
Increasing the Instruction Fetch Rate via
Block-Structured Instruction Set Architectures

Eric Hao, Po-Yung Chang, Marks Evers, and Yale N. Patt
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

ehao@eecs.umich.edu

Abstract

To exploit larger amounts of instruction level parallelism,
processors are being built with wider issue widths and larger
numbers offunctional units. Instruction fetch rate must also
be increased in order to effectively exploit the performance
potential of such processors. Block-structured ISAs pro-
vide an effective means of increasing the instruction fetch
rate. We define an optimization, called block enlargement,
that can be applied to a block-structured ISA to increase
the instruction fetch rate of a processor that implements
that ISA. We have constructed a compiler that generates
block-structured ISA code, and a simulator that models the
execution of that code on a block-structured ISA processor
We show that for the SPECint95 benchmarks, the block-
structured ISA processor executing enlarged atomic blocks
outperforms a conventional ISA processor by 12% while us-
ing simpler microarchitectural mechanisms to support wide-
issue and dynamic scheduling.

1. Introduction

To achieve higher levels of performance, processors are
being built with wider issue widths and larger numbers of
functional units. In the past ten years, instruction issue width
has grown from one (MIPS R2000, Sun MicroSpam, Mo-
torola 68020), to two (Intel Pentium, Alpha 2 1064) to four
(MIPS RlOOOO, Sun UltraSparc, Alpha 21164, PowerPC
604). This increase in issue width will continue as proces-
sors attempt to exploit even higher levels of instruction level
parallelism. To effectively exploit the performance poten-
tial of such processors, instruction fetch rate must also be
increased. Because the average basic block size for integer
programs is four to five instructions, processors that aim to
exploit higher levels of instruction level parallelism must be

107%4451/96 $5.00 0 1996 IEEE

able to fetch multiple basic blocks each cycle.

Various approaches have been proposed for increasing
instruction fetch rate from that of a single basic block per
cycle. Some approaches [24, 1, 2, 201 extend the branch
predictor and icache so that multiple branch predictions can
be made each cycle and multiple, non-consecutive cache
lines can be fetched each cycle. However, this extra hard-
ware requires extra stages in the pipeline which will increase
the branch misprediction penalty, decreasing performance.
Other approaches [S, 81 statically predict the direction to
be taken by a program’s branches and then based on those
predictions, use the compiler to arrange the blocks so that
the multiple blocks to be fetched are always placed in con-
secutive cache lines. Although they eliminate the need for
extra hardware, these approaches must rely on the branch
predictions made by a static branch predictor which is usu-
ally significantly less accurate than those made by a dynamic
branch predictor.

This paper presents a solution using block-structured
ISAs that exploits the advantages of both compiler-based and
hardware-based solutions by merging basic blocks together
statically and providing support for dynamic branch predic-
tion. Block-structured ISAs [14, 13, 221 are a new class of
instruction set architectures that were designed to address
the performance obstacles faced by processors attempting to
exploit high levels of instruction level parallelism. The ma-
jor distinguishing feature of a block-structured ISA is that
it defines the architectural atomic unit (i.e. the instruction)
to be a group of operations. These groups of operations
are called atomic blocks. Each operation within the atomic
block corresponds roughly to an instruction in a conven-
tional ISA. This redefinition of the atomic unit enables the
block-structured ISA to simplify many implementation is-
sues for wide-issue processors.

Block-structured ISAs increase the instruction fetch rate
of a processor through the use of an optimization called

191

block enlargement. Block enlargement combines separate
atomic blocks into a single atomic block, increasing the
average size of the program’s atomic blocks. By increasing
the sizes of the atomic blocks, the instruction fetch rate of
the processor is increased without having to fetch multiple
blocks each cycle. Furthermore, the semantics of the block-
structured ISA enable the processor to use a dynamic branch
predictor to predict the successor for each block fetched.
As a result, block-structured ISAs increase the instruction
fetch rate without relying on extra hardware to fetch non-
consecutive blocks out of the icache or foregoing the use of
dynamic branch prediction.

In this paper, we define one instance of a block-structured
ISA for a wide-issue, dynamically scheduled processor. We
have constructed a compiler that generates block-structured
ISA code, and a simulator that models the execution of that
code on a processor with a real branch predictor and a real
icache. We show that for the SPECint95 benchmarks, the
block-structured ISA processor executing enlarged atomic
blocks outperforms a conventional ISA processor by 12%
while using simpler hardware to support wide-issue and
dynamic scheduling.

This paper is organized into five sections. Section 2 gives
an overview of block-structured ISAs, explaining how the
block enlargement optimization works and how it increases
instruction fetch rate. Section 3 discusses other approaches
to increasing instruction fetch rate. Section 4 describes
our block-structured ISA and the compiler and microarchi-
tectural support needed to implement that ISA. Section 5
presents experimental results comparing the performance
of our block-structured ISA to that of a conventional ISA.
Concluding remarks are given in section 6.

2. Block-Structured ISAs

Block-structured ISAs [14, 13,221 were designed to help
solve the performance obstacles faced by wide-issue pro-
cessors. Their major distinguishing feature is that the archi-
tectural atomic unit is defined to be a group of operations.
These groups, known as atomic blocks, are specified by the
compiler. When an atomic block is issued into the machine,
either every operation in the block is executed or none of the
operations in the block are executed. The semantics of the
atomic block enable the block-structured ISA to explicitly
represent the dependencies among the operations within a
block and to list the operations within the block in any order
without affecting the semantics of the block. These fea-
tures simplify the implementation of a wide-issue processor
by simplifying the logic required for recording architectural
state, checking dependencies, accessing the register file, and
routing operations to the appropriate reservation stations.
By reducing hardware complexity, wide-issue implementa-
tions of a block-structured ISA will require fewer hardware

resources than that of a wide-issue implementation of a con-
ventional ISA, resulting in a faster cycle time or a shallower
pipeline. In addition to these benefits, block-structured ISAs
can increase the instruction fetch rate of a processor via the
block enlargement optimization.

Block enlargement is a compiler optimization that in-
creases the size of an atomic block by combining the block
with its control flow successors. Figure 1 illustrates how
block enlargement works. The control flow graph on the left
consists of the atomic blocks A-E, each one ending with a
branch that specifies its successor blocks. These branches
are called trap operations to differentiate them from fault
operations which will be described below. These blocks
are analogous to the basic blocks in a control flow graph
for a conventional ISA. The control flow graph on the right
shows the result of combining atomic block B with its con-
trol flow successors C and D to form the enlarged atomic
blocks BC and BD. Both blocks BC and BD are now control
flow successors to block A.

To support the block enlargement optimization, a new
class of branch operations, the fault operation, is included in
block-structured ISAs. The fault operation takes a condition
and a target. If the condition evaluates to false, the fault
operation has no effect. If the condition evaluates to true,
the execution of the atomic block to which it belongs is
suppressed and the instruction stream is redirected to its
target. When two blocks are combined, the trap operation at
the end of the first block is converted into a fault operation. If
a block is combined with its fall-through successor, then the
condition of the resulting fault operation is the same as the
original trap operation’s condition. If a block is combined
with the target of its trap operation, then the condition of the
resulting fault operation is the complement of the original
trap operation’s condition. The target of the fault operation
is the enlarged block that results from combining the first
block with its other control flow successor. In figure 1, when
blocks B and C are combined, the trap at the end of B is
converted into a fault in block BC. The fault’s condition
is true whenever block D is suppose to follow block B in
the dynamic instruction stream and the fault’s target is BD.
Block BD contains a corresponding fault operation with a
complementary condition and a target that points back to
BC.

The block enlargement optimization requires that the pro-
cessor support speculative execution ‘. This is required
because the operations which compute a fault operation’s
condition may be in the same block as the fault operation.
For example, in figure 1, the operations which compute the
condition for block B’s trap operation may be in block B

1 Satisfying this requirement does not necessarily require that the block-
structured ISA processor include hardware not already found in a con-
ventional ISA processor because any processor that uses dynamic branch
prediction must also support speculative execution, regardless of the ISA
implemented by that processor.

192

dl d2 E 11 e2

BD

dl d2 el e2

Figure 1, Combining atomic blocks into an enlarged atomic block.

itself. As a result, the operations which compute the con-
ditions for block BC and block BD’s fault operations are
in block BC and block BD. To determine the correct suc-
cessor to block A, the processor must speculatively execute
either block BC or block BD and rely on the fault operations
to correct the control flow if the speculation was incorrect.
This assumes that block A’s trap operation specifies that the
al direction is to be taken.

Using the block enlargement optimization and the fault
operation, block-structured ISAs are able to increase the
instruction fetch rate without suffering the disadvantages
associated with traditional approaches. By combining mul-
tiple basic blocks into a single, enlarged atomic block, the
block enlargement optimization increases the instruction
fetch rate without requiring the processor to fetch multiple
non-consecutive cache lines. Furthermore, the use of fault
operations enables the processor to use a dynamic branch
predictor to choose which enlarged block is to be fetched
next. However, for the block enlargement optimization to
be effective, the optimization’s effect on branch prediction
accuracy and icache performance must be carefully consid-
ered. As more basic blocks are combined into an enlarged
block, the probability that a fault operation within that block
is mispredicted increases. Mispredicted fault operations in-
cur an extra penalty not associated with ordinary branch
mispredictions, because they cause all the work in their
block to be discarded. Some of this work may have to be is-
sued and executed again after the correct block is fetched. In
addition, each time a block is combined with its successors,
a separate copy of it is created for each successor. This du-
plication may increase the number of icache capacity misses
during program execution and lower performance. This as-
sumes that all the enlarged blocks formed from combining
the block with its successors are accessed with sufficient

frequency. If an enlarged block is never accessed, then it
is never brought into the icache. The duplication incurred
by such a block has no effect on the icache miss rate or the
memory bandwidth used by the icache.

3. Related work

The majority of the approaches previously proposed for
increasing the instruction fetch rate can be divided into
two categories, compiler-based and hardware-based. The
compiler-based schemes place the basic blocks to be fetched
next to each other in the icache, eliminating the need for ex-
tra hardware. These schemes include trace and superblock
scheduling [5, 81, predicated execution [7, 12, 181, and the
VLIW multi-way jump mechanism [4, 10, 3, 151. The
hardware-based schemes extend the branch predictor and
icache so that multiple branch predictions can be made
each cycle and multiple non-consecutive cache lines can
be fetched each cycle. They include the branch address
cache [24], the collapsing buffer [11, the subgraph-level pre-
dictor [2], the multiple-block ahead branch predictor [20],
and the trace cache [191.

Trace scheduling [S] and superblock scheduling [8] are
compiler optimizations that enlarge the scope in which the
compiler can schedule instructions. They use static branch
prediction to determine the frequently executed program
paths and place the basic blocks along these paths into con-
secutive locations, forming a superblock. The instructions
within the superblock can then by optimized as if they were
in a single basic block. The manner in which superblock
scheduling combines blocks into superblocks is on the sur-
face similar to that of the block enlargement optimization.
The significant difference between the two approaches is that

193

cl c;! d: d2 el e2

dl d2

el e2

Figure 2. Using trace scheduling to combine basic blocks into a trace.

the block enlargement optimization uses dynamic branch
prediction instead of static branch prediction to determine
which basic blocks to fetch together. To illustrate this differ-
ence, figure 2 shows the results of applying block enlarge-
ment and superblock scheduling to the control flow graph
from figure I. The control flow graph on the left is the
result of applying the block enlargement optimization and
is identical to the one in figure 1. The control flow graph
on the right is the result of applying superblock scheduling.
The static branch predictor has predicted that block C is
the most likely successor to block B so blocks B and C are
combined to form a superblock. As a result, block B can
only be fetched with block C. It can never be fetched with
block D. In the block enlargement case, block B is combined
with both of its successors to form enlarged atomic blocks
BC and BD, allowing the dynamic predictor to choose the
most likely combination. This extra degree of freedom pro-
vides a performance advantage for the block enlargement
optimization over superblock scheduling because dynamic
branch predictors usually achieve significantly higher pre-
diction accuracies than static branch predictors.

Predicated execution [7, 12, 181 eliminates program
branches by converting their control dependencies into data
dependencies. Once a basic block’s branch has been elim-
inated, it can be combined with its control flow successors
to form a single basic block. Predicated execution has two
disadvantages. First, it wastes fetch and issue bandwidth
fetching and issuing instructions that are suppressed because
their predicates evaluate to false. Second, by converting an
instruction’s control dependency into a data dependency, the
program’s critical paths may be lengthened. The processor
must now wait for the new data dependency to be resolved
instead of speculatively resolving the control dependency at

fetch time. While predicated execution by itself may not be
an effective mechanism for increasing instruction fetch rate,
it can provide a significant performance benefit when used
in conjunction with speculative execution [1 l] and other
schemes for increasing fetch rate.

The VLIW multi-way jump mechanism [4, 10, 3, 1.51
combines multiple branches from multiple paths in the con-
trol flow graph into a single branch. Using this mechanism,
basic blocks which form a rooted subgraph in the control
flow graph can be combined into a single VLIW instruc-
tion. The branches for these basic blocks are combined
into a single multi-way branch operation. This approach
gives VLIW processors the means to fetch instructions from
multiple basic blocks each cycle. However, because the op-
erations within a VLIW instruction must be independent, it
is critical that the compiler be able to find enough indepen-
dent instructions to fill each VLIW instruction and be able to
schedule the operations which evaluate the condition codes
for the multi-way jump early enough so that the condition
codes are available when the multi-way jump is issued. The
compiler may have to delay the scheduling of certain op-
erations in order to meet these requirements, lowering the
instruction fetch rate of the processor.

The branch address cache [24], the collapsing buffer [I],
the subgraph-level predictor [2], and the multiple-block
ahead branch predictor [20] are hardware schemes that pro-
pose different ways to extend the dynamic branch predictor
so that it can make multiple branch predictions each cy-
cle. Because some of the branches may be predicted to be
taken, these schemes all require the ability to fetch multiple
non-consecutive lines from the icache each cycle. They all
propose to meet this requirement by interleaving the icache.
This general approach has two disadvantages. First, bank

194

conflicts will arise in the icache when fetching multiple lines
from the same bank. To handle this conflict, the fetch for all
but one of the conflicting lines must be delayed. This first
disadvantage can be minimized if the icache is interleaved
with a large enough number of banks. Second, because it is
fetching multiple non-consecutive blocks from the icache,
the processor must determine which instructions from the
fetched cache lines correspond to the desired basic blocks
and reorder the instructions so that they correspond to the or-
der of those basic blocks. The processor will require at least
one additional stage in the pipeline in order to accomplish
these tasks. This additional stage will increase the branch
misprediction penalty, decreasing overall performance.

The trace cache [19] is a hardware-based scheme that
does not require fetching non-consecutive blocks from the
icache. Its fetch unit consists of two parts, a core fetch unit
and a trace cache. The core fetch unit fetches one basic block
each cycle from the icache. The trace cache is a small cache
that records sequences of basic blocks fetched by the core
fetch unit, combining them into a single trace. If the branch
predictor indicates that the sequence of basic blocks to be
fetched matches a trace stored in the trace cache, then the
processor is able to fetch multiple blocks that cycle by using
the specified trace from the trace cache. If no matching trace
is found, the processor is able to fetch only one basic block
that cycle via the core fetch unit. As long as the processor is
fetching its instructions from the trace cache, the trace cache
is an effective means for fetching multiple basic blocks each
cycle without incurring the costs associated with the other
hardware-based approaches.

The trace cache and the block enlargement optimization
are two very similar approaches to increasing instruction
fetch rate. They both combine basic blocks into a single
enlarged block (or trace) and use dynamic branch prediction
to decide which enlarged block to fetch next. The key
difference between them is that the trace cache combines
its basic blocks at run-time while the block enlargement
optimization combines its basic blocks at compile-time. By
combining the blocks at run-time, the trace cache does not
require changes to the instruction set architecture and does
not increase the size of the executable. By combining the
blocks at compile-time, the block enlargement optimization
has the advantage of being able to use the entire icache to
store its enlarged blocks instead of the small cache used in
the trace cache approach.

Multiscalar processors [6, 211 are a new processing
paradigm that does not fall into either the compiler-based or
hardware-based categories. Multiscalar processors consist
of a set of processing elements connected in a ring. Each
processing element executes a task, a set of basic blocks
specified by the compiler. The connecting logic among the
processing elements forwards needed values along the ring
and guarantees that the dependencies among the tasks are

honored. Multiscalar processors eliminate the problem of
fetching multiple cache lines from the icache each cycle by
associating a Li icache with each processing element. Each
processing element accesses its own Ll icache for its task’s
instructions. As long as each icache achieves a sufficient hit
rate, the multiscalar processor is able to fetch the equivalent
work of multiple basic blocks each cycle. However, the
multiscalar model raises new performance issues not found
in traditional wide-issue processors. It is important that the
compiler create tasks so that the work is evenly distributed
and the communication among the tasks does not exceed the
ring bandwidth.

4. Implementation details

4.1. The Block-Structured ISA Specification

We have defined a block-structured ISA that incorpo-
rates a subset of the features described in section 2. This
ISA’s architectural unit is the atomic block. The operations
that can be found in an atomic block correspond to the in-
structions of a load/store architecture with the exception of
conditional branches with direct targets. These branches
are implemented as trap and fault operations. Each atomic
block can contain any number of fault operations, but can
contain at most one trap operation. Although an atomic
block that ends in a trap operation may have more than two
control flow successors, each trap operation specifies only
two targets. The first target points to a block from the set
of potential successor blocks given that the trap condition
is true. The second target points to a block from the set
of potential successor blocks given that the trap condition
is false. Each trap operation also specifies the log of the
total number of control flow successors for the trap’s atomic
block. Section 4.3 describes how the dynamic branch pre-
dictor uses this information to accurately predict the control
how successor for each atomic block.

4.2. The Block-Structured ISA Compiler

We implemented a compiler that is targeted for the block-
structured ISA described above. This compiler is based on
the Intel Reference C Compiler [9] with the back end ap-
propriately retargeted. The Intel Reference C Compiler
generates an intermediate representation of the program be-
ing compiled and applies the standard set of optimizations
to that representation. We implemented a back end that
takes this representation and applies a set of target-specific
optimizations, allocates registers, and executes the block
enlargement pass. During the block enlargement pass, the
compiler attempts to combine as many different combina-
tions of blocks as possible. The compiler begins with the
first block of each function and continues until one of the

195

termination conditions listed below is met. The process is
recursively repeated with the successor blocks of the newly
formed enlarged block. The five termination conditions for
the enlargement process are:

1. Atomic blocks can continue to expand until further
expansion would cause the size of the enlarged block
to exceed processor issue width. We restrict the max-
imum block size to the issue width in this block-
structured ISA so as to avoid the complexity of sup-
porting atomic blocks that require more than one cycle
to issue. For our experiments the maximum block size
will always be sixteen.

2. Each atomic block can contain at most two fault oper-
ations, which restricts the number of successor blocks
for each block to at most eight. This restriction helps
reduce the size of the branch predictor (see section 4.3)
without significantly reducing the fetch bandwidth
used.

3. Blocks that are connected via a call, return, or indi-
rect jump cannot be combined. Mechanisms to sup-
port multiple successor candidates for such operations
have not yet been developed.

4. Separate loop iterations are not combined into en-
larged blocks. This restriction helps reduce the code
expansion due to block enlargement without signifi-
cantly affecting performance.

5. Blocks in library functions are not combined. Cur-
rently, we do not have the source code for our system
library functions so we are not able to recompile them
with the block enlargement optimization.

4.3. The Block-Structured ISA Processor

The block-structured ISA processor modeled in our ex-
periments is a sixteen-wide issue, dynamically scheduled
processor that implements the HPS execution model [16,
171. The processor supports speculative execution as re-
quired by block-structured ISAs (see section 2). It can fetch
and issue one atomic block each cycle. Each atomic block
can contain up to sixteen operations. Dynamic register re-
naming removes any anti and output dependencies in the
dynamic instruction stream. The processor can hold up to
32 atomic blocks at a time, equaling a maximum of 512
operations. As soon as its operands are all ready, an is-
sued operation is scheduled for execution on one of sixteen
uniform functional units whose latencies are listed in ta-
ble 1. The processor has a 16KB Ll dcache and a perfect
L2 dcache with a six cycle access time. The size of the pro-
cessor’s Ll icache is varied in our experiments, but the L2

196

Instruction
Class
Integer
FP Add
FP/lNT Mul
FIVINT Div
Load
Store
Bit Field
Branch

Exec.
Lat.

1
3
3
8
2

1
1

Description
INT add, sub and logic OPs
F’P add, sub, and convert
FP mul and INT mu1
FP div and INT div
Memory loads
Memory stores
Shift, and bit testing
Control instructions

Table 1. Instruction classes and latencies

icache is always modeled as perfect with a six cycle access
time.

To predict the next atomic block to be fetched, the block-
structured ISA processor uses a predictor based on the Two-
Level Adaptive Branch Predictor [25]. Because each atomic
block may contain multiple branches, the block-structured
ISA predictor must be able to implicitly make multiple
branch predictions each cycle. To do this, the Two-Level
Adaptive Branch Predictor must be modified in three ways:

1. The size of each BTB entry must be increased so that it
can store all the possible control flow successors for an
atomic block.. For our simulations, this number will
be eight. When the atomic block is first encountered,
the two explicitly specified targets in its trap operation
are stored in the BTB. The remaining six targets are
filled in to the BTB as they are encountered due to
fault mispredictions.

2. Because each block can have up to eight control flow
successors, the predictor must now produce a three bit
prediction instead of a one bit prediction to select the
predicted successor block. To do this, the pattern his-
tory table (PHT) entry is modified to hold additional
counters to predict the fault operations in addition to
the normal two-bit counter which will now be used to
predict the trap direction.

3. The branch history register (BHR) should be updated
each cycle with a varying number of history bits, be-
cause the number of branches predicted each cycle
varies. When predicting the control flow successor
to an atomic block with only two control flow suc-
cessors, the branch predictor is predicting the direc-
tion taken by exactly one branch and only one bit is
needed to uniquely identify that prediction. How-
ever, if the BHR is updated with the entire three bit
prediction value, then two potentially useful history
bits will be unnecessarily shifted out of the BHR. To
prevent this unnecessary loss of branch history, the

block-structured ISA predictor shifts in the minimum
number of history bits required to uniquely identify
the current prediction. This number is specified in
the corresponding trap operation (see section 4.1) and
stored in the BTB.

5. Experimental results

To evaluate the performance advantages of block-
structured ISAs, we compared the performance of the im-
plementation of our block-structured ISA described in sec-
tion 4.3 to an identically configured implementation of a
conventional ISA. The two implementations had the same
number of functional units, cycle times, icache size, and
dcache size. In reality, the reduction in hardware complex-
ity provided by block-structured ISAs would have enabled
the implementation for the block-structured ISA to either
have had a faster cycle time or a shallower pipeline than that
of the conventional ISA implementation. As a result, the
performance gains measured were more conservative than
they otherwise would have been.

The conventional ISA implemented was the load/store
ISA that formed the basis of our block-structured ISA. This
eliminated any architectural advantages the block-structured
ISA may have had over the conventional ISA with the excep-
tion of those due to block-structuring. To generate the con-
ventional ISA executables, we used a variant of the block-
structured ISA compiler that was retargeted to the conven-
tional ISA. This eliminated any unfair compiler advantages
one ISA may have had over the other.

Table 2 lists the eight SPECint95 benchmarks used for
our comparison ‘, along with the input data sets, and the
number of conventional ISA instructions required to run
each benchmark to completion.

Figure 3 compares the performance of the block-
structured ISA executables to the performance of the con-
ventional ISA executables when using a 64KB, four-way set
associative Ll icache. Although current day Ll icache sizes
are on the order of 8-16KB, advances in device densities
will make 64KB Ll icaches feasible for future processors.
The graph shows the total number of cycles required to ex-
ecute each benchmark. With the exception of the go bench-
mark, each block-structured ISA executable outperformed
the corresponding conventional ISA executable. The block
enlargement optimization reduced the execution time on av-
erage by 12.3%, with reductions that ranged from 7.2% for
gee to 19.9% for m88ksim. The go benchmark showed a

%e SPECfp95 floating point benchmarks were omitted from the study
because our work has focused on extracting instruction level parallelism
from non-scientific programs that represent everyday applications, where
the parallelism is irregularly distributed and harder to extract. We note that
block-structured ISAs should be able to achieve even larger performance
gains for the floating point benchmarks.

Benchmark Input # of Instructions
compress test.in* 103,015,025

SC jump.i 154,450,036
go 2stone9.in’ 125,637,006

ijpeg specmun.ppm* 206,802,135
m88sim dcrand.train 120,738,195

perl scrabbl.pl* 78,148,849
vortex vortex.big* 232,003,378
xlisp train.lsp 187,727,922

1

J

Table 2. The SPECint95 benchmarks and their
input data sets. * indicates the input set is
an abbreviated version of the SPECint95 ref-
erence input set.

80

1 h 7o
-Conventional ISA
- Block-Structured ISA

g&z cokp io ijieg ii mi8k p&l vo&ex
Benchmark

Figure 3. Performance comparison of block-
structured ISA executables and conventional
ISA executables.

1.5% increase in execution time which was due to increased
icache misses, as will be shown below.

To measure the performance impact of branch mispredic-
tions on block-structured ISAs, figure 4 shows the same per-
formance comparison as figure 3 except that perfect branch
prediction is assumed. With perfect branch prediction, the
average reduction in execution time is increased to 19.1%.
Because both block-structured and conventional ISA exe-
cutables incur about the same number of branch mispre-
dictions, the increase in performance difference between
the two ISAs indicates that branch mispredictions are more
costly for block-structured ISAs. This is because good work
must be removed from the machine for a fault misprediction
and because the block-structured ISA is capable of fetching
and issuing more work each cycle, increasing the perfor-
mance loss for each cycle of branch misprediction penalty.

Figure 5 shows the average block size issued during exe-

197

-Conventional ISA
-Block-Structured ISA

g& coknp ijieg mg8k per1 vortex
Benchmark

Figure 4. Performance comparison of block-
structured ISA executables and conven-
tional ISA executables while assuming per-
fect branch prediction.

16

1 -Conventional ISA
- Block-Structured ISA

gic camp ijpeg ii m88k pert vortex
Benchmark

Figure 5. Average block sizes for block-
structured and conventional ISA executables.

cution of each of the block-structured ISA and conventional
ISA executables. Blocks that were not retired (i.e. that were
issued after a branch misprediction) were not counted toward
the average. Across all eight benchmarks, the average block
sizes for the conventional ISA and block-structured ISA ex-
ecutables were 5.2 and 8.2 instructions. Despite increasing
the block size by 58%, the block enlargement optimization
still has left almost half the processors fetch bandwidth un-
used. The major reason why block enlargement was unable
to create larger blocks was the occurrence of procedure calls
and returns (see section 4.2). Their occurrence eliminated
many opportunities for further block enlargement.

As discussed in section 2, by duplicating blocks, the
block enlargement optimization may decrease the perfor-
mance of the icache. To quantify this effect, we measured
for each benchmark, the relative increase in execution time
for a given icache size as compared to a perfect icache.

0.6
1 - 16KB

m 32KB
- 64KB

-1-J.
gee camp go ijpeg Ii m88k per1 vortex

Benchmark

Figure 6. Relative increase in execution times
for the conventional ISA executables over the
execution time with a perfect icache.

0.6

- 16KB
.111 “, 0.5 E = 32KB

gee camp go ijpeg Ii m88k per1 vortex
Benchmark

I Figure 7. Relative increase in execution times
for the block-structured ISA executables over
the execution time with a perfect icache.

This study did not model the icache effects due to operat-
ing system code. These effects may further decrease icache
performance [23]. Figures 6 and 7 show the results of these
comparisons for icache sizes from 16KB to 64KB. With the
exception of the small benchmarks (compress, li, and ijpeg),
the block-structured ISA executables show much larger per-
formance decreases due to icache misses than the conven-
tional ISA executables. The decrease is greatest in the gee
and go benchmarks which have many small basic blocks
and many unbiased branches. As a result, by combining all
the frequently executed combinations of basic blocks into
enlarged blocks, the block-structured ISA executables for
these benchmarks use significantly more icache space than
the conventional ISA executables.

198

6. Conclusions

In this paper, we examined the performance benefits of
using a block-structured ISA to increase the processor in-
struction fetch rate. Through the block enlargement op-
timization, the atomic blocks of the block-structured ISA
could be combined to form larger blocks. As a result, larger
units of work could be fetched from the icache each cycle
without having to fetch non-consecutive cache lines. Fur-
thermore, the block-structured ISA provides support for the
use of dynamic branch prediction in selecting the successor
block, rather than restricting the processor to static branch
prediction.

We defined one instance of a block-structured ISA and
implemented a compiler targeted to that ISA and a sim-
ulator to model the performance of a sixteen wide issue,
dynamically scheduled processor that implements that ISA.
Using this compiler and simulator, we compared the per-
formance of programs executing on a block-structured ISA
processor to the performance of programs executing on a
conventional ISA processor for the SPECint95 benchmarks.
The block-structured ISA processors achieved a 12% per-
formance improvement over conventional ISA processors.
This performance difference increased to 20% when perfect
branch prediction was assumed. These performance im-
provements were due to the block enlargement optimization
increasing the average block size from 5.2 instructions to
8.2 instructions. We also examined the block enlargement
optimization’s effect on icache performance. Because the
block enlargement optimization duplicates blocks, the num-
ber of icache misses was larger for the block-structured ISA
executables than for the conventional ISA executables. The
difference was most significant for the gee and go bench-
marks.

The experimental results point to future directions in
which the performance of processors implementing block-
structured ISAs can be improved. Improving the branch
prediction accuracy and icache hit rate and more fully uti-
lizing the fetch bandwidth of the processor will further in-
crease the performance difference between block-structured
ISAs and conventional ISAs. Possibilities for achieving
these goals include predicated execution, profiling, and in-
lining. Predicated execution can reduce the performance
lost due to n-&predicted branches by eliminating hard to
predict branches. In addition, predicated execution can in-
crease the fetch bandwidth used by eliminating branches
that jump around small sections of the code. This optimiza-
tion will create larger basic blocks which in turn will allow
the block enlargement optimization to create even larger en-
larged atomic blocks. Profiling can improve the icache hit
rate by guiding the compiler’s use of the block enlargement
optimization. The amount of code duplication caused by
the block enlargement optimization can be reduced if this

optimization does not combine blocks that contain unbiased
branches with their successors, thereby reducing the icache
miss rate in exchange for smaller enlarged atomic blocks. In-
lining can increase the fetch bandwidth used by eliminating
procedure calls and returns, allowing the block enlargement
optimization to combine blocks that previously could not
be combined. In addition, using block-structured ISAs in
conjunction with another fetch rate enhancing mechanism,
such as the trace cache [191, may lead to even higher fetch
rates without sacrificing icache performance.

We also plan to measure the performance gains that can
be achieved by block-structured ISAs for scientific code.
Those performance gains should be even greater than the
gains achieved for the SPECint95 benchmarks because the
branches that occur in scientific code are more predictable
and the basic blocks are larger. These differences will reduce
the performance penalty suffered by block-structured ISAs
for branch mispredictions and increase the size of the blocks
formed by the block enlargement optimization, resulting in
even higher levels of performance.

This study focused on the improvements in instruction
fetch rate provided by block-structured ISAs, ignoring the
implementation benefits provided by block-structured ISAs.
By reducing the hardware complexity of various microar-
chitectural mechanisms, block-structured ISAs enable the
implementation of extremely wide issue processors. The
performance benefits of these features would further in-
crease the performance advantage of block-structured ISA
processors over conventional ISA processors. In addition,
as new algorithms are developed that increase the instruc-
tion level parallelism in programs that use them, the ability
to implement wide issue processors will become even more
important.

Acknowledgments

This paper is one result of our ongoing research in high
performance computer implementation at the University of
Michigan. The support of our industrial partners: Intel,
Motorola, Hewlett-Packard, and NCR is greatly appreciated.
We would also like to thank all the members of the HPS
group for their contributions to this paper and the reviewers
for their helpful suggestions.

References

[I] T. M. Conte, K. N. Menezes, P. M. Mills, andB. Patel. Opti-
mization of instruction fetch mechanisms for high issue rates.
In Proceedings of the 22st Annual Internutional Symposium
on ComputerArchitecture, pages 333-344,199.5.

[2] S. Dutta and M. Franklin. Control flow prediction with tree-
like subgraphs for superscalar processors. In Proceedings
of the 28th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 258-263, 1995.

199

[3] K. Ebcioglu. Some design ideas for a VLIW architecture
for sequential natured software. Parallel Processing (Pro-
ceedings of IFIP WG 10.3 Working Conference on Parallel
Processing, pages 3-21, Apr. 1988.

[4] J. A. Fisher. 2”-way jump microinstruction hardware and
an effective instruction binding method. In Proceedings of
the 13thAnnualMicroprogramming Workshop,pages 64-75,
1980.

[S] J. A. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. IEEE Transactions on Computers, C-
30(7):478-490, July 198 1.

[6] M. Franklin and G. S. Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism. In Proceed-
ings of the 19th Annual International Symposium on Com-
puter Architecture, pages 58-67, 1992.

[7] P. Hsu and E. Davidson. Highly concurrent scalar processing.
In Proceedings of the 13th Annual International Symposium
on Computer Architecture, 1986.

[8] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,T. Kiy-
ohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The su-
perblock: An effective technique for VLIW and superscalar
compilation. Journal of Supercomputing, 7(9-50). 1993.

[9] Intel Corporation. Intel Reference C Compiler User’s Guide
for UNIX Systems, 1993.

[IO] K. Karplus and A. Nicolau. Efficient hardware for multi-way
jumps and prefetches. In Proceedings of the 18th Annual
Microprogramming Workshop, pages 11-I 8,1985.

[1 I] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal,
D. M. Gallagher, and W. W. Hwu. Characterizing the impact
of predicated execution on branch prediction. In Proceedings
of the 27th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 217-227,1994.

[121 S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicatedexecu-
tion using the hyperblock. In Proceedings of the 25thAnnual
ACM/IEEE International Symposium on Microarchitecture,
pages 4%54,1992.

[131 S. Melvin and Y. Patt. Enhancing instruction scheduling with
a block-structured ISA. International Journal on Parallel
Processing, 23(3):221-243,1995.

U4] S. Melvin and Y. N. Patt. Exploiting fine-grained parallelism
through a combination of hardware and software techniques.
In Proceedings of the 18th Annual International Symposium
on Computer Architecture, pages 287-297,199l.

[15] S.-M. Moon and K. Ebcioglu. An efficient resource-
constrained global scheduling technique for superscalar and
VLIW processors. In Proceedings of the 25th Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 55-7 1,1992.

[161 Y. Pan, W. Hwu, and M. Shebanow. HPS, a new microarchi-
tecture: Rationale and introduction. In Proceedings of the
18th Annual Microprogramming Workshop, pages 103-107,
1985.

[171 Y. N. Patt, S. W. Melvin, W. Hwu, and M. C. Shebanow. Criti-
cal issues regarding HPS, a high performance microarchitec-
ture. In Proceedings of the 18th Annual Microprogramming
Workshop, pages 109-l 16,1985.

[181 D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and
dynamic branch prediction in dynamic ILP processors. In
Proceedingsof the 2lstAnnual International Symposium on
Computer Architecture, pages 120-l 29, 1994.

[19] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache; A
low latency approach to high bandwidth instruction fetching.
Technical Report 13 10, University of Wisconsin - Madison,
Apr. 1996.

[20] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-
block ahead branch predictors. In Proceedings of the 7th
International Conference on Architectural Support for Prw-
gramming Languages and Operating Systems, 1996. To
appear.

[21] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22st Annual International
Symposium on Computer Architecture, 1995.

[22] E. Sprangle and Y. Patt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme.
In Proceedings of the 27th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 143-147,1994.

231 R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer.
Instruction fetching: Coping with code bloat. In Proceedings
of the 22st Annual International Symposium on Computer
Architecture, pages 345-356, 1995.

241 T.-Y. Yeh, D. Marr, and Y. N. Patt. Increasing the instruction
fetch rate via multiple branch prediction and branch address
cache. In Proceedings of the International Conference on
Supercomputing, pages 67-76, 1993.

[25 81 T.-Y. Yeh and Y. N. Patt. ‘Iwo-level adaptive branch pre-
diction. In Proceedings of the 24th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, pages 51-61,
1991.

200

