COND000 100101 GateTEMP1, LD.MDR, DATA.SIZE=WORD
100101 (37) COND001 100101 R.W=WRITE, DATA.SIZE=WORD
100111 (39) COND000 101000 GateMARMUX, MARMUX = ADDER,

ADDR1MUX = BaseR (IR[11:9]), SR1MUX = BaseR
(IR[11:9]), ADDR2MUX = SEXT[IR[5:0]], DRMUX = BaseR
(IR[11:9]), LD.REG

101000 (40) COND100 001011 GateTEMP2, LD.TEMP2
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Describe what this instruction does.

This instruction does a vector increment.
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5. GPUs and SIMD [35 points]

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are
kept busy with active threads during the run of a program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A, B, C, and D are already in vector registers so there
are no loads and stores in this program. (Hint: Notice that there are 5 instructions in each thread.)
A warp in the GPU consists of 64 threads, there are 64 SIMD lanes in the GPU. Assume that each
instruction takes the same amount of time to execute.

for (i = 0; i < 32768; i++) {
if (A[i] % 2 == 0) { // Instruction 1

A[i] = A[i] * C[i]; // Instruction 2
B[i] = A[i] + B[i]; // Instruction 3
C[i] = B[i] + 1; // Instruction 4
D[i] = C[i] * B[i]; // Instruction 5

}
}

(a) How many warps does it take to execute this program?

Warps = (Number of threads) / (Number of threads per warp)
Number of threads = 215 (i.e. one thread per loop iteration)
Number of threads per warp = 64 = 26

Warps = 215/26 = 29

(b) Assume arrays A and C have a repetitive pattern which have 32 ones followed by 96 zeros repet-
itively and arrays B and D have a different repetitive pattern which have 64 zeros followed by 64
ones. What is the SIMD utilization of this program?

A 1 1 ...29 1s... 1 0 0 ...93 0s... 0 ...32 1s... ...96 0s...
B 0 0 ...61 0s... 0 1 1 ...61 1s... 1 ...64 0s... ...64 1s...
C 1 1 ...29 1s... 1 0 0 ...93 0s... 0 ...32 1s... ...96 0s...
D 0 0 ...61 0s... 0 1 1 ...61 1s... 1 ...64 0s... ...64 1s...

((64*5-32*4+64*5)/(64*5+64*5))*100% = 80%
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(c) Is it possible for this program to yield a SIMD utilization of 100% (circle one)?

YES NO

If YES, what should be true about arrays A, B, C, and D for the SIMD utilization to be 100%?
Be precise and show your work. If NO, explain why not.

Yes. If all of A’s elements are even, or if all are odd.

(d) Is it possible for this program to yield a SIMD utilization of 25% (circle one)?

YES NO

If YES, what should be true about arrays A, B, C, and D for the SIMD utilization to be 25%?
Be precise.

Yes. If 4 out of every 64 elements in array A are even.

(e) Is it possible for this program to yield a SIMD utilization of 20% (circle one)?

YES NO

If YES, what should be true about arrays A, B, C, and D for the SIMD utilization to be 20%?
Be precise.

No. The minimum is where 1/64 elements in array A are even. Which yields a 21.5%
usage.
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6. Branch Prediction [45 points]

Assume the following piece of code that iterates through two large arrays, j and k, each populated
with completely (i.e., truly) random positive integers. The code has five branches (labeled B1, B2, B3,
B4, and B5). When we say that a branch is taken, we mean that the code inside the curly brackets is
executed. Assume the code is run to completion without any errors (there are no exceptions). For the
following questions, assume that this is the only block of code that will ever be run on the machines
and the loop condition branch is resolved first in the iteration.

for (int i = 0; i < 1000; i++) { /* B1 */
/* TAKEN PATH for B1 */

if (i % 2 == 0) { /* B2 */
j[i] = k[i] * i; /* TAKEN PATH for B2 */

}
if (i < 250) { /* B3 */

j[i] = k[i] - i; /* TAKEN PATH for B3 */
}
if (i < 500) { /* B4 */

j[i] = k[i] + i; /* TAKEN PATH for B4 */
}
if (i >= 500) { /* B5 */

j[i] = k[i] / i; /* TAKEN PATH for B5 */
}

}

You are given three machines whose components are identical in every way, except for their branch
predictors.

• Machine A uses an always-taken branch predictor.

• Machine B uses a global two bit saturating counter branch predictor shared by all branches
which starts at Weakly Taken (2’b10).

• Machine C uses local two bit saturating counters as branch predictor all of which start at Weakly
Not Taken (2’b01).

The saturating counter values are as follows:
2’b00 - Strongly Not Taken
2’b01 - Weakly Not Taken
2’b10 - Weakly Taken
2’b11 - Strongly Taken

(a) What is the misprediction rate when the above piece of code runs on Machine A?

45.01% = 2251
5001 .

B1 will generate 1 misprediction out of 1001 executions. B2 will generate 500 mis-
predictions out of 1000 iterations, B3 will generate 750 mispredictions out of 1000
iterations, and both B4 and B5 will generate 500 mispredictions out of 1000 iterations.
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(b) What is the misprediction rate of the above piece of code on Machine B?

59.97%.

From (0-249): 375 mispredictions for 1250 branches.
From (250-499): 874 mispredictions for 1250 branches.
From (500-1000): 1750 mispredictions for 2501 branches.

(c) What is the misprediction rate of the above piece of code given Machine C?

20.20% = 1010
5001 .

You can split this up by branch.
B1 will mispredict at i = 0, and i = 1000 (2 mispredictions out of 1001).
B2 will mispredict every time since it oscillates between WNT and WT (1000 mispre-
dictions out of 1000).
B3 will mispredict at i = 0, i = 250, and i = 251 (3 mispredictions out of 1000).
B4 will mispredict at i = 0, i = 500, and i = 501 (3 mispredictions out of 1000).
B5 will mispredict at i = 500, and i = 501 (2 mispredictions out of 1000).

Now, the above branch predictors do pretty well, but the TAs think they can design better branch
predictors for this code.

(d) Varun suggests a hybrid branch predictor, also called a tournament predictor. Using the branch
predictors from Machine B and C respectively, the tournament predictor will use a two bit satu-
rating counter, shared by all branches, as the choice predictor which will begin at 2’b10 (Weakly
B). The saturating counter values are as follows:

2’b00 - Strongly C
2’b01 - Weakly C
2’b10 - Weakly B
2’b11 - Strongly B

Every time the two predictors disagree about the direction to take on a branch, the counter will
move towards the correct branch predictor. So, if Machine C’s predictor is correct and Machine
B’s is wrong, the choice predictor will move towards using Machine C’s predictor i.e., it will
decrement, unless it is at 2’b00 already. Would you use this branch predictor over the one with
the lowest misprediction rate above? Why or why not?
(For this question only, assume steady state behavior for both predictors.)

No matter at what state the choice predictor starts, the local predictor is never wrong
when the global predictor is correct. Thus, eventually this new hybrid branch predictor
will begin using just the local predictions, meaning it would never do better than Machine
C. For the above code, Machine C has a smaller datapath for similar misprediction
penalty, so that is better.
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(e) Rachata notices an interesting pattern for Machine C, and believes that he can improve it by
simply tweaking the starting conditions of its branch predictor. He proposes a solution that
involves the same predictor as Machine C, except the starting value of the counter is Weakly
Taken (2’b10). Is this better than Machine C? Calculate the misprediction rate to justify your
answer.

Yes. 10.16%.

You can split this up by branch.
B1 will mispredict at i = 1000 iteration (1 misprediction).
B2 will mispredict every other time since it oscillates between WT and T (500
mispredictions).
B3 will mispredict at i = 250, and i = 251 (2 mispredictions).
B4 will mispredict at i = 500, and i = 501 (2 mispredictions).
B5 will mispredict at i = 0, i = 500, and i = 501 (3 mispredictions).

(f) Being a dedicated computer architecture student, you suggest using a two-level local branch
predictor with a two-bit local history registers per branch and a separate pattern history table
per branch, consisting of 2-bit saturating counters for every entry to improve the design. You
suggest that both bits of the local history registers are initialized to Taken (2’b11) and the 2-bit
saturating counters in the pattern history tables are initialized to Weakly Taken (2’b10). Is this
better than Machine A, B and C? Calculate the misprediction rate to justify your answer.

Yes. 0.28%.

You can split this up by branch.
B1 will mispredict at i = 1000 iteration (1 misprediction).
B2 will mispredict at i = 1 and i = 3 before the histories settle into the pattern. (2
mispredictions)
B3 will mispredict at i = 250, i = 251, and i = 252 (3 mispredictions).
B4 will mispredict at i = 500, i = 501, and i = 502 (3 mispredictions).
B5 will mispredict at i = 0, 1, 2, 500, and 502 (5 mispredictions).
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7. Virtual Memory Deja Vu [35 points]

A dedicated computer architecture student (like you) bought a 32-bit processor that implements
paging-based virtual memory using a single-level page table. Being a careful person, she also read the
manual and learnt that

• A page table entry (PTE) is 4-bytes in size.

• A PTE stores the physical page number in the least-significant bits. Unused bits are zeroed out.

• The page table base address (PTBA) is page-aligned.

• If an instruction attempts to modify a PTE, an exception is raised.

However, the manual did not mention the page size and the PTBA. The dedicated student then wrote
the following program to find out the missing information.

char *ptr = 0xCCCCCCCC;

*ptr = 0x00337333;

The code ran with no exceptions. The following figure shows relevant locations of the physical memory
after execution.

0xFFFFFFFF

0x00000000

31                    0

0xCCCCCCCC

0x00337333

0x00337333

0xCDCCCCCC
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Using these results, what is the PTBA of this machine? Please show your work for full credit.

Given that the page size is 1024 (from the next part), and either 0xCCCCCCCC or
0xCDCCCCCC can be the PTE, we can get PTBA as follow:

• If 0xCDCCCCCC is the PTE, 0xCDCCCCCC is the PA. In this case, there will
be an exception.

• if 0xCCCCCCCC is the PTE, 0xCDCCCCCC is the PA. In this case, there will be
no exception.

As a result, 0xCCCCCCCC is the PTE.

PTBA = PTE − (2V PNbits ∗ 4) = 0xCCCCCCCC − 0xCCCCCC = 0xCC000000

What is the page size (in bytes) of this machine? Write your answer in the form 2n.

Because the two locations in the diagram are the two relevent locations of the physical
memory, we can deduct that 0xCDCCCCCC and 0xCCCCCCCC are the locations of
the PA as well as PTE for VA=0xCCCCCCCC.

This means 0x337333 is a part of the PPN. In this case, we can deduce that the number of
bits for the PPN is at least 22 bits.

In addtion, note that the PA contains 0xCCCCCC in the least significant bits. This
means that the PO consist of 0xC’s in the least significant bits.

With this information, we can deduce that PPN—PO = PA = 0xCDCCCCCC or
0xCCCCCCCC. The only number of bits for the PPN that satisfies this condition is 10
bits.

So, the page size is 210 = 1024
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8. [Extra credit] Value Prediction [16 points]

In class, we discussed the idea of value prediction as a method to handle data dependences. One
method of value prediction for an instruction is “last-time prediction.” The idea is to predict the
value to be produced by the instruction as the value produced by the same instruction the last time
the instruction was executed. If the instruction was never executed before, the predictor predicts the
value to be 1. Value prediction accuracy of an instruction refers to the fraction of times the value of
an instruction is correctly predicted out of all times the instruction is executed.

Assume the following piece of code, which has four load instructions in each loop iteration, loads to
arrays x, y, z, t:

// initialize integer variables c, d, e, f to zeros
// initialize integer arrays x, y, z, t

for (i=0; i<1000; i++) {
c += x[i];
d += y[i];
e += z[i];
f += t[i];

}

Assume the following state of arrays before the loop starts executing:

• x consists of all 0’s

• y consists of alternating 3’s and 6’s in consecutive elements

• z consists of random values between 0 and 2(32) − 1

• t consists of 0, 1, 2, 3, 4, ..., 999

a) What is the value prediction accuracy of the aforementioned predictor for the four load instructions
in the program?

load of x[i]:

99.9%

load of y[i]:

0%

load of z[i]:

Very close to zero

load of t[i]:

0%
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b) Can you design a predictor that can achieve higher accuracy for the prediction of x[i]?

YES NO

If so, explain your design.

Always predict zero.

c) Can you design a predictor that can achieve higher accuracy for the prediction of y[i]?

YES NO

If so, explain your design.

Use a two-bit counter based last value predictor (change the predicted value only if the
same value is seen twice in a row).

d) Can you design a predictor that can achieve higher accuracy for the prediction of z[i]?

YES NO

If so, explain your design.

Cannot predict random values.

e) Can you design a predictor that can achieve higher accuracy for the prediction of t[i]?

YES NO

If so, explain your design.

Use a stride predictor (i.e., initially predict zero, then predict one larger than the last
predicted value for each instance).
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Stratchpad
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Initials: C.4. THE CONTROL STRUCTURE 11DRIR[11:9]111DRMUX(a) SR1SR1MUXIR[11:9]IR[8:6] (b)Logic BENPZNIR[11:9] (c)Figure C.6: Additional logic required to provide control signalsLC-3b to operate correctly with a memory that takes multiple clock cycles to read orstore a value.Suppose it takes memory five cycles to read a value. That is, once MAR containsthe address to be read and the microinstruction asserts READ, it will take five cyclesbefore the contents of the specified location in memory are available to be loaded intoMDR. (Note that the microinstruction asserts READ by means of three control signals:MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)Recall our discussion in Section C.2 of the function of state 33, which accessesan instruction from memory during the fetch phase of each instruction cycle. For theLC-3b to operate correctly, state 33 must execute five times before moving on to state35. That is, until MDR contains valid data from the memory location specified by thecontents of MAR, we want state 33 to continue to re-execute. After five clock cycles,th h l t d th “ d ” lti i lid d t i MDR th
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Initials: C.2. THE STATE MACHINE 5R PC<! BaseR To 1812 To 18To 18RRTo 18To 18 To 18 MDR<! SR[7:0]MDR <! MIR <! MDRRDR<! SR1+OP2*set CCDR<! SR1&OP2*set CC [BEN]PC<! MDR 3215 0 01To 18To 18 To 18R R [IR[15:12]]2830R7<! PCMDR<! M[MAR]set CC BEN<! IR[11] & N + IR[10] & Z + IR[9] & P9DR<! SR1 XOR OP2* 4 22To 111011JSR JMP BR1010 To 10 2120 0 1LDBMAR<! B+off6set CCTo 18 MAR<! B+off6DR<! MDRset CCTo 18MDR<! M[MAR]2527 3762 STW STBLEASHFTRAPXORANDADDRTITo 8set CC set CCDR<! PC+LSHF(off9, 1)14 LDWMAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)PC<! PC+LSHF(off9,1)3335DR<! SHF(SR,A,D,amt4)NOTESB+off6 : Base + SEXT[offset6] RMDR<! M[MAR[15:1]’0]DR<! SEXT[BYTE.DATA]R 2931 18, 19 MDR<! SRTo 18R RM[MAR]<! MDR 1623 R R17To 19 24M[MAR]<! MDR**MAR<! LSHF(ZEXT[IR[7:0]],1)15To 18PC+off9 : PC + SEXT[offset9] MAR <! PCPC <! PC + 2*OP2 may be SR2 or SEXT[imm5]** [15:8] or [7:0] depending onMAR[0] [IR[11]]PC<! BaseRPC<! PC+LSHF(off11,1)R7<! PC R7<! PC13 Figure C.2: A state machine for the LC-3b
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