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Last Two Lectures

 Main Memory

 Organization and DRAM Operation

 Memory Controllers

 DRAM Design and Enhancements

 More Detailed DRAM Design: Subarrays

 RowClone and In-DRAM Computation

 Tiered-Latency DRAM

 Memory Access Scheduling

 FR-FCFS – row-hit-first scheduling
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Today

 Row Buffer Management Policies

 Memory Interference (and Techniques to Manage It)

 With a focus on Memory Request Scheduling
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Review: DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands 
(activate/precharge)

 Within each group, older commands prioritized over younger ones
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Review: DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?
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Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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Memory Interference and Scheduling

in Multi-Core Systems
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Review: A Modern DRAM Controller



Review: DRAM Bank Operation
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Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a 
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate  maximize DRAM throughput

Goal 2: Prioritize older requests  ensure forward progress

 Is this a good policy in a multi-core system?
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Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip
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IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?
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(Un)expected Slowdowns in Multi-Core

14

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.
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Uncontrolled Interference: An Example
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// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



17

What Does the Memory Hog Do?
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Effect of the Memory Performance Hog
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 
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Problems due to Uncontrolled Interference
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 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 

Cores make 

very slow 

progress

Memory performance hogLow priority
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Problems due to Uncontrolled Interference
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 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system



Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with 
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts  reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank 
parallelism 

 Otherwise parallel requests can become serialized 
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Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of 
in parallel
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Problem: QoS-Unaware Memory Control 

 Existing DRAM controllers are unaware of inter-thread 
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread’s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality 

 Unfairly prioritizes threads that are memory intensive (many outstanding 
memory accesses)
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Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software 

 Memory controller needs to be aware of threads
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Memory 
Controller

Core Core

Core Core

Memory

Resolves memory contention 
by scheduling requests



Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO), 

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\mutlu_micro07_talk.ppt


The Problem: Unfairness

 Vulnerable to denial of service 

 Unable to enforce priorities or service-level agreements

 Low system performance

Uncontrollable, unpredictable system
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How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone 

fair scheduling

 Also improves overall system performance by ensuring cores 
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007. 
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Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone:  DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone   

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy 

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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STFM Pros and Cons

 Upsides: 

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a 
thread

 Good at providing fairness

 Being fair can improve performance 

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect
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Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda, 

"Parallelism-Aware Batch Scheduling: Enhancing both 

Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA), 

pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt


Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests

 Memory-Level Parallelism (MLP) 

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread
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Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:



Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM
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2 DRAM Requests

Parallelism-Aware Scheduler
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Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to 
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests 
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.



PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware
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Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?
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Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is 
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks

 Different threads prioritized in the same order across ALL banks
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How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high 
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher
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* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking
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Example Within-Batch Scheduling Order
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Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests 

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads   

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems
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System Performance
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PAR-BS Pros and Cons

 Upsides: 

 First scheduler to address bank parallelism destruction across 
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for 
best performance  too frequent coordination since batching 

is done frequently

 Does not always prioritize the latency-sensitive applications
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