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Abstract 

To exploit larger amounts of instruction level parallelism, 
processors are being built with wider issue widths and larger 
numbers offunctional units. Instruction fetch rate must also 
be increased in order to effectively exploit the performance 
potential of such processors. Block-structured ISAs pro- 
vide an effective means of increasing the instruction fetch 
rate. We define an optimization, called block enlargement, 
that can be applied to a block-structured ISA to increase 
the instruction fetch rate of a processor that implements 
that ISA. We have constructed a compiler that generates 
block-structured ISA code, and a simulator that models the 
execution of that code on a block-structured ISA processor 
We show that for the SPECint95 benchmarks, the block- 
structured ISA processor executing enlarged atomic blocks 
outperforms a conventional ISA processor by 12% while us- 
ing simpler microarchitectural mechanisms to support wide- 
issue and dynamic scheduling. 

1. Introduction 

To achieve higher levels of performance, processors are 
being built with wider issue widths and larger numbers of 
functional units. In the past ten years, instruction issue width 
has grown from one (MIPS R2000, Sun MicroSpam, Mo- 
torola 68020), to two (Intel Pentium, Alpha 2 1064) to four 
(MIPS RlOOOO, Sun UltraSparc, Alpha 21164, PowerPC 
604). This increase in issue width will continue as proces- 
sors attempt to exploit even higher levels of instruction level 
parallelism. To effectively exploit the performance poten- 
tial of such processors, instruction fetch rate must also be 
increased. Because the average basic block size for integer 
programs is four to five instructions, processors that aim to 
exploit higher levels of instruction level parallelism must be 
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able to fetch multiple basic blocks each cycle. 

Various approaches have been proposed for increasing 
instruction fetch rate from that of a single basic block per 
cycle. Some approaches [24, 1, 2, 201 extend the branch 
predictor and icache so that multiple branch predictions can 
be made each cycle and multiple, non-consecutive cache 
lines can be fetched each cycle. However, this extra hard- 
ware requires extra stages in the pipeline which will increase 
the branch misprediction penalty, decreasing performance. 
Other approaches [S, 81 statically predict the direction to 
be taken by a program’s branches and then based on those 
predictions, use the compiler to arrange the blocks so that 
the multiple blocks to be fetched are always placed in con- 
secutive cache lines. Although they eliminate the need for 
extra hardware, these approaches must rely on the branch 
predictions made by a static branch predictor which is usu- 
ally significantly less accurate than those made by a dynamic 
branch predictor. 

This paper presents a solution using block-structured 
ISAs that exploits the advantages of both compiler-based and 
hardware-based solutions by merging basic blocks together 
statically and providing support for dynamic branch predic- 
tion. Block-structured ISAs [ 14, 13, 221 are a new class of 
instruction set architectures that were designed to address 
the performance obstacles faced by processors attempting to 
exploit high levels of instruction level parallelism. The ma- 
jor distinguishing feature of a block-structured ISA is that 
it defines the architectural atomic unit (i.e. the instruction) 
to be a group of operations. These groups of operations 
are called atomic blocks. Each operation within the atomic 
block corresponds roughly to an instruction in a conven- 
tional ISA. This redefinition of the atomic unit enables the 
block-structured ISA to simplify many implementation is- 
sues for wide-issue processors. 

Block-structured ISAs increase the instruction fetch rate 
of a processor through the use of an optimization called 
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block enlargement. Block enlargement combines separate 
atomic blocks into a single atomic block, increasing the 
average size of the program’s atomic blocks. By increasing 
the sizes of the atomic blocks, the instruction fetch rate of 
the processor is increased without having to fetch multiple 
blocks each cycle. Furthermore, the semantics of the block- 
structured ISA enable the processor to use a dynamic branch 
predictor to predict the successor for each block fetched. 
As a result, block-structured ISAs increase the instruction 
fetch rate without relying on extra hardware to fetch non- 
consecutive blocks out of the icache or foregoing the use of 
dynamic branch prediction. 

In this paper, we define one instance of a block-structured 
ISA for a wide-issue, dynamically scheduled processor. We 
have constructed a compiler that generates block-structured 
ISA code, and a simulator that models the execution of that 
code on a processor with a real branch predictor and a real 
icache. We show that for the SPECint95 benchmarks, the 
block-structured ISA processor executing enlarged atomic 
blocks outperforms a conventional ISA processor by 12% 
while using simpler hardware to support wide-issue and 
dynamic scheduling. 

This paper is organized into five sections. Section 2 gives 
an overview of block-structured ISAs, explaining how the 
block enlargement optimization works and how it increases 
instruction fetch rate. Section 3 discusses other approaches 
to increasing instruction fetch rate. Section 4 describes 
our block-structured ISA and the compiler and microarchi- 
tectural support needed to implement that ISA. Section 5 
presents experimental results comparing the performance 
of our block-structured ISA to that of a conventional ISA. 
Concluding remarks are given in section 6. 

2. Block-Structured ISAs 

Block-structured ISAs [ 14, 13,221 were designed to help 
solve the performance obstacles faced by wide-issue pro- 
cessors. Their major distinguishing feature is that the archi- 
tectural atomic unit is defined to be a group of operations. 
These groups, known as atomic blocks, are specified by the 
compiler. When an atomic block is issued into the machine, 
either every operation in the block is executed or none of the 
operations in the block are executed. The semantics of the 
atomic block enable the block-structured ISA to explicitly 
represent the dependencies among the operations within a 
block and to list the operations within the block in any order 
without affecting the semantics of the block. These fea- 
tures simplify the implementation of a wide-issue processor 
by simplifying the logic required for recording architectural 
state, checking dependencies, accessing the register file, and 
routing operations to the appropriate reservation stations. 
By reducing hardware complexity, wide-issue implementa- 
tions of a block-structured ISA will require fewer hardware 

resources than that of a wide-issue implementation of a con- 
ventional ISA, resulting in a faster cycle time or a shallower 
pipeline. In addition to these benefits, block-structured ISAs 
can increase the instruction fetch rate of a processor via the 
block enlargement optimization. 

Block enlargement is a compiler optimization that in- 
creases the size of an atomic block by combining the block 
with its control flow successors. Figure 1 illustrates how 
block enlargement works. The control flow graph on the left 
consists of the atomic blocks A-E, each one ending with a 
branch that specifies its successor blocks. These branches 
are called trap operations to differentiate them from fault 
operations which will be described below. These blocks 
are analogous to the basic blocks in a control flow graph 
for a conventional ISA. The control flow graph on the right 
shows the result of combining atomic block B with its con- 
trol flow successors C and D to form the enlarged atomic 
blocks BC and BD. Both blocks BC and BD are now control 
flow successors to block A. 

To support the block enlargement optimization, a new 
class of branch operations, the fault operation, is included in 
block-structured ISAs. The fault operation takes a condition 
and a target. If the condition evaluates to false, the fault 
operation has no effect. If the condition evaluates to true, 
the execution of the atomic block to which it belongs is 
suppressed and the instruction stream is redirected to its 
target. When two blocks are combined, the trap operation at 
the end of the first block is converted into a fault operation. If 
a block is combined with its fall-through successor, then the 
condition of the resulting fault operation is the same as the 
original trap operation’s condition. If a block is combined 
with the target of its trap operation, then the condition of the 
resulting fault operation is the complement of the original 
trap operation’s condition. The target of the fault operation 
is the enlarged block that results from combining the first 
block with its other control flow successor. In figure 1, when 
blocks B and C are combined, the trap at the end of B is 
converted into a fault in block BC. The fault’s condition 
is true whenever block D is suppose to follow block B in 
the dynamic instruction stream and the fault’s target is BD. 
Block BD contains a corresponding fault operation with a 
complementary condition and a target that points back to 
BC. 

The block enlargement optimization requires that the pro- 
cessor support speculative execution ‘. This is required 
because the operations which compute a fault operation’s 
condition may be in the same block as the fault operation. 
For example, in figure 1, the operations which compute the 
condition for block B’s trap operation may be in block B 

1 Satisfying this requirement does not necessarily require that the block- 
structured ISA processor include hardware not already found in a con- 
ventional ISA processor because any processor that uses dynamic branch 
prediction must also support speculative execution, regardless of the ISA 
implemented by that processor. 
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Figure 1, Combining atomic blocks into an enlarged atomic block. 

itself. As a result, the operations which compute the con- 
ditions for block BC and block BD’s fault operations are 
in block BC and block BD. To determine the correct suc- 
cessor to block A, the processor must speculatively execute 
either block BC or block BD and rely on the fault operations 
to correct the control flow if the speculation was incorrect. 
This assumes that block A’s trap operation specifies that the 
al direction is to be taken. 

Using the block enlargement optimization and the fault 
operation, block-structured ISAs are able to increase the 
instruction fetch rate without suffering the disadvantages 
associated with traditional approaches. By combining mul- 
tiple basic blocks into a single, enlarged atomic block, the 
block enlargement optimization increases the instruction 
fetch rate without requiring the processor to fetch multiple 
non-consecutive cache lines. Furthermore, the use of fault 
operations enables the processor to use a dynamic branch 
predictor to choose which enlarged block is to be fetched 
next. However, for the block enlargement optimization to 
be effective, the optimization’s effect on branch prediction 
accuracy and icache performance must be carefully consid- 
ered. As more basic blocks are combined into an enlarged 
block, the probability that a fault operation within that block 
is mispredicted increases. Mispredicted fault operations in- 
cur an extra penalty not associated with ordinary branch 
mispredictions, because they cause all the work in their 
block to be discarded. Some of this work may have to be is- 
sued and executed again after the correct block is fetched. In 
addition, each time a block is combined with its successors, 
a separate copy of it is created for each successor. This du- 
plication may increase the number of icache capacity misses 
during program execution and lower performance. This as- 
sumes that all the enlarged blocks formed from combining 
the block with its successors are accessed with sufficient 

frequency. If an enlarged block is never accessed, then it 
is never brought into the icache. The duplication incurred 
by such a block has no effect on the icache miss rate or the 
memory bandwidth used by the icache. 

3. Related work 

The majority of the approaches previously proposed for 
increasing the instruction fetch rate can be divided into 
two categories, compiler-based and hardware-based. The 
compiler-based schemes place the basic blocks to be fetched 
next to each other in the icache, eliminating the need for ex- 
tra hardware. These schemes include trace and superblock 
scheduling [5, 81, predicated execution [7, 12, 181, and the 
VLIW multi-way jump mechanism [4, 10, 3, 151. The 
hardware-based schemes extend the branch predictor and 
icache so that multiple branch predictions can be made 
each cycle and multiple non-consecutive cache lines can 
be fetched each cycle. They include the branch address 
cache [24], the collapsing buffer [ 11, the subgraph-level pre- 
dictor [2], the multiple-block ahead branch predictor [20], 
and the trace cache [ 191. 

Trace scheduling [S] and superblock scheduling [8] are 
compiler optimizations that enlarge the scope in which the 
compiler can schedule instructions. They use static branch 
prediction to determine the frequently executed program 
paths and place the basic blocks along these paths into con- 
secutive locations, forming a superblock. The instructions 
within the superblock can then by optimized as if they were 
in a single basic block. The manner in which superblock 
scheduling combines blocks into superblocks is on the sur- 
face similar to that of the block enlargement optimization. 
The significant difference between the two approaches is that 

193 



cl c;! d: d2 el e2 

dl d2 

el e2 

Figure 2. Using trace scheduling to combine basic blocks into a trace. 

the block enlargement optimization uses dynamic branch 
prediction instead of static branch prediction to determine 
which basic blocks to fetch together. To illustrate this differ- 
ence, figure 2 shows the results of applying block enlarge- 
ment and superblock scheduling to the control flow graph 
from figure I. The control flow graph on the left is the 
result of applying the block enlargement optimization and 
is identical to the one in figure 1. The control flow graph 
on the right is the result of applying superblock scheduling. 
The static branch predictor has predicted that block C is 
the most likely successor to block B so blocks B and C are 
combined to form a superblock. As a result, block B can 
only be fetched with block C. It can never be fetched with 
block D. In the block enlargement case, block B is combined 
with both of its successors to form enlarged atomic blocks 
BC and BD, allowing the dynamic predictor to choose the 
most likely combination. This extra degree of freedom pro- 
vides a performance advantage for the block enlargement 
optimization over superblock scheduling because dynamic 
branch predictors usually achieve significantly higher pre- 
diction accuracies than static branch predictors. 

Predicated execution [7, 12, 181 eliminates program 
branches by converting their control dependencies into data 
dependencies. Once a basic block’s branch has been elim- 
inated, it can be combined with its control flow successors 
to form a single basic block. Predicated execution has two 
disadvantages. First, it wastes fetch and issue bandwidth 
fetching and issuing instructions that are suppressed because 
their predicates evaluate to false. Second, by converting an 
instruction’s control dependency into a data dependency, the 
program’s critical paths may be lengthened. The processor 
must now wait for the new data dependency to be resolved 
instead of speculatively resolving the control dependency at 

fetch time. While predicated execution by itself may not be 
an effective mechanism for increasing instruction fetch rate, 
it can provide a significant performance benefit when used 
in conjunction with speculative execution [ 1 l] and other 
schemes for increasing fetch rate. 

The VLIW multi-way jump mechanism [4, 10, 3, 1.51 
combines multiple branches from multiple paths in the con- 
trol flow graph into a single branch. Using this mechanism, 
basic blocks which form a rooted subgraph in the control 
flow graph can be combined into a single VLIW instruc- 
tion. The branches for these basic blocks are combined 
into a single multi-way branch operation. This approach 
gives VLIW processors the means to fetch instructions from 
multiple basic blocks each cycle. However, because the op- 
erations within a VLIW instruction must be independent, it 
is critical that the compiler be able to find enough indepen- 
dent instructions to fill each VLIW instruction and be able to 
schedule the operations which evaluate the condition codes 
for the multi-way jump early enough so that the condition 
codes are available when the multi-way jump is issued. The 
compiler may have to delay the scheduling of certain op- 
erations in order to meet these requirements, lowering the 
instruction fetch rate of the processor. 

The branch address cache [24], the collapsing buffer [I], 
the subgraph-level predictor [2], and the multiple-block 
ahead branch predictor [20] are hardware schemes that pro- 
pose different ways to extend the dynamic branch predictor 
so that it can make multiple branch predictions each cy- 
cle. Because some of the branches may be predicted to be 
taken, these schemes all require the ability to fetch multiple 
non-consecutive lines from the icache each cycle. They all 
propose to meet this requirement by interleaving the icache. 
This general approach has two disadvantages. First, bank 
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conflicts will arise in the icache when fetching multiple lines 
from the same bank. To handle this conflict, the fetch for all 
but one of the conflicting lines must be delayed. This first 
disadvantage can be minimized if the icache is interleaved 
with a large enough number of banks. Second, because it is 
fetching multiple non-consecutive blocks from the icache, 
the processor must determine which instructions from the 
fetched cache lines correspond to the desired basic blocks 
and reorder the instructions so that they correspond to the or- 
der of those basic blocks. The processor will require at least 
one additional stage in the pipeline in order to accomplish 
these tasks. This additional stage will increase the branch 
misprediction penalty, decreasing overall performance. 

The trace cache [19] is a hardware-based scheme that 
does not require fetching non-consecutive blocks from the 
icache. Its fetch unit consists of two parts, a core fetch unit 
and a trace cache. The core fetch unit fetches one basic block 
each cycle from the icache. The trace cache is a small cache 
that records sequences of basic blocks fetched by the core 
fetch unit, combining them into a single trace. If the branch 
predictor indicates that the sequence of basic blocks to be 
fetched matches a trace stored in the trace cache, then the 
processor is able to fetch multiple blocks that cycle by using 
the specified trace from the trace cache. If no matching trace 
is found, the processor is able to fetch only one basic block 
that cycle via the core fetch unit. As long as the processor is 
fetching its instructions from the trace cache, the trace cache 
is an effective means for fetching multiple basic blocks each 
cycle without incurring the costs associated with the other 
hardware-based approaches. 

The trace cache and the block enlargement optimization 
are two very similar approaches to increasing instruction 
fetch rate. They both combine basic blocks into a single 
enlarged block (or trace) and use dynamic branch prediction 
to decide which enlarged block to fetch next. The key 
difference between them is that the trace cache combines 
its basic blocks at run-time while the block enlargement 
optimization combines its basic blocks at compile-time. By 
combining the blocks at run-time, the trace cache does not 
require changes to the instruction set architecture and does 
not increase the size of the executable. By combining the 
blocks at compile-time, the block enlargement optimization 
has the advantage of being able to use the entire icache to 
store its enlarged blocks instead of the small cache used in 
the trace cache approach. 

Multiscalar processors [6, 211 are a new processing 
paradigm that does not fall into either the compiler-based or 
hardware-based categories. Multiscalar processors consist 
of a set of processing elements connected in a ring. Each 
processing element executes a task, a set of basic blocks 
specified by the compiler. The connecting logic among the 
processing elements forwards needed values along the ring 
and guarantees that the dependencies among the tasks are 

honored. Multiscalar processors eliminate the problem of 
fetching multiple cache lines from the icache each cycle by 
associating a Li icache with each processing element. Each 
processing element accesses its own Ll icache for its task’s 
instructions. As long as each icache achieves a sufficient hit 
rate, the multiscalar processor is able to fetch the equivalent 
work of multiple basic blocks each cycle. However, the 
multiscalar model raises new performance issues not found 
in traditional wide-issue processors. It is important that the 
compiler create tasks so that the work is evenly distributed 
and the communication among the tasks does not exceed the 
ring bandwidth. 

4. Implementation details 

4.1. The Block-Structured ISA Specification 

We have defined a block-structured ISA that incorpo- 
rates a subset of the features described in section 2. This 
ISA’s architectural unit is the atomic block. The operations 
that can be found in an atomic block correspond to the in- 
structions of a load/store architecture with the exception of 
conditional branches with direct targets. These branches 
are implemented as trap and fault operations. Each atomic 
block can contain any number of fault operations, but can 
contain at most one trap operation. Although an atomic 
block that ends in a trap operation may have more than two 
control flow successors, each trap operation specifies only 
two targets. The first target points to a block from the set 
of potential successor blocks given that the trap condition 
is true. The second target points to a block from the set 
of potential successor blocks given that the trap condition 
is false. Each trap operation also specifies the log of the 
total number of control flow successors for the trap’s atomic 
block. Section 4.3 describes how the dynamic branch pre- 
dictor uses this information to accurately predict the control 
how successor for each atomic block. 

4.2. The Block-Structured ISA Compiler 

We implemented a compiler that is targeted for the block- 
structured ISA described above. This compiler is based on 
the Intel Reference C Compiler [9] with the back end ap- 
propriately retargeted. The Intel Reference C Compiler 
generates an intermediate representation of the program be- 
ing compiled and applies the standard set of optimizations 
to that representation. We implemented a back end that 
takes this representation and applies a set of target-specific 
optimizations, allocates registers, and executes the block 
enlargement pass. During the block enlargement pass, the 
compiler attempts to combine as many different combina- 
tions of blocks as possible. The compiler begins with the 
first block of each function and continues until one of the 
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termination conditions listed below is met. The process is 
recursively repeated with the successor blocks of the newly 
formed enlarged block. The five termination conditions for 
the enlargement process are: 

1. Atomic blocks can continue to expand until further 
expansion would cause the size of the enlarged block 
to exceed processor issue width. We restrict the max- 
imum block size to the issue width in this block- 
structured ISA so as to avoid the complexity of sup- 
porting atomic blocks that require more than one cycle 
to issue. For our experiments the maximum block size 
will always be sixteen. 

2. Each atomic block can contain at most two fault oper- 
ations, which restricts the number of successor blocks 
for each block to at most eight. This restriction helps 
reduce the size of the branch predictor (see section 4.3) 
without significantly reducing the fetch bandwidth 
used. 

3. Blocks that are connected via a call, return, or indi- 
rect jump cannot be combined. Mechanisms to sup- 
port multiple successor candidates for such operations 
have not yet been developed. 

4. Separate loop iterations are not combined into en- 
larged blocks. This restriction helps reduce the code 
expansion due to block enlargement without signifi- 
cantly affecting performance. 

5. Blocks in library functions are not combined. Cur- 
rently, we do not have the source code for our system 
library functions so we are not able to recompile them 
with the block enlargement optimization. 

4.3. The Block-Structured ISA Processor 

The block-structured ISA processor modeled in our ex- 
periments is a sixteen-wide issue, dynamically scheduled 
processor that implements the HPS execution model [16, 
171. The processor supports speculative execution as re- 
quired by block-structured ISAs (see section 2). It can fetch 
and issue one atomic block each cycle. Each atomic block 
can contain up to sixteen operations. Dynamic register re- 
naming removes any anti and output dependencies in the 
dynamic instruction stream. The processor can hold up to 
32 atomic blocks at a time, equaling a maximum of 512 
operations. As soon as its operands are all ready, an is- 
sued operation is scheduled for execution on one of sixteen 
uniform functional units whose latencies are listed in ta- 
ble 1. The processor has a 16KB Ll dcache and a perfect 
L2 dcache with a six cycle access time. The size of the pro- 
cessor’s Ll icache is varied in our experiments, but the L2 
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Instruction 
Class 
Integer 
FP Add 
FP/lNT Mul 
FIVINT Div 
Load 
Store 
Bit Field 
Branch 

Exec. 
Lat. 

1 
3 
3 
8 
2 

1 
1 

Description 
INT add, sub and logic OPs 
F’P add, sub, and convert 
FP mul and INT mu1 
FP div and INT div 
Memory loads 
Memory stores 
Shift, and bit testing 
Control instructions 

Table 1. Instruction classes and latencies 

icache is always modeled as perfect with a six cycle access 
time. 

To predict the next atomic block to be fetched, the block- 
structured ISA processor uses a predictor based on the Two- 
Level Adaptive Branch Predictor [25]. Because each atomic 
block may contain multiple branches, the block-structured 
ISA predictor must be able to implicitly make multiple 
branch predictions each cycle. To do this, the Two-Level 
Adaptive Branch Predictor must be modified in three ways: 

1. The size of each BTB entry must be increased so that it 
can store all the possible control flow successors for an 
atomic block.. For our simulations, this number will 
be eight. When the atomic block is first encountered, 
the two explicitly specified targets in its trap operation 
are stored in the BTB. The remaining six targets are 
filled in to the BTB as they are encountered due to 
fault mispredictions. 

2. Because each block can have up to eight control flow 
successors, the predictor must now produce a three bit 
prediction instead of a one bit prediction to select the 
predicted successor block. To do this, the pattern his- 
tory table (PHT) entry is modified to hold additional 
counters to predict the fault operations in addition to 
the normal two-bit counter which will now be used to 
predict the trap direction. 

3. The branch history register (BHR) should be updated 
each cycle with a varying number of history bits, be- 
cause the number of branches predicted each cycle 
varies. When predicting the control flow successor 
to an atomic block with only two control flow suc- 
cessors, the branch predictor is predicting the direc- 
tion taken by exactly one branch and only one bit is 
needed to uniquely identify that prediction. How- 
ever, if the BHR is updated with the entire three bit 
prediction value, then two potentially useful history 
bits will be unnecessarily shifted out of the BHR. To 
prevent this unnecessary loss of branch history, the 



block-structured ISA predictor shifts in the minimum 
number of history bits required to uniquely identify 
the current prediction. This number is specified in 
the corresponding trap operation (see section 4.1) and 
stored in the BTB. 

5. Experimental results 

To evaluate the performance advantages of block- 
structured ISAs, we compared the performance of the im- 
plementation of our block-structured ISA described in sec- 
tion 4.3 to an identically configured implementation of a 
conventional ISA. The two implementations had the same 
number of functional units, cycle times, icache size, and 
dcache size. In reality, the reduction in hardware complex- 
ity provided by block-structured ISAs would have enabled 
the implementation for the block-structured ISA to either 
have had a faster cycle time or a shallower pipeline than that 
of the conventional ISA implementation. As a result, the 
performance gains measured were more conservative than 
they otherwise would have been. 

The conventional ISA implemented was the load/store 
ISA that formed the basis of our block-structured ISA. This 
eliminated any architectural advantages the block-structured 
ISA may have had over the conventional ISA with the excep- 
tion of those due to block-structuring. To generate the con- 
ventional ISA executables, we used a variant of the block- 
structured ISA compiler that was retargeted to the conven- 
tional ISA. This eliminated any unfair compiler advantages 
one ISA may have had over the other. 

Table 2 lists the eight SPECint95 benchmarks used for 
our comparison ‘, along with the input data sets, and the 
number of conventional ISA instructions required to run 
each benchmark to completion. 

Figure 3 compares the performance of the block- 
structured ISA executables to the performance of the con- 
ventional ISA executables when using a 64KB, four-way set 
associative Ll icache. Although current day Ll icache sizes 
are on the order of 8-16KB, advances in device densities 
will make 64KB Ll icaches feasible for future processors. 
The graph shows the total number of cycles required to ex- 
ecute each benchmark. With the exception of the go bench- 
mark, each block-structured ISA executable outperformed 
the corresponding conventional ISA executable. The block 
enlargement optimization reduced the execution time on av- 
erage by 12.3%, with reductions that ranged from 7.2% for 
gee to 19.9% for m88ksim. The go benchmark showed a 

%e SPECfp95 floating point benchmarks were omitted from the study 
because our work has focused on extracting instruction level parallelism 
from non-scientific programs that represent everyday applications, where 
the parallelism is irregularly distributed and harder to extract. We note that 
block-structured ISAs should be able to achieve even larger performance 
gains for the floating point benchmarks. 

Benchmark Input # of Instructions 
compress test.in* 103,015,025 

SC jump.i 154,450,036 
go 2stone9.in’ 125,637,006 

ijpeg specmun.ppm* 206,802,135 
m88sim dcrand.train 120,738,195 

perl scrabbl.pl* 78,148,849 
vortex vortex.big* 232,003,378 
xlisp train.lsp 187,727,922 

1 

J 

Table 2. The SPECint95 benchmarks and their 
input data sets. * indicates the input set is 
an abbreviated version of the SPECint95 ref- 
erence input set. 

80 

1 h 7o 
-Conventional ISA 
- Block-Structured ISA 

g&z cokp io ijieg ii mi8k p&l vo&ex 
Benchmark 

Figure 3. Performance comparison of block- 
structured ISA executables and conventional 
ISA executables. 

1.5% increase in execution time which was due to increased 
icache misses, as will be shown below. 

To measure the performance impact of branch mispredic- 
tions on block-structured ISAs, figure 4 shows the same per- 
formance comparison as figure 3 except that perfect branch 
prediction is assumed. With perfect branch prediction, the 
average reduction in execution time is increased to 19.1%. 
Because both block-structured and conventional ISA exe- 
cutables incur about the same number of branch mispre- 
dictions, the increase in performance difference between 
the two ISAs indicates that branch mispredictions are more 
costly for block-structured ISAs. This is because good work 
must be removed from the machine for a fault misprediction 
and because the block-structured ISA is capable of fetching 
and issuing more work each cycle, increasing the perfor- 
mance loss for each cycle of branch misprediction penalty. 

Figure 5 shows the average block size issued during exe- 
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-Block-Structured ISA 
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Figure 4. Performance comparison of block- 
structured ISA executables and conven- 
tional ISA executables while assuming per- 
fect branch prediction. 

16 

1 -Conventional ISA 
- Block-Structured ISA 

gic camp ijpeg ii m88k pert vortex 
Benchmark 

Figure 5. Average block sizes for block- 
structured and conventional ISA executables. 

cution of each of the block-structured ISA and conventional 
ISA executables. Blocks that were not retired (i.e. that were 
issued after a branch misprediction) were not counted toward 
the average. Across all eight benchmarks, the average block 
sizes for the conventional ISA and block-structured ISA ex- 
ecutables were 5.2 and 8.2 instructions. Despite increasing 
the block size by 58%, the block enlargement optimization 
still has left almost half the processors fetch bandwidth un- 
used. The major reason why block enlargement was unable 
to create larger blocks was the occurrence of procedure calls 
and returns (see section 4.2). Their occurrence eliminated 
many opportunities for further block enlargement. 

As discussed in section 2, by duplicating blocks, the 
block enlargement optimization may decrease the perfor- 
mance of the icache. To quantify this effect, we measured 
for each benchmark, the relative increase in execution time 
for a given icache size as compared to a perfect icache. 
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Figure 6. Relative increase in execution times 
for the conventional ISA executables over the 
execution time with a perfect icache. 
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I Figure 7. Relative increase in execution times 
for the block-structured ISA executables over 
the execution time with a perfect icache. 

This study did not model the icache effects due to operat- 
ing system code. These effects may further decrease icache 
performance [23]. Figures 6 and 7 show the results of these 
comparisons for icache sizes from 16KB to 64KB. With the 
exception of the small benchmarks (compress, li, and ijpeg), 
the block-structured ISA executables show much larger per- 
formance decreases due to icache misses than the conven- 
tional ISA executables. The decrease is greatest in the gee 
and go benchmarks which have many small basic blocks 
and many unbiased branches. As a result, by combining all 
the frequently executed combinations of basic blocks into 
enlarged blocks, the block-structured ISA executables for 
these benchmarks use significantly more icache space than 
the conventional ISA executables. 
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6. Conclusions 

In this paper, we examined the performance benefits of 
using a block-structured ISA to increase the processor in- 
struction fetch rate. Through the block enlargement op- 
timization, the atomic blocks of the block-structured ISA 
could be combined to form larger blocks. As a result, larger 
units of work could be fetched from the icache each cycle 
without having to fetch non-consecutive cache lines. Fur- 
thermore, the block-structured ISA provides support for the 
use of dynamic branch prediction in selecting the successor 
block, rather than restricting the processor to static branch 
prediction. 

We defined one instance of a block-structured ISA and 
implemented a compiler targeted to that ISA and a sim- 
ulator to model the performance of a sixteen wide issue, 
dynamically scheduled processor that implements that ISA. 
Using this compiler and simulator, we compared the per- 
formance of programs executing on a block-structured ISA 
processor to the performance of programs executing on a 
conventional ISA processor for the SPECint95 benchmarks. 
The block-structured ISA processors achieved a 12% per- 
formance improvement over conventional ISA processors. 
This performance difference increased to 20% when perfect 
branch prediction was assumed. These performance im- 
provements were due to the block enlargement optimization 
increasing the average block size from 5.2 instructions to 
8.2 instructions. We also examined the block enlargement 
optimization’s effect on icache performance. Because the 
block enlargement optimization duplicates blocks, the num- 
ber of icache misses was larger for the block-structured ISA 
executables than for the conventional ISA executables. The 
difference was most significant for the gee and go bench- 
marks. 

The experimental results point to future directions in 
which the performance of processors implementing block- 
structured ISAs can be improved. Improving the branch 
prediction accuracy and icache hit rate and more fully uti- 
lizing the fetch bandwidth of the processor will further in- 
crease the performance difference between block-structured 
ISAs and conventional ISAs. Possibilities for achieving 
these goals include predicated execution, profiling, and in- 
lining. Predicated execution can reduce the performance 
lost due to n-&predicted branches by eliminating hard to 
predict branches. In addition, predicated execution can in- 
crease the fetch bandwidth used by eliminating branches 
that jump around small sections of the code. This optimiza- 
tion will create larger basic blocks which in turn will allow 
the block enlargement optimization to create even larger en- 
larged atomic blocks. Profiling can improve the icache hit 
rate by guiding the compiler’s use of the block enlargement 
optimization. The amount of code duplication caused by 
the block enlargement optimization can be reduced if this 

optimization does not combine blocks that contain unbiased 
branches with their successors, thereby reducing the icache 
miss rate in exchange for smaller enlarged atomic blocks. In- 
lining can increase the fetch bandwidth used by eliminating 
procedure calls and returns, allowing the block enlargement 
optimization to combine blocks that previously could not 
be combined. In addition, using block-structured ISAs in 
conjunction with another fetch rate enhancing mechanism, 
such as the trace cache [ 191, may lead to even higher fetch 
rates without sacrificing icache performance. 

We also plan to measure the performance gains that can 
be achieved by block-structured ISAs for scientific code. 
Those performance gains should be even greater than the 
gains achieved for the SPECint95 benchmarks because the 
branches that occur in scientific code are more predictable 
and the basic blocks are larger. These differences will reduce 
the performance penalty suffered by block-structured ISAs 
for branch mispredictions and increase the size of the blocks 
formed by the block enlargement optimization, resulting in 
even higher levels of performance. 

This study focused on the improvements in instruction 
fetch rate provided by block-structured ISAs, ignoring the 
implementation benefits provided by block-structured ISAs. 
By reducing the hardware complexity of various microar- 
chitectural mechanisms, block-structured ISAs enable the 
implementation of extremely wide issue processors. The 
performance benefits of these features would further in- 
crease the performance advantage of block-structured ISA 
processors over conventional ISA processors. In addition, 
as new algorithms are developed that increase the instruc- 
tion level parallelism in programs that use them, the ability 
to implement wide issue processors will become even more 
important. 
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