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Last Two Lectures

 Main Memory

 Organization and DRAM Operation

 Memory Controllers

 DRAM Design and Enhancements

 More Detailed DRAM Design: Subarrays

 RowClone and In-DRAM Computation

 Tiered-Latency DRAM

 Memory Access Scheduling

 FR-FCFS – row-hit-first scheduling
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Today

 Row Buffer Management Policies

 Memory Interference (and Techniques to Manage It)

 With a focus on Memory Request Scheduling
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Review: DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands 
(activate/precharge)

 Within each group, older commands prioritized over younger ones
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Review: DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?
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Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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Memory Interference and Scheduling

in Multi-Core Systems
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Review: A Modern DRAM Controller



Review: DRAM Bank Operation
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Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a 
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate  maximize DRAM throughput

Goal 2: Prioritize older requests  ensure forward progress

 Is this a good policy in a multi-core system?
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Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip
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IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?
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(Un)expected Slowdowns in Multi-Core

14

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.
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Uncontrolled Interference: An Example
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// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}
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A Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?
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Effect of the Memory Performance Hog
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1.18X slowdown
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Problems due to Uncontrolled Interference
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 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 
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Problems due to Uncontrolled Interference
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 Unfair slowdown of different threads 

 Low system performance 

 Vulnerability to denial of service 

 Priority inversion: unable to enforce priorities/SLAs 

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system



Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with 
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts  reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank 
parallelism 

 Otherwise parallel requests can become serialized 
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Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of 
in parallel
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Problem: QoS-Unaware Memory Control 

 Existing DRAM controllers are unaware of inter-thread 
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread’s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality 

 Unfairly prioritizes threads that are memory intensive (many outstanding 
memory accesses)
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Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software 

 Memory controller needs to be aware of threads

24
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Resolves memory contention 
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Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO), 

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\mutlu_micro07_talk.ppt


The Problem: Unfairness

 Vulnerable to denial of service 

 Unable to enforce priorities or service-level agreements

 Low system performance

Uncontrollable, unpredictable system
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How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone 

fair scheduling

 Also improves overall system performance by ensuring cores 
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007. 
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Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone:  DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone   

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy 

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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STFM Pros and Cons

 Upsides: 

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a 
thread

 Good at providing fairness

 Being fair can improve performance 

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect
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Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda, 

"Parallelism-Aware Batch Scheduling: Enhancing both 

Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA), 

pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt


Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests

 Memory-Level Parallelism (MLP) 

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread
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Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency
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Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM
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2 DRAM Requests

Parallelism-Aware Scheduler
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Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to 
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests 
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.



PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware
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Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

39



Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is 
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks

 Different threads prioritized in the same order across ALL banks

40
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How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high 
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

41

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.



 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

42
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Example Within-Batch Scheduling Order
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Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests 

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads   

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems
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System Performance
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PAR-BS Pros and Cons

 Upsides: 

 First scheduler to address bank parallelism destruction across 
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for 
best performance  too frequent coordination since batching 

is done frequently

 Does not always prioritize the latency-sensitive applications
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