
CMU 18-447 Introduction to Computer Architecture, Spring 2014

HW 6: Main Memory

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Varun Kohli, Xiao Bo Zhao, Paraj Tyle

Assigned: Wed., 3/26, 2014
Due: Wed., 4/9, 2014 (Midnight)

Handin: /afs/ece/class/ece447/handin/hw6
Please submit as ONE PDF: [andrewID].pdf

1 Memory Scheduling [40+15 points]

Row-Buffer Conflicts. The following timing diagram shows the operation of a single DRAM channel and
a single DRAM bank for two back-to-back reads that conflict in the row-buffer. Immediately after the bank
has been busy for 10ns with a READ, data starts to be transferred over the data bus for 5ns.

PRECHARGE ACTIVATE READ

64B

10ns 10ns 10ns

5ns

PRECHARGE ACTIVATE READ

64B

5ns

10ns 10ns 10ns

Bank

Command

Bus

Address

Bus

Data

Bus

1ns

1ns

1ns

1ns

1ns

1ns

1ns

1ns

1ns

1ns

1ns

1ns

time

time

time

time

(a) Given a long sequence of back-to-back reads that always conflict in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

64B/30ns = 32B/15ns = 32GB/15s = 2.13GB/s

(b) To increase the data throughput, the main memory designer is considering adding more DRAM banks to
the single DRAM channel. Given a long sequence of back-to-back reads to all banks that always conflict
in the row-buffers, what is the minimum number of banks that is required to achieve the maximum data
throughput of the main memory system?

30ns/5ns = 6

Row-Buffer Hits. The following timing diagram shows the operation of the single DRAM channel and the
single DRAM bank for four back-to-back reads that hit in the row-buffer. It is important to note that row-
buffer hits to the same DRAM bank are pipelined: while each READ keeps the DRAM bank busy for 10ns, up
to at most half of this latency (5ns) can be overlapped with another read that hits in the row-buffer. (Note
that this is different from Lab 6 where we unrealistically assumed that row-buffer hits are non-pipelined.)

(c) Given a long sequence of back-to-back reads that always hits in the row-buffer, what is the data through-
put of the main memory system? Please state your answer in gigabytes/second.

64B/5ns = 64GB/5s = 12.8GB/s

(d) When the maximum data throughput is achieved for a main memory system that has a single DRAM
channel and a single DRAM bank, what is the bottleneck that prevents the data throughput from be-
coming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

1/15

/afs/ece/class/ece447/handin/hw6

64B

5ns

Bank

Command

Bus

Address

Bus

Data

Bus

1ns

1ns

1ns

1ns

time

time

time

time

READ

READ

READ

READ

1ns

1ns

1ns

1ns

64B

5ns

64B

5ns

64B

5ns

Memory Scheduling Policies. The diagram below shows the memory controller’s request queue at time
0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded rectangles are
read requests generated by thread T1. Within each rectangle, there is a pair of numbers that denotes the
request’s (BankAddress, RowAddress). Assume that the memory system has a single DRAM channel and
four DRAM banks. Further assume the following.

• All the row-buffers are closed at time 0.

• Both threads start to stall at time 0 because of memory.

• A thread continues to stall until it receives the data for all of its requests.

• Neither thread generates more requests.

(0,0)(0,0) (0,0)(0,0) (0,7)(1,9)(2,4)(3,0)

OldestYoungest

2/15

We provide two sets of answers. The correct way to solve the problem is to model contention
in the banks as well as in all of the buses (address/command/data). This answer is what
immediately follows. However, no student modeled it to this level of detail. Therefore, we
decided to give full credit if you modeled contention in only the banks correctly. This answer
is given in the answer boxes.

For extra credits (15 points), please make sure that you model contention in the banks as well
as in all of the buses (address/command/data).

(e) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.

ACT RD RD RD PRE ACT RD

ACT

ACT

ACT

PRE

RD

RD

RD

ACT RD

10ns 5ns 5ns 10ns 10ns 10ns 10ns 10ns 10ns

10ns

5ns

5ns3ns

Bank 0

Bank 1

Bank 2

Bank 3

T0: (10 + 5 + 5 + 10 + 10 + 10) + 10 + 10 + 10 + 10 + 5 = 95ns

T1: (10 + 5 + 5 + 10 + 10 + 10) + 1 + 10 + 5 + 5 + 10 + 5 = 86ns

10 20 30 40 50 60 70 80

(f) For the FR-FCFS scheduling policy, calculate the memory stall time of T0 and T1.

ACT RD RD RD PRE

ACT

ACT

ACT

RD

RD

RD

RD

10ns 5ns 5ns

5ns

5ns3ns

Bank 0

Bank 1

Bank 2

Bank 3

5ns

5ns

ACT RD

10ns10ns 10ns

T0: (10 + 5 + 5 + 5 + 5 + 5 + 5) + 10 + 5 = 55ns

T1: (10 + 5 + 5 + 5 + 5 + 5 + 5) + 10 + 10 + 10 + 10 + 5 = 85ns

10 20 30 40 50 60 70 80

3/15

(g) For the PAR-BS scheduling policy, calculate the memory stall time of T0 and T1. Assume that all eight
requests are included in the same batch.

ACT RD

ACT

ACT

ACT

RD

RD

RD

RD

10ns

5ns

5ns3ns

Bank 0

Bank 1

Bank 2

Bank 3

5ns

PRE ACT

10ns

RD RD RD

10ns 5ns 5ns 5ns

T0: (10 + 5 + 5) + 1 + 10 + 10 + 5 + 5 + 5 + 10 + 5 = 71ns

T1: (10 + 5 + 5) + 5 + 10 + 5 = 40ns

10 20 30 40 50 60 70 80

4/15

2 Banks [30 points]

A processor’s memory hierarchy consists of a small SRAM L1-cache and a large DRAM main memory, both
of which are banked. The processor has a 24-bit physical address space and does not support virtual memory
(i.e., all addresses are physical addresses). An application has just started running on this processor. The
following figure shows the timeline of memory references made by that application and how they are served
in the L1-cache or main memory.

For example, the first memory reference made by the application is to byte-address 0xffbc67 (assume that
all references are byte-sized reads to byte-addresses). However, the memory reference misses in the L1-cache
(assume that the L1-cache is intially empty). Immediately afterwards, the application accesses main mem-
ory, where it experiences a row-buffer miss (initially, assume that all banks in main memory each have a row
opened that will never be accessed by the application). Eventually, the cache block (and only that cache
block) that contains the byte-address 0xffbc67 is fetched from memory into the cache.

Subsequent memory references may experience bank-conflicts in the L1-cache and/or main memory, if there
is a previous reference still being served at that particular bank. Bank-conflicts are denoted as hatched
shapes in the timeline.

The following table shows the address of the memory references made by the application in both hexadecimal
and binary representations.

5/15

(a) Memory address table

Hexadecimal Binary

ffbc67 1111 1111 1011 1100 0110 0111

ffbda7 1111 1111 1011 1101 1010 0111

ffbdd7 1111 1111 1011 1101 1101 0111

ff5e28 1111 1111 0101 1110 0010 1000

ff5a28 1111 1111 0101 1010 0010 1000

ff4e28 1111 1111 0100 1110 0010 1000

ff4c04 1111 1111 0100 1100 0000 0100

ffbc6f 1111 1111 1011 1100 0110 1111

ffbc70 1111 1111 1011 1100 0111 0000

From the above timelines and the table, your job is to answer questions about the processor’s cache and
main memory organization. Here are some assumptions to help you along the way.

• Assumptions about the L1-cache

– Block size: ? (Power of two, greater than two)

– Associativity: ? (Power of two, greater than two)

– Total data-store size: ? (Power of two, greater than two)

– Number of banks: ? (Power of two, greater than two)

– Initially empty

• Assumptions about main memory

– Number of channels: 1

– Number of ranks per channel: 1

– Number of banks per rank: ? (Power of two, greater than two)

– Number of rows per bank: ? (Power of two, greater than two)

– Number of cache-blocks per row: ? (Power of two, greater than two)

– Contains the entire working set of the application

– Initially, all banks have their 0th row open, which is never accessed by the application

2.1 First, let’s cover the basics

(a) Caches and main memory are sub-divided into multiple banks in order to allow parallel access. What is
an alternative way of allowing parallel access?

Solution:
Multiporting, duplicating

(b) A cache that allows multiple cache misses to be outstanding to main memory at the same time is called
what? (Two words or less. Hint: It’s an adjective.)

Solution:
Non-blocking (or lockup-free)

(c) While cache misses are outstanding to main memory, what is the structure that keeps bookkeeping
information about the outstanding cache misses? This structure often augments the cache.

Solution:
Miss status handling registers (MSHRs)

6/15

(d) Which is larger, an SRAM cell or a DRAM cell?

Solution:
SRAM cell

(e) What is the number of transistors and/or capacitors needed to implement each cell, including access
transistor(s)?

Solution:
SRAM: 6T
DRAM: 1T-1C

2.2 Cache and memory organization

NOTE: For the following questions, assume that all offsets and indexes come from contiguous address bits.

(a) What is the L1-cache’s block size in bytes? Which bit positions in the 24-bit physical address correspond
to the cache block offset? (The least-significant bit in the physical address has a bit position of 0.)

Solution:
Block size: 16 bytes
Bit positions of block offset: 0-3

(b) How many banks are there in the L1-cache? Which bit positions in the 24-bit physical address correspond
to the L1-cache bank index? (The least-significant bit in the physical address has a bit position of 0.)

Solution:
Number of L1-cache banks: 4
Bit positions of L1-cache bank index: 4-5

(c) How many banks are there in main memory? Which bit positions in the 24-bit physical address cor-
respond to the main memory bank index? (The least-significant bit in the physical address has a bit
position of 0.)

Solution:
Number of main memory banks: 8
Bit positions of main memory bank index: 10-12

(d) What kind of interleaving is used to map physical addresses to main memory?

Solution:
Row-interleaving

(e) To fully support a 24-bit physical address space, how many rows must each main memory bank have?
Which bit positions in the 24-bit physical address correspond to the main memory row index? (The
least-significant bit in the physical address has a bit position of 0.)

Solution:
Number of rows per main memory bank: 2048
Bit positions of row index: 13-23

(f) Each cache block within a row is called a column. How many columns are there in a single row?
Which bit positions in the 24-bit physical address correspond to the main memory column index? (The
least-significant bit in the physical address has a bit position of 0.)

Solution:
Number of columns per row: 64
Bit positions of column index: 4-9

7/15

3 Refresh [40 points]

A memory system has four channels, and each channel has two ranks of DRAM chips. Each memory channel
is controlled by a separate memory controller. Each rank of DRAM contains eight banks. A bank contains
32K rows. Each row in one bank is 8KB. The minimum retention time among all DRAM rows in the system
is 64 ms. In order to ensure that no data is lost, every DRAM row is refreshed once per 64 ms. Every DRAM
row refresh is initiated by a command from the memory controller which occupies the command bus on the
associated memory channel for 5 ns and the associated bank for 40 ns. Let us consider a 1.024 second span
of time.

We define utilization (of a resource such as a bus or a memory bank) as the fraction of total time for which
a resource is occupied by a refresh command.

For each calculation in this section, you may leave your answer in simplified form in terms of powers of 2
and powers of 10.

(a) How many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

223 refreshes per channel; 225 = 32M across 4 channels.

(b) What command bus utilization, across all memory channels, is directly caused by DRAM refreshes?

4.096

(c) What data bus utilization, across all memory channels, is directly caused by DRAM refreshes?

0

(d) What bank utilization (on average across all banks) is directly caused by DRAM refreshes?

2.048 = (32K * 16 * 40ns / 1.024s)

(e) The system designer wishes to reduce the overhead of DRAM refreshes in order to improve system
performance and reduce the energy spent in DRAM. A key observation is that not all rows in the
DRAM chips need to be refreshed every 64 ms. In fact, rows need to be refreshed only at the following
intervals in this particular system:

Required Refresh Rate Number of Rows

64 ms 25

128 ms 29

256 ms all other rows

Given this distribution, if all rows are refreshed only as frequently as required to maintain their data,
how many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

What command bus utilization (as a fraction of total time) is caused by DRAM refreshes in this case?

1.0243 = 5e-9 * (2**5 * 16 + 2**9 * 8 + (2**21 - 2**9 - 2**5) * 4) / (4*1.024)

(f) What DRAM data bus utilization is caused by DRAM refreshes in this case?

0

(g) What bank utilization (on average across all banks) is caused by DRAM refreshes in this case?

0.5121 = 40e-9 * (2**5 * 16 + 2**9 * 8 + (2**21 - 2**9 - 2**5) * 4) / (64*1.024)

(h) The system designer wants to achieve this reduction in refresh overhead by refreshing rows less frequently
when they need less frequent refreshes. In order to implement this improvement, the system needs to
track every row’s required refresh rate. What is the minimum number of bits of storage required to track
this information?

8/15

4 Mbit (2 bits per row)

9/15

(i) Assume that the system designer implements an approximate mechanism to reduce refresh rate using
Bloom filters, as we discussed in class. One Bloom filter is used to represent the set of all rows which
require a 64 ms refresh rate, and another Bloom filter is used to track rows which require a 128 ms refresh
rate. The system designer modifies the memory controller’s refresh logic so that on every potential refresh
of a row (every 64 ms), it probes both Bloom filters. If either of the Bloom filter probes results in a
“hit” for the row address, and if the row has not been refreshed in the most recent length of time for the
refresh rate associated with that Bloom filter, then the row is refreshed. (If a row address hits in both
Bloom filters, the more frequent refresh rate wins.) Any row that does not hit in either Bloom filter is
refreshed at the default rate of once per 256 ms.

The false-positive rates for the two Bloom filters are as follows:

Refresh Rate Bin False Positive Rate

64 ms 2−20

128 ms 2−8

The distribution of required row refresh rates specified in part (e) still applies.

How many refreshes are performed by the memory controllers during the 1.024 second period in total
across all four memory channels?

false positives: 8192 + 2 (8194)

What command bus utilization results from this refresh scheme?

5e-9 * ((2**5 + 2) * 16 + (2**9 + 2**13) * 8 + (2**21 - 2**9 - 2**5 - 2 - 2**13) * 4) / (4*1.024)

What data bus utilization results from this refresh scheme?

0

What bank utilization (on average across all banks) results from this refresh scheme?

0.5141 = 40e-9 * ((2**5 + 2) * 16 + (2**9 + 2**13) * 8 + (2**21 - 2**9 - 2**5 - 2 - 2**13) * 4) /
(64*1.024)

10/15

4 Prefetching [40 points]

You and your colleague are tasked with designing the prefetcher of a machine your company is designing.
The machine has a single core, L1 and L2 caches and a DRAM memory system.

We will examine different prefetcher designs and analyze the trade-offs involved.

• For all parts of this question, we want to compute prefetch accuracy, coverage and bandwidth overhead
after the prefetcher is trained and is in steady state. Therefore, exclude the first six requests from
all computations.

• If there is a request already outstanding to a cache block, a new request for the same cache block will
not be generated. The new request will be merged with the already outstanding request in the MSHRs.

(a) You first design a stride prefetcher that observes the last three cache block requests. If there is a constant
stride between the last three requests, it prefetches the next cache block using that stride.

You run an application that has the following access pattern to memory (these are cache block addresses):

A A+1 A+2 A+7 A+8 A+9 A+14 A+15 A+16 A+21 A+22 A+23 A+28 A+29 A+30...

Assume this pattern continues for a long time.

Compute the coverage of your stride prefetcher for this application.
0% After each group of three requests, a prefetch is triggered due to a detected stride, but the prefetched
block is always useless; none of the demand requests are covered by this prefetch.

Compute the accuracy of your stride prefetcher for this application.
0%

(b) Your colleague designs a new prefetcher that, on a cache block access, prefetches the next N cache blocks.

The coverage and accuracy of this prefetcher are 66.67% and 50% respectively for the above application.
What is the value of N?

N = 2.

After (for example) the access to block 14, the prefetcher prefetches blocks 15 and 16. After 15, it
prefetches 16 (merged with the prefetch that was already issued) and 17. After 16, it prefetches 17 and
18. Hence, two out of every three demand accesses are covered (66.7%), and half of prefetches are useful
(50%).

We define the bandwidth overhead of a prefetcher as

Total number of cache block requests with the prefetcher

Total number of cache block requests without the prefetcher
(1)

What is the bandwidth overhead of this next-N-block prefetcher for the above application?

5/3.

For every group of accesses to three consecutive cache blocks, two extra blocks are prefetched. For
example, cache blocks 14, 15 and 16 are fetched. In addition to these, blocks 17 and 18 are prefetched.

(c) Your colleague wants to improve the coverage of her next-N-block prefetcher further for the above
application, but is willing to tolerate a bandwidth overhead of at most 2x.

Is this possible? YES NO
Why or why not?

11/15

To get better coverage, the prefetcher must prefetch into the next group of 3 strided requests from the
previous group, because the full group of 3 is already prefetched by the first. For instance, on an access
to A+14, A+15 and A+16 are already prefetched. To improve coverage, A+21 (which is the first of the
next group of 3 strided requests) should be prefetched. However, this would require prefetching the four
cache blocks in between A+16 and A+21 (A+17, A+18, A+19, A+20). This increases the bandwidth
overhead beyond 2x.

(d) What is the minimum value of N required to achieve a coverage of 100% for the above application?
Remember that you should exclude the first six requests from your computations.

N = 5 (so that A+16 prefetches A+21, then A+21 prefetches A+22, A+23, etc.)

What is the bandwidth overhead at this value of N?

7/3

(e) You are not happy with the large bandwidth overhead required to achieve a prefetch coverage of 100%
with a next-N-block prefetcher. You aim to design a prefetcher that achieves a coverage of 100% with a
1x dwidth overhead. Propose a prefetcher design that accomplishes this goal.
Be concrete and clear.

1. A prefetcher that learns the pattern of strides: 1, 1, 5, in this case. This can be accomplished by
keeping the last three strides and a confidence counter for each pattern of last three strides.

2. A two-delta stride prefetcher could record up to two different strides ∆1 and ∆2, and the number of
strides ∆1 that are traversed before a stride of ∆2 is traversed. For this sequence, the prefetcher would
learn that ∆1 = 1, ∆2 = 5, and that two strides of ∆1 occur followed by one stride of ∆2.

12/15

5 Tiered-difficulty [40 points]

Recall from your required reading on Tiered-Latency DRAM that there is a near and far segment, each
containing some number of rows. Assume a very simplified memory model where there is just one bank
and there are two rows in the near segment and four rows in the far segment. The time to activate and
precharge a row is 25ns in the near segment and 50ns in the far segment. The time from start of activation
to reading data is 10ns in the near segment and 15ns in the far segment. All other timings are negligble
for this problem. Given the following memory request stream, determine the optimal assignment (minimize
average latency of requests) of rows in the near and far segment (assume a fixed mapping where rows cannot
migrate, a closed-row policy, and the far segment is inclusive).

time 0ns: row 0 read

time 10ns: row 1 read

time 100ns: row 2 read

time 105ns: row 1 read

time 200ns: row 3 read

time 300ns: row 1 read

(a) What rows would you place in near segment? Hint: draw a timeline.

rows 0 and 2

(b) What rows would you place in far segment?

rows 1 and 3 (also rows 0 and 2 since inclusive)

(c) In 15 words or less, describe the insight in your mapping?

See TL-DRAM’s WMC policy

(d) Assume now that the mapping is dynamic. What are the tradeoffs of an exclusive design vs. an inclusive
design? Name one advantage and one disadvantage for each.

Exclusive requires swapping, but can use nearly full capacity of DRAM. Inclusive, the opposite.

Assume now that there are eight (8) rows in the near segment. Below is a plot showing the number
of misses to the near segment for three applications (A, B, and C) when run alone with the specified
number of rows allocated to the application in the near segment. This is similar to the plots you saw in
your Utility-Based Cache Partitioning reading except for TL-DRAM instead of a cache. Determine the
optimal static partitioning of the near segment when all three of these applications are run together on
the system. In other words, how many rows would you allocate for each application? Hint: this should
sum to eight. Optimal for this problem is defined as minimizing total misses across all applications.

(e) How many near segment rows would you allocate to A?

5

(f) How many near segment rows would you allocate to B?

3

(g) How many near segment rows would you allocate to C?

0

13/15

6 Memory System (Optional)

A machine with a 4 GB DRAM main memory system has 4 channels, 1 rank per channel and 4 banks per
rank. The cache block size is 64 bytes.

(a) You are given the following byte addresses and the channel and bank to which they are mapped:

Byte: 0x0000 ⇒ Channel 0, Bank 0
Byte: 0x0100 ⇒ Channel 0, Bank 0
Byte: 0x0200 ⇒ Channel 0, Bank 0
Byte: 0x0400 ⇒ Channel 1, Bank 0
Byte: 0x0800 ⇒ Channel 2, Bank 0
Byte: 0x0C00 ⇒ Channel 3, Bank 0
Byte: 0x1000 ⇒ Channel 0, Bank 1
Byte: 0x2000 ⇒ Channel 0, Bank 2
Byte: 0x3000 ⇒ Channel 0, Bank 3

Determine which bits of the address are used for each of the following address components. Assume row
bits are higher order than column bits:

• Byte on bus
Addr [2 : 0]

• Channel bits (channel bits are contiguous)
Addr [:]

• Bank bits (bank bits are contiguous)
Addr [:]

• Column bits (column bits are contiguous)
Addr [:]

• Row bits (row bits are contiguous)
Addr [:]

(b) Two applications App 1 and App 2 share this memory system (using the address mapping scheme you
determined in part (a)). The memory scheduling policy employed is FR-FCFS. The following requests
are queued at the memory controller request buffer at time t. Assume the first request (A) is the oldest
and the last one (A + 15) is the youngest.

A B A + 1 A + 2 A + 3 B + 10 A + 4 B + 12 A + 5 A + 6 A + 7
A + 8 A + 9 A + 10 A + 11 A + 12 A + 13 A + 14 A + 15

These are cache block addresses, not byte addresses. Note that requests to A + x are from App 1,
while requests to B + x are from App 2. Addresses A and B are row-aligned (i.e., they are at the start
of a row) and are at the same bank but are in different rows.

Assuming row-buffer hits take T time units to service and row-buffer conflicts/misses take 2T time units
to service, what is the slowdown (compared to when run alone on the same system) of i) App 1? ii) App
2?

(c) Which application slows down more? Why?

(d) In class, we discussed memory channel partitioning and memory request scheduling as two solutions
to mitigate interference and application slowdowns in multicore systems. Propose another solution to
reduce the slowdown of the more-slowed-down application, without increasing the slowdown of the other
application? Be concrete.

14/15

miss
miss

miss

miss

row-buffer miss
row-buf hit

row-buf hit

row-buffer miss

0xffbc67

0xffbda7

0xffbdd7

0xff4e28

0xff4c04

0xff5a28

miss

row-buffer miss

miss
0xffbc6f

0xffbc70

hit
miss

time

time

bank-conflict

row-buf hit

0xff5e28 miss

row-buffer miss

row-buffer miss

0xffbc67

0xffbda7

0xffbdd7

0xff4e28

0xff4c04

0xff5a28

0xffbc6f

0xffbc70

0xff5e28

C
a

ch
e

 A
cc

e
ss

T
im

e
li

n
e

M
e

m
o

ry
 A

cc
e

ss

T
im

e
li

n
e

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

n
e

ar
 s

e
gm

e
n

t
m

is
se

s

Number of rows in near segment allocated to application when run alone

A

B

C

A

B

C

15/15

	Memory Scheduling [40+15 points]
	Banks [30 points]
	First, let's cover the basics
	Cache and memory organization

	Refresh [40 points]
	Prefetching [40 points]
	Tiered-difficulty [40 points]
	Memory System (Optional)

