
Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt}@ece.utexas.edu

Abstract

While runahead execution is effective at parallelizing indepen-
dent long-latency cache misses, it is unable to parallelize dependent
long-latency cache misses. To overcome this limitation, this paper
proposes a novel technique, address-value delta (AVD) prediction.
An AVD predictor keeps track of the address (pointer) load instruc-
tions for which the arithmetic difference (i.e., delta) between the ef-
fective address and the data value is stable. If such a load instruction
incurs a long-latency cache miss during runahead execution, its data
value is predicted by subtracting the stable delta from its effective
address. This prediction enables the pre-execution of dependent in-
structions, including load instructions that incur long-latency cache
misses. We describe how, why, and for what kind of loads AVD pre-
diction works and evaluate the design tradeoffs in an implementable
AVD predictor. Our analysis shows that stable AVDs exist because
of patterns in the way data structures are allocated in memory. Our
results show that augmenting a runahead processor with a simple,
16-entry AVD predictor improves the average execution time of a set
of pointer-intensive applications by 12.1%.

1. Introduction

Main memory latency is a major performance limiter in current
high-performance microprocessors. As the improvement in DRAM
memory speed has not kept up with the improvement in processor
speed, aggressive high-performance processors are currently facing
DRAM latencies of hundreds of processor cycles [28, 26]. The gap
between the processor and DRAM memory speed and the resulting
negative impact of memory latency on processor performance are ex-
pected to continue to increase [29, 28]. Therefore, innovative tech-
niques to tolerate long-latency main memory accesses are needed
to improve the performance of memory-intensive application pro-
grams. As energy/power consumption has already become a limiting
constraint in the design of high-performance processors [9], simple
power- and area-efficient memory latency tolerance techniques are
especially desirable.

Runahead execution [6, 18] is a promising technique that was
recently proposed to tolerate long main memory latencies. This
technique speculatively pre-executes the application program while
a long-latency data cache miss is being serviced, instead of stalling
the processor for the duration of the long-latency miss. In runahead
execution [18], if a long-latency (L2 cache miss) load instruction be-
comes the oldest instruction in the instruction window, it triggers the
processor to checkpoint its architectural state and switch to a purely
speculative processing mode called runahead mode. The proces-
sor stays in runahead mode until the cache miss that initiated runa-
head mode is serviced. During runahead mode, instructions inde-
pendent of the pending long-latency cache misses are speculatively

pre-executed. Some of these pre-executed instructions cause long-
latency cache misses, which are serviced in parallel with each other
and the runahead-causing cache miss. Hence, runahead execution
improves latency tolerance and performance by allowing the paral-
lelization of independent long-latency cache misses that would oth-
erwise not have been generated because the processor would have
stalled. The parallelization of independent long-latency cache misses
has been shown to be the major performance benefit of runahead ex-
ecution [19, 3].

Unfortunately, a runahead execution processor cannot parallelize
dependent long-latency cache misses. A runahead processor can-
not pre-execute instructions that are dependent on the pending long-
latency cache misses during runahead mode, since the data values
they are dependent on are not available. These instructions are des-
ignated as bogus (INV) and they mark their destination registers as
INV so that the registers they produce are not used by instructions
dependent on them. Hence, runahead execution is not able to paral-
lelize two long-latency cache misses if the load instruction generat-
ing the second miss is dependent on the load instruction that gener-
ated the first miss.1 These two misses need to be serviced serially.
Therefore, the full-latency of each miss is exposed and the latency
tolerance of the processor cannot be improved by runahead execu-
tion. Applications and program segments that heavily utilize linked
data structures (where many load instructions are dependent on pre-
vious loads) therefore cannot significantly benefit from runahead ex-
ecution. In fact, for some pointer-chasing applications, runahead ex-
ecution reduces performance due to its overheads and significantly
increases energy consumption due to the increased activity caused
by the pre-processing of useless instructions.

In order to overcome the serialization of dependent long-latency
cache misses, techniques to parallelize dependent load instructions
are needed. These techniques need to focus on predicting the values
loaded by address (pointer) loads, i.e. load instructions that load an
address that is later dereferenced. Several dynamic techniques have
been proposed to predict the values of address loads [15, 24, 1, 4]
or to prefetch the addresses generated by them [22, 23, 4]. Unfor-
tunately, to be effective, these techniques require a large amount of
storage and complex hardware control. As energy/power consump-
tion becomes more pressing with each processor generation, simple
techniques that require small storage cost become desirable and nec-
essary. Our goal in this paper is to devise a technique that reduces the
serialization of dependent long-latency misses without significantly
increasing the hardware cost and complexity.

We propose a simple, implementable, novel mechanism, address-
value delta (AVD) prediction, that allows the parallelization of de-
pendent long-latency cache misses. The proposed technique learns

1Two dependent load misses cannot be serviced in parallel in a conven-
tional out-of-order processor either.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

the arithmetic difference (delta) between the effective address and
the data value of an address load instruction based on the previous
executions of that load instruction. Stable address-value deltas are
stored in a prediction buffer. When a load instruction incurs a long-
latency cache miss, if it has a stable address-value delta in the pre-
diction buffer, its data value is predicted by subtracting the stored
delta from its effective address. This predicted value enables the pre-
execution of dependent instructions, including load instructions that
incur long-latency cache misses. We provide source-code examples
showing the common code structures that cause stable address-value
deltas, describe the implementation of a simple address-value delta
predictor, and evaluate its performance benefits on a runahead execu-
tion processor. We show that augmenting a runahead processor with
a simple, 16-entry (102-byte) AVD predictor improves the execution
time of a set of pointer-intensive applications by 12.1%.

2. Motivation

Our goal is to increase the effectiveness of runahead execution
with a simple prediction mechanism that overcomes the inability
to parallelize dependent long-latency cache misses during runahead
mode. We demonstrate that focusing on this limitation of runahead
execution has potential to improve processor performance. Figure 1
shows the potential performance improvement possible if runahead
execution were able to parallelize all the dependent long-latency
cache misses that can be generated by instructions that are pre-
processed during runahead mode. This graph shows the execution
time for four processors on memory- and pointer-intensive bench-
marks from Olden and SPEC INT 2000 benchmark suites:2 from left
to right, (1) a processor with no runahead execution, (2) the baseline
processor, which employs runahead execution, (3) an ideal runahead
processor, which can parallelize dependent L2 cache misses (This
processor is simulated by obtaining the correct effective address of
all L2-miss load instructions using oracle information during runa-
head mode. Thus, L2 misses dependent on previous L2 misses can
be generated during runahead mode using oracle information. This
processor is not implementable, but it is intended to demonstrate the
performance potential of parallelizing dependent L2 cache misses.),
(4) a processor with perfect (100% hit rate) L2 cache. Execution
times are normalized to the baseline processor. The baseline runa-
head processor improves the average execution time of the processor
with no runahead execution by 27%. The ideal runahead processor
improves the average execution time of the baseline runahead pro-
cessor by 25%, showing that significant performance potential exists
for techniques that enable the parallelization of dependent L2 misses.
Table 1, which shows the average number of L2 cache misses initi-
ated during runahead mode, provides insight into the performance
improvement possible with the ideal runahead processor. This ta-
ble shows that the ideal runahead processor significantly increases
the memory-level parallelism (the number of useful L2 cache misses
parallelized3) in a runahead period.

Figure 1 also shows that for two benchmarks (health and tsp)
runahead execution is ineffective. These two benchmarks have par-
ticularly low levels of memory-level parallelism, since their core al-
gorithms consist of traversals of linked data structures in which al-

2Section 6 describes the processor model and the benchmarks.
3A useful L2 cache miss is an L2 cache miss generated during runahead

mode that is later needed by a correct-path instruction in normal mode. Only
L2 line (block) misses that cannot already be generated by the processor’s
fixed-size instruction window are counted.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

no runahead
baseline (runahead)
ideal runahead
perfect L2

2.66

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 1. Performance potential of runahead execution.

most all load instructions are dependent on previous load instruc-
tions. Due to the scarcity of independent long-latency cache misses
(as shown in Table 1), conventional runahead execution cannot sig-
nificantly improve the performance of health and tsp. In fact, the
overhead of runahead execution results in 4% performance loss on
health. In contrast, the ideal runahead processor provides signif-
icant performance improvement on these two benchmarks (88% on
health and 32% on tsp), alleviating the ineffectiveness of con-
ventional runahead execution.

3. AVD Prediction: The Basic Idea
We have observed that some load instructions exhibit stable re-

lationships between their effective addresses and the data values
they load. We call this stable relationship the address-value deltas
(AVDs). We define the address-value delta of a dynamic instance of
a load instruction L as:

AV D(L) = Effective Address of L − Data V alue of L

Figure 2 shows an example load instruction that has a stable AVD
and how we can utilize AVD prediction to predict the value of that
load in order to enable the execution of a dependent load instruc-
tion. The code example in this figure is taken from the health
benchmark. Load 1 frequently misses in the L2 cache and causes
the processor to enter runahead mode. When Load 1 initiates entry
into runahead mode in a conventional runahead processor, it marks
its destination register as INV (bogus). Load 2, which is dependent
on Load 1, therefore cannot be executed during runahead mode. Un-
fortunately, Load 2 is also an important load that frequently misses
in the L2 cache. If it were possible to correctly predict the value of
Load 1, Load 2 could be executed and the L2 miss it causes would
be serviced in parallel with the L2 miss caused by Load 1, which
initiated entry into runahead mode.

Figure 2b shows how the value of Load 1 can be accurately pre-
dicted using an AVD predictor. In the first three executions of Load
1, the processor calculates the AVD of the instruction. The AVD of
Load 1 turns out to be stable and it is recorded in the AVD predictor.
In the fourth execution, Load 1 misses in the L2 cache and causes
entry into runahead mode. Instead of marking the destination regis-
ter of Load 1 as INV, the processor accesses the AVD predictor with
the program counter of Load 1. The predictor returns the stable AVD
corresponding to Load 1. The value of Load 1 is predicted by sub-
tracting the AVD returned by the predictor from the effective address
of Load 1 such that:

Predicted V alue = Effective Address − Predicted AV D

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Table 1. Average number of useful L2 cache misses generated (parallelized) during a runahead period.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44
ideal runahead 4.58 8.43 8.77 2.06 2.87 4.42 1.43 12.75 1.56 2.79 1.19 4.62

while (list != NULL) {
 // ...

 // ...

 // ...

}

Iteration

Iteration 1

Iteration 3
Iteration 2

Iteration 4

L2 miss

No
No
No

Value AVD

0x40
0x40
0x40

Predicted to be
0x40

Yes

Predicted to beCauses entry into
runahead mode

(b) Execution history of Load 1(a) Code example

Effective Addr

0x8e2bd44 0x8e2bd04
0x8e31274 0x8e31234
0x8e18c74 0x8e18c34
0x8e1a584

0x8e1a584 − 0x40 = 0x8e1a544

 p = list−>patient;

 t = p−>time;

 list = list−>forward;

// Load 1 − causes 67% of all runahead entries

// Load 3

// Load 2 − dependent on load 1, frequently causes L2 misses

Figure 2. Source code example showing a load instruction with a stable AVD (Load 1) and its execution history.

The predicted value is written into the destination register of Load
1. The dependent instruction, Load 2, reads this value and is able
to calculate its address. Load 2 accesses the cache hierarchy with
its calculated address and it may generate an L2 cache miss which
would be serviced in parallel with the L2 cache miss generated by
Load 1.

Note that Load 1 in Figure 2 is an address (pointer) load. We
distinguish between address loads and data loads. An address load
is a load instruction that loads an address into its destination reg-
ister that is later used to calculate the effective address of itself or
another load instruction (Load 3 is also an address load). A data
load is a load whose destination register is not used to calculate the
effective address of another load instruction (Load 2 is a data load).
We are interested in predicting the values of only address loads, not
data loads, since address loads -by definition- are the only load in-
structions that can lead to the generation of dependent long-latency
cache misses. In order to distinguish address loads from data loads in
hardware, we bound the values AVD can take. We only consider pre-
dicting the values of load instructions that have -in the past- satisfied
the equation:

−MaxAV D ≤ AV D(L) ≤ MaxAV D

where MaxAV D is a constant set at the design time of the AVD
predictor. In other words, in order to be identified as an address load,
the data value of a load instruction needs to be close enough to its
effective address. If the AVD is too large, it is likely that the value
that is being loaded by the load instruction is not an address.4 Note
that this mechanism is similar to the mechanism proposed by Cook-
sey et al. [5] to identify address loads in hardware. Their mechanism
identifies a load as an address load if the upper N bits of the effective
address of the load match the upper N bits of the value being loaded.

4. Why Do Stable AVDs Occur?

Stable AVDs occur due to the regularity in the way data struc-
tures are allocated in memory by the program, which is sometimes
accompanied by the regularity in the input data to the program. We
examine the common code constructs in application programs that
give rise to regular memory allocation patterns that result in stable

4An alternative mechanism is to have the compiler designate the address
loads with a single bit augmented in the load instruction format of the ISA.
We do not explore this option since our goal is to design a simple purely-
hardware mechanism that requires no software or ISA support.

AVDs for some address loads. For our analysis, we distinguish be-
tween what we call traversal address loads and leaf address loads.
A traversal address load is a static load instruction that produces an
address that is later consumed by itself or another address load, such
as in a linked list or tree traversal, p = p->next (e.g., Load 3 in
Figure 2 is a traversal address load). A leaf address load produces an
address that is later consumed by a data load (e.g., Load 1 in Figure 2
is a leaf address load).

4.1. Stable AVDs in Traversal Address Loads

A traversal address load may have a stable AVD if there is a pat-
tern to the allocation and linking of the nodes of a linked data struc-
ture. If the allocation of the nodes is performed in a regular fashion,
the nodes will have a constant distance in memory from one another.
If a traversal load instruction later traverses the linked data structure
nodes that have the same distance from one another, the traversal
load can have a stable AVD.

Figure 3 shows an example from treeadd, a benchmark whose
main data structure is a binary tree. In this benchmark, a binary tree
is allocated in a regular fashion using a recursive function where a
node is allocated first and its left child is allocated next (Figure 3a).
Each node of the tree is of the same size. The layout of an exam-
ple resulting binary tree is shown in Figure 3b. Due to the regularity
in the allocation of the nodes, the distance in memory of each node
and its left child is constant. The binary tree is later traversed us-
ing another recursive function (Figure 3c). Load 1 in the traversal
function traverses the nodes by loading the pointer to the left child
of each node. This load instruction has a stable AVD as can be seen
from its example execution history (Figure 3d). Load 1 has a stable
AVD, because the distance in memory of a node and its left child is
constant. We found that this load causes 64% of all entries into runa-
head mode and predicting its value correctly enables the generation
of dependent L2 misses (generated by the same instruction) during
runahead mode. Similar traversal loads with stable AVDs exist in
twolf, mst, and vpr, which employ linked lists, and bisort,
perimeter, tsp, and voronoi, which employ binary- or quad-
trees.

As evident from this example, the stability of AVDs in traversal
address loads is also dependent on the behavior of the memory allo-
cator. If the memory allocator allocates memory chunks in a regu-
lar fashion (e.g., allocating fixed-size chunks from a contiguous sec-
tion of memory), the likelihood of the occurrence of stable AVDs
increases. On the other hand, if the behavior of the memory alloca-

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

int TreeAdd(treeNode *t) {
if (t == 0)

return 0;
else {

leftval = TreeAdd(tleft);

rightval = TreeAdd(tright);
// ...

}
}

tright = t−>right; // Load 2

if (level == 0)
 return NULL;
else {
 new = (treeNode *) malloc (...);
 left = TreeAlloc(...);
 right = TreeAlloc(...);
 new−>left = left;
 new−>right = right;
 return new;
}

}

treeNode* TreeAlloc(level) {
// ...

(a) Source code of the recursive function
 that allocates the binary tree

(b) Layout of the binary tree in memory
(A is the address of the root node)

(c) Source code of the recursive function (d) Execution history of
Load 1that traverses the tree

Eff. Addr

A

Value

A+k

A+2k

AVD

−k

−k

−k

A

A+k

A+2k

k = size of each node

A+3kA+2k

A+k
...A+5k

A+8k

A+4k A+6kA+3k A+7k

NULL

tleft = t−>left; // Load 1

Figure 3. An example from treeadd showing how stable AVDs can occur for traversal address loads.

tor is irregular, the distance in memory of a node and the node(s) it
is linked to may be totally unpredictable; hence, the resulting AVDs
would not be stable.

We also note that stable AVDs occurring due to the regularity in
the allocation and linking of the nodes can disappear if the linked
data structure is significantly re-organized during run-time, unless
the re-organization of the data structure is performed in a regular
fashion. Therefore, AVD prediction may not work for traversal ad-
dress loads in applications that require extensive modifications to the
linkages in linked data structures.

4.2. Stable AVDs in Leaf Address Loads

A leaf address load may have a stable AVD if the allocation of a
data structure node and the allocation of a field that is linked to the
node via a pointer are performed in a regular fashion. We show two
examples to illustrate this behavior.

Figure 4 shows an example from parser, a benchmark that
parses an input file and looks up the parsed words in a dictionary. The
dictionary is constructed at the startup of the program. It is stored as
a sorted binary tree. Each node of the tree is a Dict node struc-
ture that contains a pointer to the string corresponding to it as one
of its fields. Both Dict node and string are allocated dynam-
ically as shown in Figure 4a. First, memory space for string is
allocated. Then, memory space for Dict node is allocated and it
is linked to the memory space of string via a pointer. The layout
of an example dictionary is shown in Figure 4b. In contrast to the
binary tree example from treeadd, the distance between the nodes
of the dictionary in parser is not constant because the allocation
of the dictionary nodes is performed in a somewhat irregular fashion
(not shown in Figure 4) and because the dictionary is kept sorted.
However, the distance in memory between each node and its associ-
ated string is constant. This is due to the behavior of the xalloc
function that is used to allocate the strings in combination with
regularity in input data. We found that xalloc allocates a fixed-
size block of memory for the string, if the length of the string is
within a certain range. As the length of most strings falls into that
range (i.e., the input data has regular behavior), the memory spaces
allocated for them are of the same size.5

Words are later looked up in the dictionary using the
rabridged lookup function (Figure 4c). This function recur-

5The code shown in Figure 4a can be re-written such that memory space
for a Dict node is allocated first and the memory space for its associated
string is allocated next. In this case, even though the input data may not be
regular, the distance in memory of each node and its associated string would
be constant. We did not perform this optimization in our evaluations.

sively searches the binary tree and checks whether the string of
each node is the same as the input word s. The string in each
node is loaded by Load 1 (dn->string), which is a leaf address
load that loads an address that is later dereferenced by data loads in
the dict match function. This load has a stable AVD, as shown in
its example execution history, since the distance between a node and
its associated string is constant. The values generated by Load 1 are
hard to predict using a traditional value predictor because they do not
follow a pattern. In contrast, the AVDs of Load 1 are quite easy to
predict. We found that this load causes 36% of the entries into runa-
head mode and correctly predicting its value enables the execution
of the dependent load instructions in the dict match function.

Note that stable AVDs occurring in leaf address loads continue to
be stable even if the linked data structure is significantly re-organized
at run-time. This is because such AVDs are caused by the regularity
in the links between nodes and their fields rather than the regularity
in the links between nodes and other nodes. The re-organization of
the linked data structure changes the links between nodes and other
nodes, but leaves intact the links between nodes and their fields.

Figure 5 shows an example from health, demonstrating the oc-
currence of stable AVDs in a linked list. This benchmark simulates
a health care system in which a list of patients waiting to be ser-
viced is maintained in a linked list. Each node of the linked list
contains a pointer to the patient structure it is associated with.
Each node and the patient structure are allocated dynamically as
shown in Figure 5a. The allocation of these structures is performed
in a regular fashion. First, memory space for a patient is allo-
cated. Right after that, memory space for a List node is allocated
and it is linked to the patient via a pointer. Since List node
and Patient structures are of fixed size, the distance in memory
between a node and its associated patient is constant as shown in
the layout of the resulting linked list (Figure 5b). The linked list is
later traversed in the check patients waiting function (Fig-
ure 5c). The patient associated with each node is loaded by Load
1 (p = list->patient), which is a leaf address load that is later
dereferenced by a data load, Load 2 (t = p->time). Load 1 has
a stable AVD as shown in its execution history. It causes 67% of the
entries into runahead mode and predicting its value correctly enables
the servicing of dependent L2 misses caused by Load 2.

5. Design and Operation of a Recovery-Free
AVD Predictor

An AVD predictor records the AVDs and information about the
stability of the AVDs for address load instructions. The predictor is
updated when an address load is retired. The predictor is accessed

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

le
ft

st
ri

ng

ri
gh

t

int dict_match (char *s, char *t) {
 while((*s != ’\0’) && (*s == *t))
 {s++; t++;}
 if ((*s == ’*’) || (*t == ’*’)) return 0;
 // ...
}

 // ...
rabridged_lookup(Dict_node *dn, char *s) {

}

 if (dn == NULL) return;

 if (m<=0) rabridged_lookup(dn−>left, s);
 if (m>=0) rabridged_lookup(dn−>right, s);

Eff. Addr. Value AVD

A A−k
C−kC

F F−k

k
k
k

Dict_node *read_word_file(...) {
 // ...
 char *s;
 while ((s = get_a_word(...)) != NULL) {
 dn = (Dict_node *) xalloc(sizeof(Dict_node));
 dn−>string = s;
 // ...
 }
 return dn;
}

char *get_a_word(...) {
 // read a word from file
 s = (char *) xalloc(strlen(word) + 1);
 strcpy(s, word);

}
 return s;

(a) Source code that allocates the nodes of the
 dictionary (binary tree) and the strings

struct Dict_node {
 char *string;
 Dict_node *left, *right;
 // ...
}

A

B C

B−k
D E F G

G−kE−k

A−k

C−k

D−k F−k

(c) Source code of the recursive function
 that performs the dictionary lookup and

denotes the memory address of the structure that is pointed to)
(b) Layout of the dictionary in memory (the value on an arc

 the execution history of Load 1

 t = dn−>string; // Load 1

 m = dict_match(s, t);

Figure 4. An example from parser showing how stable AVDs can occur for leaf address loads.

struct List_node {

 List_node *forward;
 struct Patient *patient;

 // ...
}

struct Patient *generate_patient(...) {
 // ...

 return patient;
}

 patient = (struct Patient *) malloc(sizeof(struct Patient));

addList (struct List_node *l, struct Patient *patient) {
 // ...
 list = (struct List_node *)malloc(sizeof(struct List_node));
 list−>patient = patient;
 // ...
}

 // ...
 addList(list, patient);
}

put_in_hosp(struct Patient *patient, ...) {

Effective Addr. Value AVD

A A−k
B B−k
C C−k

k
k
k // simulation functions called

 // ...

 // ...
 }

}

 if ((patient = generate_patient(...)) != NULL) {

 put_in_hosp(patient, ...);

sim (...) { patient

forward

patient

forward

patient

forward

A B C

A−k B−k C−k

(a) Source code that allocates the nodes of the linked list.
(c) Source code of the function that traverses

the linked list and the execution history of Load 1

 while (list != NULL) {

}
 }

check_patients_waiting(struct List_node *list)

 // ...

 list = list−>forward;
 // ...

 // ...
 t = p−>time; // Load 2

(b) Layout of the linked list in memory (the value on
an arc denotes the address of the structure)

 p = list−>patient; // Load 1

Figure 5. An example from health showing how stable AVDs can occur for leaf address loads.

when a load misses in the L2 cache during runahead mode. If a stable
AVD associated with the load is found in the predictor, the predicted
value for the load is calculated using its effective address and the
stable AVD. The predicted value is then returned to the processor to
be written into the register file.

Figure 6 shows the organization of the AVD predictor along with
the hardware support needed to update/train it (Figure 6a) and the
hardware support needed to make a prediction (Figure 6b). Each en-
try of the predictor consists of three fields: Tag, the upper bits of
the program counter of the load that allocated the entry; AVD, the
address-value delta that was recorded for the last retired load asso-
ciated with the entry; Confidence (Conf), a saturating counter that
records the confidence of the recorded AVD (i.e., how many times
the recorded AVD was seen consecutively). The confidence field is
used to eliminate incorrect predictions for loads with unstable AVDs.

5.1. Operation

At initialization, the confidence counters in all the predictor en-
tries are reset to zero. There are two major operations performed on
the AVD predictor: update and prediction.

The predictor is updated when a load instruction is retired during
normal mode. The predictor is accessed with the program counter

of the retired load. If an entry does not already exist for the load in
the predictor and if the load has a valid AVD, a new entry is allo-
cated. To determine if the load has a valid AVD, the AVD of the in-
struction is computed and compared to the minimum and maximum
allowed AVD. If the computed AVD is within bounds [-MaxAVD,
MaxAVD], the AVD is considered valid. On the allocation of a new
entry, the computed AVD is written into the predictor and the confi-
dence counter is set to one. If an entry already exists for the retired
load, the computed AVD is compared with the AVD that is stored in
the existing entry. If the two match, the confidence counter is incre-
mented. If the AVDs do not match and the computed AVD is valid,
the computed AVD is stored in the predictor entry and the confidence
counter is set to one. If the computed AVD is not valid and the load
instruction has an associated entry in the predictor, the confidence
counter is reset to zero, but the stored AVD is not updated.6

The predictor is accessed when a load instruction misses in the
L2 cache during runahead mode. The predictor is accessed with the

6As an optimization, it is possible to not update the AVD predictor state,
including the confidence counters, if the data value of the retired load is zero.
A data value of zero has a special meaning for address loads, i.e., NULL
pointer. This optimization reduces the training time or eliminates the need
to re-train the predictor and thus helps benchmarks where loads that perform
short traversals are common.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

AVDConfTag

Confidence
Update/Reset

Logic

Effective Address of Data Value of
Retired Load Retired Load

<=
 MaxAVD?

>=
−MaxAVD?

Program Counter of
Retired Load

==?

Program Counter of

Predicted?
(not INV?)

L2−miss Load in
Runahead Mode

L2−miss Load in
Runahead Mode

Effective Address of

Predicted Value

AVDConfTag

valid AVD?

= Effective Addr − AVD

computed AVD = Effective Addr − Data Value

(a) Update Logic for the AVD Predictor (b) Prediction Logic for the AVD Predictor

Figure 6. Organization of the AVD predictor and the hardware support needed for updating/accessing the predictor.

program counter of an L2-miss load. If an entry exists for the load
and if the confidence counter is saturated (i.e., above a certain con-
fidence threshold), the value of the load is predicted. The predicted
value is computed by subtracting the AVD stored in the predictor en-
try from the effective virtual address of the L2-miss load. If an entry
does not exist for the load in the predictor, the value of the load is not
predicted. Two outputs are generated by the AVD predictor: a pre-
dicted bit which informs the processor whether or not a prediction is
generated for the load and the predicted value. If the predicted bit
is set, the predicted value is written into the destination register of
the load so that its dependent instructions read it and are executed. If
the predicted bit is not set, the processor discards the predicted value
and marks the destination register of the load as INV in the register
file (as in conventional runahead execution [18]) so that dependent
instructions are marked as INV and their results are not used.

The AVD predictor does not require any hardware for state recov-
ery on AVD or branch mispredictions. Branch mispredictions do not
affect the state of the AVD predictor since the predictor is updated
only by retired load instructions (i.e., there are no wrong-path up-
dates). The correctness of the AVD prediction cannot be determined
until the L2 miss that triggered the prediction returns back from main
memory. We found that it is not worth updating the state of the pre-
dictor on an AVD misprediction detected when the L2 cache miss
returns back from main memory, since the predictor will anyway be
updated when the load is re-executed and retired in normal execution
mode after the processor exits from runahead mode.

An AVD misprediction can occur only in runahead mode. When
it occurs, instructions that are dependent on the predicted L2-miss
load can produce incorrect results. This may result in the generation
of incorrect prefetches or the overturning of correct branch predic-
tions. However, since runahead mode is purely speculative7, there
is no need to recover the processor state on an AVD misprediction.
We found that an incorrect AVD prediction is not necessarily harm-
ful for performance. If the predicted AVD is close enough to the
actual AVD of the load, dependent instructions sometimes still gen-
erate useful L2 cache misses that are later needed by the processor
in normal mode. Hence, we do not initiate state recovery on AVD
mispredictions that are resolved during runahead mode.

7i.e., runahead mode makes no changes to the architectural state of the
processor.

5.2. Hardware Cost and Complexity

Our goal in the design of the AVD predictor is to avoid high hard-
ware complexity and large storage requirements, but to still improve
performance by focusing on predicting the addresses of an impor-
tant subset of address loads. Since the AVD predictor filters out the
loads for which the absolute value of the AVD is too large (using the
MaxAVD threshold), the number of entries required in the predictor
does not need to be large. In fact, Section 7 shows that a 4-entry AVD
predictor is sufficient to get most of the performance benefit of the
described mechanism. The storage cost required for a 4-entry pre-
dictor is very small (212 bits8). The logic required to implement the
AVD predictor is also relatively simple as shown in Figure 6. Fur-
thermore, neither the update nor the access of the AVD predictor is
on the critical path of the processor. The update is performed after
retirement, which is not on the critical path. The access (prediction)
is performed only for load instructions that miss in the L2 cache and
it does not affect the critical L1 or L2 cache access times. There-
fore, the complexity of the processor or the memory system is not
significantly increased with the addition of an AVD predictor.

6. Performance Evaluation Methodology

We evaluate the performance impact of AVD prediction on an
execution-driven Alpha ISA simulator that models an aggressive su-
perscalar, out-of-order execution processor. The baseline processor
employs runahead execution as described by Mutlu et al. [18] in or-
der to tolerate long L2 cache miss latencies. The parameters of the
processor we model are shown in Table 2.

Table 2. Baseline processor configuration.

64KB, 4-way I-cache; 8-wide fetch, decode, rename; 64K-entry
Front End gshare/PAs hybrid branch pred.; min. 20-cycle mispred. penalty;

4K-entry, 4-way BTB; 64-entry RAS; 64K-entry indirect target cache
Execution 128-entry reorder buffer; 128-entry register file; 128-entry ld/st buffer;
Core store misses do not block retirement unless store buffer is full;

8 general purpose functional units; full bypass network; 8-wide retire
64KB, 4-way, 2-cycle L1 D-cache, 128 L1 MSHRs, 4 load ports;

Caches 1MB, 32-way, 10-cycle unified L2, 1 read/write port; 128 L2 MSHRs;
all caches have LRU replacement and 64B line size; 1-cycle AGEN

Memory 500-cycle min. latency; 32 banks; 32B-wide, split-trans. core-to-mem.
bus at 4:1 frequency ratio; conflicts, bandwidth, and queueing modeled

8Assuming a 4-entry, 4-way AVD predictor with 53 bits per entry: 32 bits
for the tag, 17 bits for the AVD (i.e. MaxAVD=65535), 2 bits for confidence,
and 2 bits to support a True LRU (Least Recently Used) replacement policy.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Table 3. Relevant information about the studied benchmarks. IPC and L2 miss rates are shown for the baseline runahead processor.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr

Simulated instruction count 468M 197M 88M 46M 191M 1050M 139M 110M 412M 250M 250M
Baseline IPC 1.07 0.05 1.67 0.92 0.90 1.45 1.31 0.97 1.33 0.73 0.88

L2 data misses per 1K instructions 1.03 41.59 5.60 4.27 4.33 0.67 2.41 29.60 1.05 2.37 1.69
% L2 misses due to address loads 72.1% 73.5% 33.8% 62.9% 57.6% 46.2% 78.6% 50.3% 30.1% 26.3% 2.1%

We evaluate AVD prediction on eleven pointer-intensive and
memory-intensive benchmarks from Olden [21] and SPEC INT 2000
benchmark suites. We examine seven memory-intensive benchmarks
from the Olden suite, which gain at least 10% performance improve-
ment with a perfect L2 cache and the four relatively pointer-intensive
benchmarks (mcf, parser, twolf, vpr) from the SPEC INT
2000 suite. All benchmarks were compiled for the Alpha EV6 ISA
with the -O3 optimization level. Twolf and vpr benchmarks are
simulated for 250 million instructions after skipping the program ini-
tialization code using a SimPoint-like tool [25]. To reduce simulation
time, mcf is simulated using the MinneSPEC reduced input set [13].
Parser is simulated using the test input set. We used the simple,
general-purpose memory allocator (malloc) provided by the standard
C library on an Alpha OSF1 V5.1 system. We did not consider a spe-
cialized memory allocator that would further benefit AVD prediction.

Table 3 shows information relevant to our studies about the simu-
lated benchmarks. Unless otherwise noted, performance improve-
ments are reported in terms of execution time normalized to the
baseline processor throughout this paper. IPCs of the evaluated pro-
cessors, if needed, can be computed using the baseline IPC (retired
Instructions Per Cycle) performance numbers provided in Table 3
and the normalized execution times. In addition, the fraction of L2
misses that are due to address loads is shown for each benchmark
since our mechanism aims to predict the addresses loaded by address
loads. We note that in all benchmarks except vpr, at least 25% of
the L2 cache data misses are caused by address loads. Benchmarks
from the Olden suite are more address-load intensive than the set of
pointer-intensive benchmarks in the SPEC INT 2000 suite. Hence,
we expect our mechanism to perform better on Olden applications.

7. Experimental Results

Figure 7 shows the performance improvement obtained if the
baseline runahead execution processor is augmented with the AVD
prediction mechanism. We model an AVD predictor with a MaxAVD
of 64K. A prediction is made if the confidence counter has a value
of 2 (i.e., if the same AVD was seen consecutively in the last two ex-
ecutions of the load). On average, the execution time is improved
by 12.6% (5.5% when health is excluded) with the use of an
infinite-entry AVD predictor. No performance degradation is ob-
served on any benchmark. Benchmarks that have a very high L2
cache miss rate, most of which is caused by address loads (health,
perimeter, and treeadd as seen in Table 3), see the largest im-
provements in performance. Benchmarks with few L2 misses caused
by address loads (e.g. vpr) do not benefit from AVD prediction.

A 32-entry, 4-way AVD predictor improves the execution time
as much as an infinite-entry predictor for all benchmarks except
twolf. In general, as the predictor size decreases, the performance
improvement provided by the predictor also decreases. However,
even a 4-entry AVD predictor improves the average execution time
by 11.0% (4.0% without health). Because AVD prediction aims
to predict the values produced by a regular subset of address loads, it
does not need to keep track of data loads or address loads with very

large AVDs. Thus, the number of load instructions competing for
entries in the AVD predictor is fairly small, and a small predictor is
good at capturing them.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

infinite-entry AVD predictor
4K-entry,4-way AVD pred (27 KB)
32-entry,4-way AVD pred (204 bytes)
16-entry,4-way AVD pred (102 bytes)
8-entry,4-way AVD pred (51 bytes)
4-entry,4-way AVD pred (27 bytes)

bis
or

t

he
alt

h
mst

pe
rim

ete
r

tre
ea

dd
tsp

vo
ro

no
i

mcf
pa

rse
r

tw
olf vp

r
av

g

av
g_

no
he

alt
h

Figure 7. AVD prediction performance on a runahead processor.

7.1. Effect of MaxAVD

As explained in Section 3, MaxAVD is used to dynamically de-
termine which loads are address loads. Choosing a larger MaxAVD
results in more loads being identified -perhaps incorrectly- as address
loads and may increase the contention for entries in the AVD predic-
tor. A smaller MaxAVD reduces the number of loads identified as
address loads and thus reduces contention for predictor entries, but
it may eliminate some address loads with stable AVDs from being
considered for AVD prediction. The choice of MaxAVD also affects
the size of the AVD predictor since the number of bits needed to
store the AVD is determined by MaxAVD. Figure 8 shows the effect
of a number of MaxAVD choices on the performance improvement
provided by a 16-entry AVD predictor.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

1M
64K
8K
1K
128
64
32

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 8. Effect of MaxAVD on execution time (16-entry AVD).

The best performing MaxAVD value is 64K for the 16-entry pre-
dictor and 8K for the 4-entry predictor. Unless the AVD is too small
(in which case very few address loads are actually identified as ad-
dress loads), performance is not significantly affected by MaxAVD.
However, with a 4-entry predictor, a large (1M or 64K) MaxAVD
provides less performance benefit than smaller MaxAVD values in
some benchmarks due to the increased contention for predictor en-

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

tries. We found that most address loads with stable AVDs have AVDs
that are within 0-8K range (except for some loads that have stable
AVDs within 32K-64K range in mcf). This behavior is expected be-
cause, as shown in code examples in Section 4, stable AVDs usually
occur due to regular memory allocation patterns that happen close
together in time. Therefore, addresses that are linked in data struc-
tures are close together in memory, resulting in small, stable AVDs
in loads that manipulate them.

7.2. Effect of Confidence

Figure 9 shows the effect of the confidence threshold needed to
make an AVD prediction on performance. A confidence threshold
of 2 provides the largest performance improvement for the 16-entry
AVD predictor. Not using confidence (i.e., a confidence threshold of
0) in an AVD predictor significantly reduces the performance of the
runahead processor because it results in the incorrect prediction of
the values of many address loads that do not have stable AVDs. For
example, in bisort most of the L2-miss address loads are traversal
address loads. Since the binary tree traversed by these loads is heav-
ily modified (sorted) during run-time, these traversal address loads
do not have stable AVDs. A 16-entry AVD predictor that does not
use confidence generates predictions for all these loads but increases
the execution time by 180% since almost all the predictions are incor-
rect. Large confidence values (7 or 15) are also undesirable because
they significantly reduce the prediction coverage for address loads
with stable AVDs and hence reduce the performance improvement.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

conf 0
conf 1
conf 2
conf 3
conf 4
conf 7
conf 15

2.80 2.53 1.42

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 9. Effect of confidence threshold on execution time.

7.3. Coverage, Accuracy, and MLP Improvement

Figures 10 and 11 show the effect of the confidence threshold on
the coverage and accuracy of the predictor. Coverage is computed as
the percentage of L2-miss address loads executed in runahead mode
whose values are predicted by the AVD predictor. Accuracy is the
percentage of predictions where the predicted value is the same as
the actual value. With a confidence threshold of two, about 30% of
the L2-miss address loads are predicted and about one half of the pre-
dictions are correct, on average. We found that incorrect predictions
are not necessarily harmful for performance. Since runahead mode
does not have any correctness requirements, incorrect predictions do
not result in any recovery overhead. In some cases, even though the
predicted AVD is not exactly correct, it is close enough to the cor-
rect AVD that it leads to the pre-execution of dependent instructions
that generate cache misses that are later needed by correct execution.
Thus, a more relevant metric for the goodness of the AVD predictor
is the improvement in the memory-level parallelism [8, 3]. Table 4
shows the increase in memory-level parallelism achieved with a 16-
entry AVD predictor by showing the average number of useful L2

cache misses generated in a runahead period with and without AVD
prediction. Note that benchmarks that show large increases in the av-
erage number of useful L2 misses with an AVD predictor also show
large increases in performance.

0

10

20

30

40

50

60

70

80

90

100

P
re

di
ct

io
n

C
ov

er
ag

e
of

 L
2-

m
is

s
A

dd
re

ss
 L

oa
ds

 (
%

)

conf 0
conf 1
conf 2
conf 3
conf 4
conf 7
conf 15

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 10. AVD prediction coverage for a 16-entry predictor.

0

10

20

30

40

50

60

70

80

90

100

%
 P

re
di

ct
io

ns
 T

ha
t

A
re

 C
or

re
ct

 (
A

cc
ur

ac
y) conf 0

conf 1
conf 2
conf 3
conf 4
conf 7
conf 15

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 11. AVD prediction accuracy for a 16-entry AVD predictor.

7.4. AVD Prediction and Runahead Efficiency

Efficiency is an important concern in designing a runahead ex-
ecution processor. Runahead execution relies on the pre-execution
of instructions to improve performance. This results in a significant
increase in the number of processed (executed) instructions as com-
pared to a traditional out-of-order processor. Efficiency of a runahead
processor is defined as the performance increase due to runahead ex-
ecution divided by the increase in executed instructions [17]. AVD
prediction improves efficiency because it both increases performance
and decreases the number of executed instructions in a runahead pro-
cessor. Figure 12 shows that employing AVD prediction reduces the
number of instructions processed in a runahead processor by 13.3%
with a 16-entry predictor and by 11.8% with a 4-entry predictor.
AVD prediction reduces the number of executed instructions because
it is able to parallelize and service dependent L2 cache misses during
a single runahead period. In a runahead processor without AVD pre-
diction, two dependent L2 misses would cause two separate runahead
periods, which are overlapping [17], and hence they would result in
the execution of many more instructions than can be executed in a
single runahead period.9

7.5. Effect of Memory Latency

Figure 13 shows the normalized execution time with and without
AVD prediction for five processors with different memory latencies.

9In fact, an extreme case of inefficiency caused by dependent L2 misses
can be seen in health. In this benchmark, using runahead execution increases
the number of executed instructions by 27 times, but results in a 4% increase
in execution time! Using AVD prediction greatly reduces this inefficiency.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Table 4. Average number of useful L2 cache misses generated during a runahead period with a 16-entry AVD predictor.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

L2 misses - baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44
L2 misses - 16-entry AVD pred (conf=2) 2.40 6.36 8.51 1.67 1.53 0.25 0.90 12.05 0.50 0.87 0.94 3.27

% reduction in execution time 2.9% 82.1% 8.4% 8.4% 17.6% 4.5% 0.8% 2.1% 6.3% 0.0% 0.0% 12.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 N
um

be
r

of
 E

xe
cu

te
d

In
st

ru
ct

io
ns

no runahead
baseline (runahead)
4K-entry AVD pred
16-entry AVD pred
4-entry AVD pred

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 12. Effect on number of executed instructions.

In this figure, execution time is normalized to the baseline runahead
processor independently for each memory latency. Execution time
improvement provided by a 16-entry AVD predictor ranges from
8.0% for a relatively short 100-cycle memory latency to 13.5% for a
1000-cycle memory latency. AVD prediction consistently improves
the effectiveness of runahead execution on processors with different
memory latencies, including the one with a short, 100-cycle memory
latency where runahead execution is very ineffective and actually in-
creases the execution time by 2%.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

no runahead
baseline (runahead)
4K-entry AVD pred
16-entry AVD pred
4-entry AVD pred

100 250 500 750 1000
Main Memory Latency (Minimum)

Figure 13. Effect of memory latency on AVD performance.

7.6. AVD Prediction vs. Stride Value Prediction

We compare the proposed AVD predictor to stride value predic-
tion [24]. When an L2-miss is encountered during runahead mode,
the stride value predictor (SVP) is accessed for a prediction. If the
SVP generates a confident prediction, the value of the L2-miss load
is predicted. Otherwise, the L2-miss load marks its destination reg-
ister as INV. Figure 14 shows the normalized execution times ob-
tained with an AVD predictor, a stride value predictor, and a hybrid
AVD-stride value predictor.10 Stride value prediction is more effec-

10In our experiments, the hybrid AVD-SVP predictor does not require extra
storage for the selection mechanism. Instead, the prediction made by the SVP
is given higher priority than the prediction made by the AVD predictor. If
the SVP generates a confident prediction for an L2-miss load, its prediction
is used. Otherwise, the prediction made by the AVD predictor is used, if
confident.

tive when the predictor is larger, but it provides only 4.5% (4.7% w/o
health) improvement in average execution time even with a 4K-
entry predictor versus the 12.6% (5.5% w/o health) improvement
provided by the 4K-entry AVD predictor. With a small, 16-entry pre-
dictor, stride value prediction improves the average execution time
by 2.6% (2.7% w/o health), whereas AVD prediction results in
12.1% (5.1% w/o health) performance improvement.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

4K-entry AVD predictor
4K-entry SVP
4K-entry AVD-SVP hybrid
16-entry AVD predictor
16-entry SVP
16-entry AVD-SVP hybrid

bis
or

t

he
alt

h
mst

pe
rim

ete
r

tre
ea

dd
tsp

vo
ro

no
i

mcf
pa

rse
r

tw
olf vp

r
av

g

av
g_

no
he

alt
h

Figure 14. AVD prediction vs. stride value prediction.

The benefits of stride and AVD predictors overlap for traversal
address loads. Both predictors can capture the values of traversal
address loads if the memory allocation pattern is regular. Many L2
misses in treeadd are due to traversal address loads, which is why
both SVP and AVD predictors perform very well and similarly for
this benchmark.

Most leaf address loads cannot be captured by SVP, whereas an
AVD predictor can capture those with constant AVD patterns. The
benchmark health has many AVD-predictable leaf address loads,
an example of which was shown in Figure 5. The traversal address
loads in health are irregular and therefore cannot be captured by
either SVP or AVD. Hence, AVD prediction provides significant per-
formance improvement in health whereas SVP does not.

In contrast to an AVD predictor, an SVP is able to capture
data loads with constant strides. For this reason, SVP signifi-
cantly improves the performance of parser. In this benchmark,
correctly value-predicted L2-miss data loads lead to the execution
and correct resolution of dependent branches which were mispre-
dicted by the branch predictor. SVP improves the performance of
parser by keeping the processor on the correct path during runa-
head mode rather than by allowing the parallelization of dependent
cache misses.

Figure 14 also shows that combining stride value prediction and
AVD prediction results in a larger performance improvement than
that provided by either of the prediction mechanisms alone. For ex-
ample, a 16-entry hybrid AVD-SVP predictor results in 13.4% (6.5%
w/o health) improvement in average execution time. As shown in
code examples in Section 4, address-value delta predictability is dif-
ferent in nature from stride value predictability. A load instruction
can have a predictable AVD but not a predictable stride, and vice
versa. Therefore, an AVD predictor and a stride value predictor

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

sometimes generate predictions for loads with different behavior, re-
sulting in increased performance improvement when they are com-
bined. This effect is especially salient in parser, where the AVD
predictor is good at capturing leaf address loads and the SVP is good
at capturing zero-stride data loads.

7.7. Simple Prefetching with AVD Prediction

So far, we have employed AVD prediction for value prediction
purposes, i.e., for predicting the data value of an L2-miss address
load and thus enabling the pre-execution of dependent instructions
that may generate long-latency cache misses. AVD prediction can
also be used for simple prefetching without value prediction. This
section evaluates the use of AVD prediction for simple prefetching on
the runahead processor and shows that the major performance benefit
of AVD prediction comes from the enabling of the pre-execution of
dependent instructions.

In the simple prefetching mechanism we evaluate, the value of
an L2-miss address load is predicted using AVD prediction during
runahead mode. Instead of writing this value into the register file and
enabling the execution of dependent instructions, the processor gen-
erates a memory request for the predicted value by treating the value
as a memory address. A prefetch request for the next and previous
sequential cache lines are also generated, since the data structure at
the predicted memory address can span multiple cache lines. The
destination register of the L2-miss address load is marked as INV
in the register file, just like in baseline runahead execution. This
mechanism enables the prefetching of only the address loaded by an
L2-miss address load that has a stable AVD. However, in contrast to
using an AVD predictor for value prediction, it does not enable the
prefetches that can be generated further down the dependence chain
of an L2-miss load through the execution of dependent instructions.

Figure 15 shows the normalized execution times when AVD pre-
diction is used for simple prefetching and when AVD prediction is
used for value prediction as evaluated in previous sections. AVD
prediction consistently provides higher performance improvements
when used for value prediction than when used for simple prefetch-
ing. A 16-entry AVD predictor results in 12.1% performance im-
provement when it is used for value prediction versus 2.5% perfor-
mance improvement when it is used for simple prefetching. Hence,
the major benefit of AVD prediction comes from the prefetches gen-
erated by the execution of the instructions on the dependence chain
of L2-miss address loads rather than the prefetching of only the ad-
dresses loaded by L2-miss address loads.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

value prediction (16-entry AVD pred)
prefetching (16-entry AVD pred)

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 15. AVD performance with simple prefetching.

7.8. AVD Prediction on Conventional Processors

We have shown the performance impact of using AVD prediction
on runahead execution processors. However, AVD prediction is ap-
plicable not only to runahead execution processors. Less aggressive
out-of-order execution processors that do not implement runahead
execution can also utilize AVD prediction to overcome the serializa-
tion of dependent load instructions.

Figure 16 shows the normalized execution times when AVD pre-
diction is used for simple prefetching (as described in Section 7.7)
and value prediction on a conventional out-of-order processor.11

Note that execution time is normalized to the execution time on the
conventional out-of-order processor. Using a 16-entry AVD pre-
dictor for value prediction improves the average execution time on
the conventional out-of-order processor by 4%. Using the same
AVD predictor for simple prefetching improves the average execu-
tion time by 3.2%. The comparison of these results with the impact
of AVD prediction on the runahead execution processor shows that
AVD prediction, when used for value prediction, is more effective
on the runahead execution processor with the same instruction win-
dow size. Since runahead execution enables the processor to execute
many more instructions than a conventional out-of-order processor
while an L2 miss is in progress, it exposes more dependent load in-
structions than an out-of-order processor with the same instruction
window size. The correct prediction of the values of these load in-
structions results in higher performance improvements on a runahead
processor.

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

no runahead
value prediction (16-entry AVD pred)
simple prefetch (16-entry AVD pred)

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Figure 16. AVD performance on a non-runahead processor.

8. Related Work
Several previous papers focused on predicting the addresses gen-

erated by pointer loads for value prediction or prefetching purposes.
Most of the proposed mechanisms we are aware of require signifi-
cant storage cost and hardware complexity. The major contribution
of our study is a simple and efficient novel mechanism that allows
the prediction of the values loaded by a subset of pointer loads by
exploiting stable address-value relationships. Other contributions we
make in this paper are:

1. We introduce the concept of stable address-value deltas (AVDs)
and provide an analysis of the code structures that cause them
through code examples from application programs.

11The parameters for the conventional out-of-order processor are the same
as described in Section 6, except the processor does not employ runahead ex-
ecution. The simple prefetching and value prediction mechanisms evaluated
on out-of-order processors are employed for L2-miss loads. We examined
using these two mechanisms for all loads or L1-miss loads, but did not see
significant performance differences.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

2. We propose the design and implementation of a simple, low-
hardware-cost predictor that exploits the stable AVDs. We eval-
uate the design options for an AVD predictor.

3. We describe an important limitation of runahead execution: its
inability to parallelize dependent long-latency cache misses.
We show that this limitation can be reduced by utilizing a sim-
ple AVD predictor in a runahead execution processor.

We hereby briefly discuss the related research in value prediction
and prefetching for pointer loads. We also give a brief overview of
the related work in runahead execution.

8.1. Related Research in Value/Address Prediction

The most relevant work to our research is in the area of predict-
ing the destination register values of load instructions. Load value
prediction [15, 24] was proposed to predict the destination register
values of loads. Many types of load value predictors were exam-
ined, including last value [15], stride [7, 24], FCM (finite context
method) [24], and hybrid [27] predictors. While a value predictor
recognizes stable/predictable values, an AVD predictor recognizes
stable address-value deltas. As shown in code examples in Section 4,
the address-value delta for an address load instruction can be stable
and predictable even though the value of the load instruction is not
predictable. Furthermore, small value predictors do not significantly
improve performance, as shown in Section 7.6.

Load address predictors [7, 1] predict the effective address of a
load instruction early in the pipeline. The value at the predicted ad-
dress can be loaded to the destination register of the load before the
load is ready to be executed. Memory latency can be partially hidden
for the load and its dependent instructions.

Complex (e.g., stride or context-based) value/address predictors
need significant hardware storage to generate predictions and signif-
icant hardware complexity for state recovery. Moreover, the update
latency (i.e., the latency between making the prediction and deter-
mining whether or not the prediction was correct) associated with
stride and context-based value/address predictors significantly de-
tracts from the performance benefits of these predictors over simple
last value prediction [20]. Good discussions of the hardware com-
plexity required for complex address/value prediction can be found
in [1] and [20].

The pointer cache [4] was proposed to predict the values of
pointer loads. A pointer cache caches the values stored in memory
locations accessed by pointer load instructions. It is accessed with
a load’s effective address in parallel with the data cache. A pointer
cache hit provides the predicted value for the load instruction. To
improve performance, a pointer cache requires significant hardware
storage (at least 32K entries where each entry is 36 bits [4]) because
the pointer data sets of the programs are usually large. In contrast to
the pointer cache, an AVD predictor stores AVDs based on pointer
load instructions. Since the pointer load instruction working set of a
program is usually much smaller than the pointer data working set,
the AVD predictor requires much less hardware cost. Also, an AVD
predictor does not affect the complexity in critical portions of the
processor because it is small and does not need to be accessed in
parallel with the data cache.

Zhou and Conte [31] proposed the use of value prediction only
for prefetching purposes in an out-of-order processor such that no
recovery is performed in the processor on a value misprediction.
They evaluated their proposal using a 4K-entry stride value predictor,
which predicts the values produced by all load instructions. Similar

to their work, we employ the AVD prediction mechanism only for
prefetching purposes, which eliminates the need for processor state
recovery.

8.2. Related Research in Pointer Load Prefetching

In recent years, substantial research has been performed in
prefetching the addresses generated by pointer load instructions.
AVD prediction differs from pointer load prefetching in that it is not
only a prefetching mechanism. As shown in Section 7.7, AVD pre-
diction can be used for simple prefetching. However, AVD prediction
is more beneficial when it is used as a targeted value prediction tech-
nique for pointer loads that enables the pre-execution of dependent
load instructions, which may generate prefetches.

Hardware-based pointer prefetchers [22, 23, 4, 10] try to dynam-
ically capture the prefetch addresses generated by traversal loads.
These approaches usually require significant hardware cost to store
a history of pointers. For example, hardware-based jump pointer
prefetching requires jump pointer storage that has more than 16K en-
tries (64KB) [23]. A low-overhead content-based hardware pointer
prefetcher was recently proposed by Cooksey et al. [5]. It can be
combined with AVD prediction to further reduce the negative perfor-
mance impact of dependent L2 cache misses.

Software and combined software/hardware methods have also
been proposed for prefetching loads that access linked data struc-
tures [14, 16, 23, 30, 11]. These techniques require non-trivial sup-
port from the compiler or the programmer. Existing binaries cannot
utilize software-based techniques unless they are re-compiled or re-
optimized using a dynamic optimization framework. AVD predic-
tion, on the contrary, is a purely hardware-based mechanism that can
improve the performance of the existing binaries.

8.3. Related Research in Runahead Execution

Three recent papers proposed combining runahead execution with
value prediction [3, 12, 2]. These techniques use conventional value
predictors to predict the values of all L2-miss load instructions dur-
ing pre-execution, which requires significant hardware support (at
least 2K-entry value tables). In contrast, we propose a novel pre-
dictor to predict the values of only L2-miss address loads, which
allows the parallelization of dependent cache misses without signifi-
cant hardware overhead. As mentioned in [12], predicting the values
of all L2-miss instructions during runahead mode sometimes reduces
the performance of a runahead processor since instructions depen-
dent on the value-predicted loads need to be executed and they slow
down the processing speed during runahead mode. Our goal in this
paper is to selectively predict only those load instructions that can
lead to the generation of costly dependent cache misses. We note
that the AVD prediction mechanism is not specific to runahead exe-
cution and can also be employed by conventional processors.

9. Conclusion and Future Work

This paper introduces the concept of stable address-value deltas
(AVDs) and proposes AVD prediction, a novel method of predicting
the values generated by address loads by exploiting the stable and
regular memory allocation patterns in programs that heavily utilize
linked data structures. We provide insights into why stable AVDs
exist through code examples from pointer-intensive applications. We
also describe the design and implementation of a simple AVD pre-
dictor and utilize it to overcome an important limitation of runahead
execution: its inability to parallelize dependent L2 cache misses.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

The proposed AVD prediction mechanism requires neither signifi-
cant hardware cost or complexity nor hardware support for state re-
covery. Our experimental results show that a simple AVD predictor
can significantly improve both the performance and efficiency of a
runahead execution processor across a wide range of main memory
latencies. For a 500-cycle minimum main memory latency, the ex-
ecution time improvement provided by a 16-entry (102-byte) AVD
predictor is 12.1% over a set of pointer-intensive applications from
Olden and SPEC INT 2000 benchmark suites.

Future work in exploiting stable AVDs can proceed in multiple
directions. First, the AVD predictor we presented is a simple, last-
AVD predictor. More complex AVD predictors that can detect more
complex patterns in address-value deltas may be interesting to study
and they may further improve performance at the expense of higher
hardware cost and complexity. Second, the effectiveness of AVD
prediction is highly dependent on the memory allocation patterns
in programs. Optimizing the memory allocator, the program struc-
tures, and the algorithms used in programs for AVD prediction can
increase the occurrence of stable AVDs. Hence, software (program-
mer/compiler/allocator) support can improve the effectiveness of a
mechanism that exploits address-value deltas. We intend to examine
this possibility in our future work.

Acknowledgments

Many thanks to Derek Chiou, David Armstrong, Mike Fertig,
Santhosh Srinath, Chang Joo Lee, Linda Bigelow and other members
of the HPS research group, and the anonymous reviewers for their
comments and suggestions. We gratefully acknowledge the Cockrell
Foundation and Intel Corporation for their support.

References
[1] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rap-

poport, A. Yoaz, and U. Weiser. Correlated load-address pre-
dictors. In ISCA-26, 1999.

[2] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas. CAVA:
Hiding L2 misses with checkpoint-assisted value prediction.
Computer Architecture Letters, 3, Dec. 2004.

[3] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. In ISCA-31,
2004.

[4] J. D. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer
cache assisted prefetching. In MICRO-35, 2002.

[5] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-
directed data prefetching mechanism. In ASPLOS-X, 2002.

[6] J. Dundas and T. Mudge. Improving data cache performance
by pre-executing instructions under a cache miss. In ICS-1997,
1997.

[7] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for
pipelined processors. IBM Journal of Research and Develop-
ment, 37:547–564, 1993.

[8] A. Glew. MLP yes! ILP no! In ASPLOS Wild and Crazy Idea
Session ’98, Oct. 1998.

[9] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power consid-
erations in the design of the Alpha 21264 microprocessor. In
DAC-35, 1998.

[10] D. Joseph and D. Grunwald. Prefetching using Markov predic-
tors. In ISCA-24, 1997.

[11] M. Karlsson, F. Dahlgren, and P. Strenstrom. A prefetching

technique for irregular accesses to linked data structures. In
HPCA-6, 2000.

[12] N. Kırman, M. Kırman, M. Chaudhuri, and J. F. Martı́nez.
Checkpointed early load retirement. In HPCA-11, 2005.

[13] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer architec-
ture research. Computer Architecture Letters, 1, June 2002.

[14] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roedi-
ger. SPAID: Software prefetching in pointer- and call-intensive
environments. In MICRO-28, 1995.

[15] M. H. Lipasti, C. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In ASPLOS-VII, 1996.

[16] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for
recursive data structures. In ASPLOS-VII, 1996.

[17] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient pro-
cessing in runahead execution engines. In ISCA-32, 2005.

[18] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: An alternative to very large instruction windows for
out-of-order processors. In HPCA-9, 2003.

[19] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead ex-
ecution: An effective alternative to large instruction windows.
IEEE Micro, 23(6):20–25, 2003.

[20] P. Racunas. Reducing Load Latency Through Memory Instruc-
tion Characterization. PhD thesis, University of Michigan,
2003.

[21] A. Rogers, M. C. Carlisle, J. Reppy, and L. Hendren. Support-
ing dynamic data structures on distributed memory machines.
ACM Transactions on Programming Languages and Systems,
17(2):233–263, Mar. 1995.

[22] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In ASPLOS-VIII, 1998.

[23] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for
linked data structures. In ISCA-26, 1999.

[24] Y. Sazeides and J. E. Smith. The predictability of data values.
In MICRO-30, 1997.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
ASPLOS-X, 2002.

[26] E. Sprangle and D. Carmean. Increasing processor performance
by implementing deeper pipelines. In ISCA-29, 2002.

[27] K. Wang and M. Franklin. Highly accurate data value predic-
tion using hybrid predictors. In MICRO-30, 1997.

[28] M. V. Wilkes. The memory gap and the future of high perfor-
mance memories. ACM Computer Architecture News, 29(1):2–
7, Mar. 2001.

[29] W. Wulf and S. McKee. Hitting the memory wall: Implications
of the obvious. ACM Computer Architecture News, 23(1):20–
24, Mar. 1995.

[30] C.-L. Yang and A. R. Lebeck. Push vs. pull: Data movement
for linked data structures. In ICS-2000, 2000.

[31] H. Zhou and T. M. Conte. Enhancing memory level parallelism
via recovery-free value prediction. In ICS-17, 2003.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

