
18-447

Computer Architecture

Lecture 24: Memory Scheduling

Prof. Onur Mutlu

Presented by Justin Meza

Carnegie Mellon University

Spring 2014, 3/31/2014

Last Two Lectures

 Main Memory

 Organization and DRAM Operation

 Memory Controllers

 DRAM Design and Enhancements

 More Detailed DRAM Design: Subarrays

 RowClone and In-DRAM Computation

 Tiered-Latency DRAM

 Memory Access Scheduling

 FR-FCFS – row-hit-first scheduling

2

Today

 Row Buffer Management Policies

 Memory Interference (and Techniques to Manage It)

 With a focus on Memory Request Scheduling

3

Review: DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

4

Review: DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

5

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row row hit

-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row avoid a row conflict

-- Next access might need the same row extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

6

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

7

Memory Interference and Scheduling

in Multi-Core Systems

9

Review: A Modern DRAM Controller

Review: DRAM Bank Operation

10

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate maximize DRAM throughput

Goal 2: Prioritize older requests ensure forward progress

 Is this a good policy in a multi-core system?

11

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

12

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

13

(Un)expected Slowdowns in Multi-Core

14

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

15

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

16

A Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

17

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

18

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Problems due to Uncontrolled Interference

19

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

Cores make

very slow

progress

Memory performance hogLow priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

20

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system

Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank
parallelism

 Otherwise parallel requests can become serialized

21

Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of
in parallel

22

Problem: QoS-Unaware Memory Control

 Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread’s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality

 Unfairly prioritizes threads that are memory intensive (many outstanding
memory accesses)

23

Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

24

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service

 Unable to enforce priorities or service-level agreements

 Low system performance

Uncontrollable, unpredictable system

26

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone

fair scheduling

 Also improves overall system performance by ensuring cores
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

27

28

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

29

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness <

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

30

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.031.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16Row 111

STFM Pros and Cons

 Upsides:

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a
thread

 Good at providing fairness

 Being fair can improve performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

31

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),

pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

33

Bank Parallelism of a Thread

34

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

35

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

36

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

37

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

38

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

39

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

40

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

41

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

42

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

43

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

44

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

45

46

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

47

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

48

