
18-447

Computer Architecture

Lecture 24: Memory Scheduling

Prof. Onur Mutlu

Presented by Justin Meza

Carnegie Mellon University

Spring 2014, 3/31/2014

Last Two Lectures

 Main Memory

 Organization and DRAM Operation

 Memory Controllers

 DRAM Design and Enhancements

 More Detailed DRAM Design: Subarrays

 RowClone and In-DRAM Computation

 Tiered-Latency DRAM

 Memory Access Scheduling

 FR-FCFS – row-hit-first scheduling

2

Today

 Row Buffer Management Policies

 Memory Interference (and Techniques to Manage It)

 With a focus on Memory Request Scheduling

3

Review: DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

4

Review: DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

5

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

6

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

7

Memory Interference and Scheduling

in Multi-Core Systems

9

Review: A Modern DRAM Controller

Review: DRAM Bank Operation

10

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate  maximize DRAM throughput

Goal 2: Prioritize older requests  ensure forward progress

 Is this a good policy in a multi-core system?

11

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

12

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

13

(Un)expected Slowdowns in Multi-Core

14

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

15

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

16

A Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

17

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

18

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Problems due to Uncontrolled Interference

19

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

Cores make

very slow

progress

Memory performance hogLow priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

20

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system

Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts  reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank
parallelism

 Otherwise parallel requests can become serialized

21

Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of
in parallel

22

Problem: QoS-Unaware Memory Control

 Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread’s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality

 Unfairly prioritizes threads that are memory intensive (many outstanding
memory accesses)

23

Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

24

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service

 Unable to enforce priorities or service-level agreements

 Low system performance

Uncontrollable, unpredictable system

26

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone 

fair scheduling

 Also improves overall system performance by ensuring cores
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

27

28

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

29

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

30

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.031.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16Row 111

STFM Pros and Cons

 Upsides:

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a
thread

 Good at providing fairness

 Being fair can improve performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

31

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),

pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

33

Bank Parallelism of a Thread

34

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

35

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

36

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

37

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

38

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

39

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

40

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

41

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

42

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

43

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

44

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

45

46

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

47

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance  too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

48

