
CMU 18-447 Introduction to Computer Architecture, Spring 2015

Midterm Exam 1
Date: Fri., 3/20

Instructor: Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

Name:

Problem 1 (80 Points):

Problem 2 (40 Points):

Problem 3 (40 Points):

Problem 4 (60 Points):

Problem 5 (30 Points):

Problem 6 (30 Points):

Problem 7 (60 Points):

Bonus (60 Points):

Total (340 + 60 Points):

Instructions:

1. This is a closed book exam. You are allowed to have one letter-sized cheat sheet.

2. No electronic devices may be used.

3. This exam lasts 1 hour and 50 minutes.

4. Clearly indicate your final answer for each problem.

5. Please show your work when needed.

6. Please write your initials at the top of every page.

7. Please make sure that your answers to all questions (and all supporting work that is required)
are contained in the space required.

Tips:

• Be cognizant of time. Do not spend too much time on one question.

• Be concise. You will be penalized for verbosity and unnecessarily long answers.

• Show work when needed. You will receive partial credit at the instructors’ discretion.

• Write legibly. Show your final answer.

Initials:

1. Potpourri [80 points]

(a) For each of the following, circle if the concept is a part of the ISA versus the microarchitecture
(circle only one):

Number of threads in fine-grained multithreading
Circle one: ISA Microarchitecture

Number of DRAM banks
Circle one: ISA Microarchitecture

Vectored interrupts
Circle one: ISA Microarchitecture

Number of entries in reservation stations
Circle one: ISA Microarchitecture

Number of entries in the reorder buffer
Circle one: ISA Microarchitecture

Number of entries in the architectural register file
Circle one: ISA Microarchitecture

Number of entries in the physical register file
Circle one: ISA Microarchitecture

Number of sets in the L3 cache
Circle one: ISA Microarchitecture

The page table base register of the executing process
Circle one: ISA Microarchitecture

(b) Why does ISA change more slowly than microarchitecture?

(c) A program is written in C. We execute this program on two different computers:

Computer A: has a processor that implements the x86 ISA and has 3 GHz clock frequency
Computer B: has a processor that implements the x86 ISA and has 3 GHz clock frequency

When we execute this program and measure its cycles per instruction (CPI) in x86 instructions,
we find the following result:

On Computer A: CPI is equal to 10
On Computer B: CPI is equal to 8

What can you say about on which computer (A or B) this program runs faster?

2/26

Initials:

Explain and show all your work below:

(d) You are designing an ISA that uses delayed branch instructions. You are trying to decide how
many instructions to place into the branch delay slot. How many branch delay slots would you
need for the following different implementations? Explain your reasoning briefly.

An in-order processor where conditional branches resolve during the 4th stage:

An out-of-order processor with 64 unified reservation station entries where conditional branches
resolve during the 2nd cycle of branch execution. The processor has 15 pipeline stages until the
start of the execution stages.

(e) What three key pieces of information does the compiler not know when performing instruction
scheduling?

3/26

Initials:

(f) In class, we discussed the concept of traces and trace scheduling.

What is a trace?

Now suppose we make each trace atomic, as we also discussed in class. What is the benefit of
making each trace atomic? Explain.

What is the disadvantage?

(g) Assume we have an ISA with virtual memory. It is byte-addressable and its address space is 64
bits. The physical page size is 8KB. The size of the physical memory we use in a computer that
implements the ISA is 1 TB (240 bytes).

Assume the demand paging system we would like to design for this uses the perfect LRU algorithm
to decide what to evict on a page fault. What is the minimum number of bits that the operating
system needs to keep to implement this perfect LRU algorithm? Show your work.

4/26

Initials:

2. Register Renaming [40 points]

In this problem, we will give you the state of the Register Alias Table (RAT), Reservation Stations
(RS), and Physical Register File (PRF) for a Tomasulo-like out-of-order execution engine.

The out-of-order machine in this problem has the following characteristics:

• The processor is fully pipelined with four stages: Fetch, decode, execute, and writeback.

• For all instructions, fetch takes 1 cycle, decode takes 1 cycle, and writeback takes 1 cycle.

• The processor implements ADD and MUL instructions only. Both the adder and multiplier are
fully pipelined. ADD instructions take 3 cycles and MUL instructions take 4 cycles in the execute
stage. Note that the adder and multiplier have separate common data buses (CDBs), which
allow both the adder and multiplier to broadcast results in the same cycle.

• An instruction always allocates the first reservation station that is available (in top-to-bottom
order) at the required functional unit.

Suppose the pipeline is initially empty and the machine fetches exactly 5 instructions. The diagram
below shows the snapshot of the machine at a particular point in time.

Register Alias Table
ID V Tag

R0 1 P0
R1 1 P8
R2 0 P15
R3 1 P3
R4 0 P10
R5 1 P5
R6 1 P12
R7 1 P7

Physical Register File
ID V Data ID V Data

P0 1 1 P8 1 87
P1 0 10 P9 1 90
P2 0 2 P10 1 11
P3 1 30 P11 0 110
P4 0 3 P12 1 37
P5 1 50 P13 0 130
P6 0 5 P14 1 17
P7 1 70 P15 1 159

ADD Reservation Station
ID V Tag V Tag Dest. Tag

A 0 – 0 – –
B 1 P15 1 P5 P14

ADD CDB

MUL Reservation Station
ID V Tag V Tag Dest. Tag

X 1 P8 1 P12 P15
Y 1 P8 1 P15 P9
Z 0 P14 0 P14 P10

MUL CDB

5/26

Initials:

(a) Your first task is to use only the supplied information to draw the data flow graph for the five
instructions which have been fetched. Label nodes with the operation (+ or *) being performed
and edges with the architectural register alias numbers (e.g., R0).

(b) Now, use the data flow graph to fill in the table below with the five instructions being executed on
the processor in program order. The source registers for the first instruction can be specified in
either order. Give instructions in the following format: “opcode, destination, source1, source2.”

OP Dest Src 1 Src 2

R1

(c) Now show the full pipeline timing diagram below for the sequence of five instructions that you
determined above, from the fetch of the first instruction to the writeback of the last instruction.
Assume that the machine stops fetching instructions after the fifth instruction.

As we saw in class, use F for fetch, D for decode, En to signify the nth cycle of execution
for an instruction, and W to signify writeback. You may or may not need all columns shown.
Finally, identify the cycle after which the snapshot of the microarchitecture was taken. Shade the
corresponding cycle in the last row of the table.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5

Snapshot cycle

6/26

Initials:

3. Branch Prediction [40 points]

Assume the following piece of code that iterates through two large arrays, j and k, each populated
with completely (i.e., truly) random positive integers. The code has two branches (labeled B1 and
B2). When we say that a branch is taken, we mean that the code inside the curly brackets is executed.
Assume the code is run to completion without any errors (there are no exceptions). For the following
questions, assume that this is the only block of code that will ever be run, and the loop-condition
branch (B1) is resolved first in the iteration before the if-condition branch (B2). N and X are unspecified
non-zero integers.

for (int i = 0; i < N; i++) { /* B1 */
/* TAKEN PATH for B1 */

if (i % X == 0) { /* B2 */
j[i] = k[i] - i; /* TAKEN PATH for B2 */

}
}

You are running the above code on a machine with a two-bit global history register (GHR) shared by
all branches, which starts at Strongly Not Taken (2’b00). Each pattern history table entry (PHTE)
contains a 2-bit saturating counter, which is initialized to Strongly Taken (2’b11)
The saturating counter values are as follows:
2’b00 - Strongly Not Taken
2’b01 - Weakly Not Taken
2’b10 - Weakly Taken
2’b11 - Strongly Taken

(a) Assuming that N is larger than 10 (ten), after running the loop for 10 iterations, you observe
that the branch predictor mispredicts 0% of the time. What is the value of X? Explain your
reasoning.

7/26

Initials:

(b) What is the prediction accuracy of the branch predictor if N = 20 and X = 2? Explain your
answer. You can leave your answer as a fraction.

(c) Assuming that N is larger than 10 (ten), after running this code until it exits the loop, you observe
that the state of the branch predictor is as follows:

GHR: 2’b00

PHTE:
NN:2’b11
NT:2’b00
TN:2’b10
TT:2’b11

What can you tell about the value of X and N? Explain your reasoning.

8/26

Initials:

4. GPUs and SIMD [60 points]

We define the SIMD utilization of a program running on a GPU as the fraction of SIMD lanes that
are kept busy with active threads.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays, A and B, are already in the vector registers so there
are no loads and stores in this program. Hint: Notice that there are 2 instructions in each thread. A
warp in this GPU consists of 32 threads, and there are 32 SIMD lanes in the GPU. Assume that each
instruction takes the same amount of time to execute.

for (i = 0; i < N; i++) {
if (A[i] % 3 == 0) { // Instruction 1

A[i] = A[i] * B[i]; // Instruction 2
}

}

(a) What’s the minimum number of bits required to encode the warp ID in order to execute this
program? Please leave the answer in terms of N .

(b) Assume integer array A has a repetitive pattern which consists of 24 ones followed by 8 zeros, and
integer array B has a different repetitive pattern which consists of 48 zeros followed by 64 ones.
What is the SIMD utilization of this program?

(c) Is it possible for this program to yield a SIMD utilization of 100% (circle one)?

YES NO

If YES, what should be true about arrays A for the SIMD utilization to be 100%?

If NO, explain why not.

What should be true about array B?

9/26

Initials:

(d) Is it possible for this program to yield a SIMD utilization of 56.25% (circle one)? Hint: 56.25%
= 36/64.

YES NO

If YES, what should be true about arrays A for the SIMD utilization to be 56.25%?

What should be true about arrays B?

If NO, explain why not.

(e) Is it possible for this program to yield a SIMD utilization of 50% (circle one)?

YES NO

If YES, what should be true about arrays A for the SIMD utilization to be 50%?

What should be true about arrays B?

If NO, explain why not.

10/26

Initials:

In lecture, we learned a technique called dynamic warp formation, which tries to improve SIMD
utilization, by merging threads executing the same instruction together. The key idea of dynamic
warp formation is to move an ”active” thread from one warp to another warp such that SIMD
utilization is improved and all threads can access their registers.

Consider the following three warps X, Y, and Z that are executing the same code segment specified
in the beginning of this question. Assume that the vectors we provide below specify the ”active
mask”, i.e., whether or not the instruction should be executed by each thread in the warp: 1
means the instruction should be executed, 0 means it should not be executed. Assume each warp
is at the same Program Counter.

Warp X = {10000000000000000000000000000010}
Warp Y = {10000000000000000000000000000001}
Warp Z = {01000000000000000000000000000000}

(f) Suppose that you perform dynamic warp formation on these three warps. What are the resulting
active masks for each of the newly formed warps X’, Y’, and Z’? Explain your reasoning as
necessary.

(g) Given the original specification for arrays A and B (integer array A has a repetitive pattern which
consists of 24 ones followed by 8 zeros, and integer array B has a different repetitive pattern which
consists of 48 zeros followed by 64 ones). Is it possible for this program to yield a better SIMD
utilization than the baseline when dynamic warp formation is used?

11/26

Initials:

5. Caches [30 points]

A byte-addressable system with 16-bit addresses ships with a three-way set associative, write-back
cache. The cache implements a true LRU replacement policy using the minimum number of replace-
ment policy bits necessary to implement it. The tag store requires a total of 264 bits of storage. What
is the block size of the cache? (Hint: 264 = 28 + 23)

Answer:

Show all your work.

12/26

Initials:

6. Dataflow [30 points]

Here is a dataflow graph representing a dataflow program:

Legend

c

X
Y

Z

Copy

Initially Z=X
then Z=Y

- YX

Z
Z=X-Y

A B

XOR

c

-

1

AND

=0?

c
1

+

FT

c

FT

ANSWER

0

Note that the inputs, A and B, are non-negative integers.

What does the dataflow program do? Specify clearly in less than 15 words.

13/26

Initials:

7. VLIW and Instruction Scheduling [60 points]

Explain the motivation for VLIW in one sentence.

You are the human compiler for a VLIW machine whose specifications are as follows:

• There are 3 fully pipelined functional units (ALU, MU and FPU).

• Integer Arithmetic Logic Unit (ALU) has a 1-cycle latency.

• Memory Unit (MU) has a 2-cycle latency.

• Floating Point Unit (FPU) has a 3-cycle latency, and can perform either FADD or FMUL
(floating point add / floating point multiply) on floating point registers.

• This machine has only 4 integer registers (r1 .. r4) and 4 floating point registers (f1 .. f4)

• The machine does not implement hardware interlocking or data forwarding.

(a) For the given assembly code on the next page, fill Table 1 (on the next page) with the appropriate
VLIW instructions for only one iteration of the loop (The C code is also provided for your
reference). Provide the VLIW instructions that lead to the best performance. Use the minimum
number of VLIW instructions. Table 1 should only contain instructions provided in the assembly
example. For all the instruction tables, show the NOP instructions you may need to insert. Note
that BNE is executed in the ALU.

The base addresses for A, B, C are stored in r1, r2, r3 respectively. The address of the last element
in the array C[N-1] is stored in r4, where N is an integer multiplier of 10! (read: 10 factorial).

Three extra tables are available for you to work with in the scratchpad, for the entirety of this
question.

14/26

Initials:

C code Assembly Code

float A[N]; loop: LD f1, 0 (r1)

float C[N]; LD f2, 0 (r2)

int B[N]; FMUL f1, f1, f1

... //code to initialize A and B FADD f1, f1, f2

for (int i=0; i<N; i++) ADDI r3, r3, 4

C[i] = A[i] * A[i] +B[i]; ST f1, -4 (r3)

ADDI r1, r1, 4

ADDI r2, r2, 4

BNE r3, r4, loop

VLIW Instruction ALU MU FPU

1

2

3

4
5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

Table 1

What is the performance in Ops/VLIW instruction (Operations/VLIW instruction) for this de-
sign? An operation here refers to an instruction (in the Assembly Code), excluding NOPs.

15/26

Initials:

(b) Assume now we decide to unroll the loop once. Fill Table 2 with the new VLIW instructions.
You should optimize for latency first, then instruction count. You can choose to use different
offsets, immediates and registers, but you may not use any new instructions.

VLIW Instruction ALU MU FPU

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

Table 2

What is the performance in Ops/VLIW instruction for this design?

16/26

Initials:

(c) Assume now we have unlimited registers and the loop is fully optimized (unrolled to the best
performance possible). What is the performance in Ops/cycle for this design? Show your work
and explain clearly how you arrived at your answer. You are not required to draw any tables,
but you may choose to do so to aid your explanation. You will receive zero credit for a correct
answer without any explanation. (Hint: trace the dependent instructions)

What is the performance bottleneck for this code and why? Explain.

17/26

Initials:

8. [Bonus] Mystery Instruction [60 points]

A pesky engineer implemented a mystery instruction on the LC-3b. It is your job to determine what
the instruction does. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DestR SR1 0 0 0 SR2

The instruction is only defined if the value of SR2 is greater than the value of SR1.

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the
attached figures (see the four pages at the end of this question). We also provide the original LC-3b
state diagram, in case you need it. (As a reminder, the selection logic for SR2MUX is determined
internally based on the instruction.)

The additional control signals are

LD TEMP1/1: NO, YES

LD TEMP2/1: NO, YES

GateTEMP3/1: NO, LOAD

Reg IN MUX/1: BUS, Mystery2 – (Assume BUS is asserted if this signal is not specified)

Mystery MUX/2: SR2MUX, PASS 1 (outputs value 1), PASS 0 (outputs value 0)

Additional Signals for ALUK: PASS B (outputs the value from input B), SUB (A-B)

Also note that both of DRMUX and SR1MUX can now choose DR, SR1, and SR2

COND/4:
COND0000 ;Unconditional
COND0001 ;Memory Ready
COND0010 ;Branch
COND0011 ;Addressing mode
COND0100 ;Mystery 1
COND1000 ;Mystery 2

18/26

Initials:

The microcode for the instruction is given in the table below.

State Cond J Asserted Signals
001010 (10) COND0000 001011 LD.REG, DRMUX = DR(IR [11:9]),

GateALU, ALUK = PASS B, MYSTERY MUX = PASS 0
001011 (11) COND0000 110001 LD.MAR, SR1MUX = SR1(IR[8:6]),

ADDR1MUX = SR1OUT, ADDR2MUX = 0,
MARMUX = ADDER, GateMARMUX

110001 (49) COND0001 110001 LD.MDR, MIO.EN, DATA.SIZE=BYTE, R.W = R
110011 (51) COND0000 100100 GateMDR, LD.TEMP1, DATA.SIZE=BYTE
100100 (36) COND0000 100101 LD.MAR, SR1MUX = SR2(IR[2:0]),

ADDR1MUX = SR1OUT, ADDR2MUX = 0,
MARMUX = ADDER, GateMARMUX

100101 (37) COND0001 100101 LD.MDR, MIO.EN, DATA.SIZE=BYTE, R.W = R
100111 (39) COND0000 101000 GateMDR, LD.TEMP2, DATA.SIZE=BYTE
101000 (40) COND0100 010010 GateTEMP3
110010 (50) COND0000 101001 LD.REG, DRMUX = SR1(IR[8:6]), GateALU,

ALUK = ADD, SR1MUX = SR1(IR[8:6]),
MYSTERY MUX = PASS 1

101001 (41) COND0000 101010 LD.REG, DRMUX = SR2(IR[2:0]), GateALU,
ALUK = SUB, SR1MUX = SR2 (IR[2:0]),
MYSTERY MUX = PASS 1

101010 (42) COND1000 001011 LD.REG, DRMUX = DR (IR[11:9]),
Reg IN MUX = MYSTERY2, GateALU, ALUK = SUB,
SR1MUX = SR1(IR[8:6]), MYSTERY MUX = SR2MUX

Describe what this instruction does. Show your work for partial credit.

19/26

Initials:

ME MO RY

O U TPU T IN PU T

K BD R

A D D R. CTL.

LO G IC

MD R

INMUX

MA R L D .MAR

L D .MD R

DATA.SIZE

MAR[0]

MAR[0]

DATA.SIZE

R

2

K BSR

MEM.EN

R.W

MIO .EN

GatePC GateMARMUX

16 16 16 16

16 16

16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PC LD.PC

16

+

16

16

16

16 16

ZEXT &
LSHF1

[7:0] 2

ADDR2MUX

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

16 16

16

16

16 LOGIC

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16 16

3

0

R

3

3

ALU
ALUK

2 A B

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IR LD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE1 WE0

[0]

WE

LOGIC

TEMP1

TEMP2

= 0 ?

Mystery1

GateTEMP3

LD.TEMP1

LD.TEMP2

>= 0 ?

Mystery2
REG_IN

MUX

16

MYSTERY
MUX

0 1

XOR

20/26

Initials:

21/26

Initials:

22/26

Initials:

C.2. THE STATE MACHINE 5R PC<! BaseR To 1812 To 18To 18RRTo 18To 18 To 18 MDR<! SR[7:0]MDR <! MIR <! MDRRDR<! SR1+OP2*set CCDR<! SR1&OP2*set CC [BEN]PC<! MDR 3215 0 01To 18To 18 To 18R R [IR[15:12]]2830R7<! PCMDR<! M[MAR]set CC BEN<! IR[11] & N + IR[10] & Z + IR[9] & P9DR<! SR1 XOR OP2* 4 22To 111011JSR JMP BR1010 To 10 2120 0 1LDBMAR<! B+off6set CCTo 18 MAR<! B+off6DR<! MDRset CCTo 18MDR<! M[MAR]2527 3762 STW STBLEASHFTRAPXORANDADDRTITo 8set CC set CCDR<! PC+LSHF(off9, 1)14 LDWMAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)PC<! PC+LSHF(off9,1)3335DR<! SHF(SR,A,D,amt4)NOTESB+off6 : Base + SEXT[offset6] RMDR<! M[MAR[15:1]’0]DR<! SEXT[BYTE.DATA]R 2931 18, 19 MDR<! SRTo 18R RM[MAR]<! MDR 1623 R R17To 19 24M[MAR]<! MDR**MAR<! LSHF(ZEXT[IR[7:0]],1)15To 18PC+off9 : PC + SEXT[offset9] MAR <! PCPC <! PC + 2*OP2 may be SR2 or SEXT[imm5]** [15:8] or [7:0] depending onMAR[0] [IR[11]]PC<! BaseRPC<! PC+LSHF(off11,1)R7<! PC R7<! PC13 Figure C.2: A state machine for the LC-3b
23/26

Initials:

Stratchpad

VLIW Instruction ALU MU FPU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

24/26

Initials:

VLIW Instruction ALU MU FPU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

25/26

Initials:

VLIW Instruction ALU MU FPU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26/26

	Potpourri [80 points]
	Register Renaming [40 points]
	Branch Prediction [40 points]
	GPUs and SIMD [60 points]
	Caches [30 points]
	Dataflow [30 points]
	VLIW and Instruction Scheduling [60 points]
	[Bonus] Mystery Instruction [60 points]

