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ILLast Two Lectures

Main Memory
o Organization and DRAM Operation
o Memory Controllers

DRAM Design and Enhancements

a More Detailed DRAM Design: Subarrays
2 RowClone and In-DRAM Computation

o Tiered-Latency DRAM

Memory Access Scheduling
a FR-FCFS — row-hit-first scheduling



Today

Row Buffer Management Policies

Memory Interference (and Techniques to Manage It)
o With a focus on Memory Request Scheduling



Review: DRAM Scheduling Policies (I)

FCFS (first come first served)
o Oldest request first

FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate - maximize DRAM throughput

o Actually, scheduling is done at the command level

Column commands (read/write) prioritized over row commands
(activate/precharge)

Within each group, older commands prioritized over younger ones



Review: DRAM Scheduling Policies (II)

A scheduling policy is essentially a prioritization order

Prioritization can be based on
o Request age
o Row buffer hit/miss status
o Request type (prefetch, read, write)
o Requestor type (load miss or store miss)
o Request criticality
Oldest miss in the core?
How many instructions in core are dependent on it?



Row Butfer Management Policies

Open row

o Keep the row open after an access

+ Next access might need the same row - row hit

-- Next access might need a different row - row conflict, wasted energy

Closed row

o Close the row after an access (if no other requests already in the request
buffer need the same row)

+ Next access might need a different row - avoid a row conflict
-- Next access might need the same row - extra activate latency

Adaptive policies

o Predict whether or not the next access to the bank will be to
the same row



Open vs. Closed Row Policies

Policy
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Memory Interference and Scheduling
in Multi-Core Systems




Review: A Modern DRAM Controller
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Review: DRAM Bank Operation

Access Address:
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Scheduling Policy for Single-Core Systems

A row-conflict memory access takes significantly longer than a
row-hit access

Current controllers take advantage of the row buffer

FR-FCFS (first ready, first come first served) scheduling policy
1. Row-hit first
2. Oldest first

Goal 1: Maximize row buffer hit rate > maximize DRAM throughput
Goal 2: Prioritize older requests = ensure forward progress

Is this a good policy in @ multi-core system?
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Trend: Many Cores on Chip

= Simpler and lower power than a single large core
= Large scale parallelism on chip

Memory Controller

Intel Core i7 IBM Cell BE IBM POWER7
8 cores 8+1 cores 8 cores

| Nvidia Fermi Intel SCC Tilera TILE Gx

Sun Niagara Il 448 “cores” 48 cores, networked 100 cores, networked
8 cores
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Many Cores on Chip

What we want:
a N times the system performance with N times the cores

What do we get today?
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(Un)expected Slowdowns in Multi-Core
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Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.
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Uncontrolled Interference: An Example
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A Memory Performance Hog

/ initialize large arrays A, B // initialize large arrays A, B
foIri:O; j<N; j++) { foiﬂ':o; j<N; j++) {
index = j*linesize; | streaming index = rand(); | random
Alindex] = B[index]; Alindex] = B[index];
} }
STREAM RANDOM
- Sequential memory access - Random memory access
- Very high row buffer locality (96% hit rate) - Very low row buffer locality (3% hit rate)
- Memory intensive - Similarly memory intensive

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

16



What Does the Memory Hog Do?
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Ettect of the Memory Performance Hog
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Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Problems due to Uncontrolled Interference

Main memory is the only shared resource 7.74

High priority

4.72

T Memc Low priority :e hog

Cores make
very slow
libquantum hmmer h264ref omnetpp progress

Slowdown
O, NWDRNUIOON ®©

= Unfair slowdown of different threads

= Low system performance

= Vulnerability to denial of service

= Priority inversion: unable to enforce priorities/SLAS
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Problems due to Uncontrolled Interference
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= Unfair slowdown of different threads

= Low system performance

= Vulnerability to denial of service

= Priority inversion: unable to enforce priorities/SLAs

= Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system
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Inter-Thread Interference in Memory

Memory controllers, pins, and memory banks are shared

Pin bandwidth is not increasing as fast as number of cores
o Bandwidth per core reducing

Different threads executing on different cores interfere with
each other in the main memory system

Threads delay each other by causing resource contention:
o Bank, bus, row-buffer conflicts > reduced DRAM throughput

Threads can also destroy each other’ s DRAM bank
parallelism

o Otherwise parallel requests can become serialized
21



Effects of Inter-Thread Interference in DRAM

Queueing/contention delays
o Bank conflict, bus conflict, channel conflict, ...

Additional delays due to DRAM constraints
o Called “protocol overhead”
o Examples

Row conflicts
Read-to-write and write-to-read delays

Loss of intra-thread parallelism

o A thread’s concurrent requests are serviced serially instead of
in parallel
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Problem: QoS-Unaware Memory Control

Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

They simply aim to maximize DRAM throughput
o Thread-unaware and thread-unfair
a No intent to service each thread’ s requests in parallel
o FR-FCFS policy: 1) row-hit first, 2) oldest first

Unfairly prioritizes threads with high row-buffer locality

Unfairly prioritizes threads that are memory intensive (many outstanding
memory accesses)
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Solution: QoS-Aware Memory Request Scheduling

Resolves memory contention
b y schedu//ng requests

lllllllllllllllllllll

CorelCore
Co refCore

= How to schedule requests to provide
o High system performance
o High fairness to applications
o Configurability to system software

= Memory controller needs to be aware of threads

SAFARI 24



Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STEM Micro 2007 Talk



http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\mutlu_micro07_talk.ppt

The Problem: Unfairness

/.74
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1.85
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Slowdown
O~ N WDNUuUloh N @O

libquantum hmmer h264ref omnetpp

= Vulnerable to denial of service
= Unable to enforce priorities or service-level agreements
= Low system performance

Uncontrollable, unpredictable system

SAFARI
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How Do We Solve the Problem?

Stall-time fair memory scheduling [Mutlu+ MICRO07]

Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone -
fair scheduling

a Also improves overall system performance by ensuring cores
make “proportional” progress

Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.
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Stall-Time Fairness in Shared DRAM Systems

A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

DRAM-related stall-time: The time a thread spends waiting for DRAM memory
STchareq: DRAM-related stall-time when the thread runs with other threads
ST.1one: DRAM-related stall-time when the thread runs alone

Memory-slowdown = ST, ed/STalone
o Relative increase in stall-time

Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

o Considers inherent DRAM performance of each thread
o Aims to allow proportional progress of threads

28



STEM Scheduhng Algorithm [MICRO’ 07]

For each thread, the DRAM controller
o Tracks STgnared
o Estimates ST,,5ne

Each cycle, the DRAM controller
o Computes Slowdown = ST¢pared/STa10ne fOr threads with legal requests
o Computes unfairness = MAX Slowdown / MIN Slowdown

If unfairness < o
o Use DRAM throughput oriented scheduling policy
If unfairness > «

o Use fairness-oriented scheduling policy
(1) requests from thread with MAX Slowdown first
(2) row-hit first , (3) oldest-first
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How Does STEFM Prevent Unfairness?
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STEM Pros and Cons

Upsides:
o First algorithm for fair multi-core memory scheduling

o Provides a mechanism to estimate memory slowdown of a
thread

o Good at providing fairness
o Being fair can improve performance

Downsides:

o Does not handle all types of interference
o (Somewhat) complex to implement

o Slowdown estimations can be incorrect
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Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk



http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\parbs-isca08-talk.ppt

Another Problem due to Interference

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

o Memory-Level Parallelism (MLP)

o Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller

DRAM controllers are not aware of a thread’ s MLP
o Can service each thread’ s outstanding requests serially, not in parallel
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Bank Parallelism of a Thread

2 DRAM Requests Bank 0 Bank1l

Single Thread:

Thread A :
Thread A: Bank 0, Row 1
Thread A: Bank 1, Row 1

Bank O |
Bank 1
Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency
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Bank Parallelism Interference in DRAM

Baseline Scheduler: Bank 0 Bank1
2 DRAM Requests

2 DRAM Requests Thread A: Bank 0, Row 1 |

o [Caae S [ o] | vc:c ©: o, ko o
Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1 |

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies
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Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank1
2 DRAM Requests

Thread A: Bank 0, Row 1 |
Thread B: Bank 1, Row 99|

: Thread B: Bank 0, Row 99|
Parallelism-aware Scheduler: Thread A: Bank 1, Row 1 |

2 DRAM Requests

; Saved Cycles:  Ayeragge stall-time:
DRAM Requests ~1.5 bank access

2 -
- [Compute [ SETNSE Corpuie| atencies
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Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness

Q

a

Q

Schedule requests from a thread (to
different banks) back to back
Preserves each thread’ s bank parallelism
But, this can cause starvation...

Principle 2: Request Batching

Q

O O O (O

Group a fixed number of oldest requests
from each thread into a “batch”

Service the batch before all other requests
Form a new batch when the current one is done
Eliminates starvation, provides fairness

Allows parallelism-awareness within a batch

T2
T2 T2
- |
i
| [z

Bank 0| | Bank 1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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PAR-BS Components

Request batching

Within-batch scheduling

o Parallelism aware

38



Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:

o Mark up to Marking-Cap oldest requests per bank for each thread
o Marked requests constitute the batch

o Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
o No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

39



Within-Batch Scheduling

Can use any existing DRAM scheduling policy
o FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
o Service each thread’ s requests back to back

HOW?

Schedulerjcomputes a ranking of threads|when the batch is
formed
o Higher-ranked threads are prioritized over lower-ranked ones

o Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks

40



How to Rank Threads within a Batch

Ranking scheme affects system throughput and fairness

Maximize system throughput
o Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
o Service threads with inherently low stall-time early in the batch

o Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking

o Provides optimal system throughput [Smith, 19561*

o Controller estimates each thread’ s stall-time within the batch
o Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.
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Shortest Stall-Time First Ranking

Maximum number of marked requests to any bank (max-bank-load)
o Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)

o Breaks ties: rank thread with lower total-load higher

T3
13
T3 T3 T3
T3 13
13 13
BankO| | Bank 1| |[Bank 2| | Bank 3

max-bank-load | total-load

Ranking:
TO>T1>T2>T3
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Example Within-Batch Scheduling Order

Baseline Scheduling T3 74 PAR-BS Scheduling T3
Order (Arrival order) — 6 Order =
T 5 T3 T3 T3 T3
(D)
- ECI 4 | £ 2 B JEE
E E 3 E
E B2
=
Bank O| | Bank 1| |Bank 2| | Bank 3 Bank O| | Bank 1| |Bank 2| | Bank 3
Ranking: TO>T1>T2>T3
TO ([ T1 (T2 TO ([T1 (T2
Stall times Stall times

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

R N W N OO N
Time




Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

‘ (1) Marked requests first \ Batching

(2) Row-hit requests first 5 .
arallelism-aware

(3) Higher-rank thread first (shortest stall-time first) | within-batch
(4) Oldest first scheduling

Three properties:
o Exploits row-buffer locality and intra-thread bank parallelism
o Work-conserving

Services unmarked requests to banks without marked requests
o Marking-Cap is important

Too small cap: destroys row-buffer locality

Too large cap: penalizes memory non-intensive threads

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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Hardware Cost

<1.5KB storage cost for
o 8-core system with 128-entry memory request buffer

No complex operations (e.g., divisions)

Not on the critical path
o Scheduler makes a decision only every DRAM cycle
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Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]
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System Performance
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PAR-BS Pros and Cons

Upsides:

o First scheduler to address bank parallelism destruction across
multiple threads

o Simple mechanism (vs. STFM)

o Batching provides fairness

o Ranking enables parallelism awareness

Downsides:

o Implementation in multiple controllers needs coordination for
best performance - too frequent coordination since batching
is done frequently

o Does not always prioritize the latency-sensitive applications
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