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Abstract—Emerging non-volatile memory (NVM) technologies enable
data persistence at the main memory level at access speeds close
to DRAM. In such persistent memories, memory writes need to be
performed in strict order to satisfy storage consistency requirements and
enable correct recovery from system crashes. Unfortunately, adhering
to a strict order for writes to persistent memory significantly degrades
system performance as it requires flushing dirty data blocks from CPU
caches and waiting for their completion at the main memory in the order
specified by the program.

This paper introduces a new mechanism, called Loose-Ordering
Consistency (LOC), that satisfies the ordering requirements of persistent
memory writes at significantly lower performance degradation than state-
of-the-art mechanisms. LOC consists of two key techniques. First, Eager
Commit reduces the commit overhead for writes within a transaction by
eliminating the need to perform a persistent commit record write at the
end of a transaction. We do so by ensuring that we can determine the
status of all committed transactions during recovery by storing necessary
metadata information statically with blocks of data written to memory.
Second, Speculative Persistence relaxes the ordering of writes between
transactions by allowing writes to be speculatively written to persistent
memory. A speculative write is made visible to software only after its
associated transaction commits. To enable this, our mechanism requires
the tracking of committed transaction ID and support for multi-versioning
in the CPU cache. Our evaluations show that LOC reduces the average
performance overhead of strict write ordering from 66.9% to 34.9% on
a variety of workloads.

I. INTRODUCTION
Emerging non-volatile memory (NVM) technologies, such as

Phase Change Memory (PCM), Spin-Transfer Torque RAM (STT-
RAM) and Resistive RAM (RRAM), provide DRAM-like byte-
addressable access at DRAM-like latencies and disk-like data per-
sistence. Since these technologies have low idle power, high storage
density, and good scalability properties compared to DRAM [1, 2],
they have been regarded as potential alternatives to replace or comple-
ment DRAM as the technology used to build main memory [3, 4, 5, 6,
7, 8, 9]. Perhaps even more importantly, the non-volatility property of
these emerging technologies promises to enable memory-level storage
(i.e., persistent memory), which can store data persistently at the main
memory level at low latency [10, 11, 12, 13, 14, 15, 16].

Since memory writes in memory-level storage are persistent, they
need to be performed atomically and in correct order to ensure storage
consistency, i.e., consistent state transition for storage systems. Stor-
age consistency ensures atomicity and durability of storage systems,
so that the system is able to correctly recover from unexpected system
crashes [17, 18, 19, 20, 21, 22, 23, 24], where volatile data gets
lost. In order to provide correct recovery on a system crash, multiple
related persistent writes are grouped into a storage transaction by the
programmer. A storage transaction is atomic: either all its writes com-
plete and update persistent memory or none. To accomplish this, both
the old and new versions of the data associated with the location of a
write are kept track of within the transaction. The writes within and
across transactions are persisted (i.e., written to persistent memory) in
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strict program order, to ensure that correct recovery is possible in the
presence of incomplete transactions. As such, any persistent memory
protocol needs to support both transaction atomicity and strict write
ordering to persistent memory (i.e., persistence ordering) in order to
satisfy traditional storage consistency requirements.

Traditionally, disk-based storage systems have employed
transaction-based recovery protocols, such as write-ahead
logging [17] or shadow paging [18], to provide both transaction
atomicity and persistence ordering. These protocols maintain 1)
two copies/versions of each written data within a transaction, and
2) a strict write order to the storage device, which enables the
atomic switch from the old version of data to the new version
upon transaction commit. Unfortunately, traditional transaction-based
recovery protocols, designed with disk-based storage systems in
mind, are not suitable for memory-level storage due to their large
performance overhead when applied to much faster persistent
memory.

Transaction support in memory-level storage has two major chal-
lenges. First, the boundary of volatility and persistence in memory-
level storage lies between the hardware-controlled CPU cache and
the persistent memory. In contrast, in traditional disk-based storage
systems, the boundary between volatility and persistence lies between
the software-controlled main memory and disk storage. While data
writeback from main memory is managed by software (i.e., the oper-
ating system) in traditional systems, enabling transactional protocols
to effectively control the order of writes to persistent storage, data
writeback from the CPU cache is managed by hardware in persistent
memory systems, making it harder to control the order of writes
to persistent memory at low performance overhead. This is because
the CPU cache behavior is opaque to the system and application
software. Therefore, in order to preserve persistence ordering from
the CPU cache to persistent memory, software needs to explicitly
include the relatively costly cache flush (e.g., clflush) and memory
fence (e.g., mfence) instructions (at the end of each transaction) to
force the ordering of cache writebacks [11, 13, 14, 15]. The average
overhead of a clflush and mfence combined together is reported to be
250ns [14], which makes this approach costly, given that persistent
memory access times are expected to be on the order of tens to
hundreds of nanoseconds [3, 4, 7].

Second, existing systems reorder operations, including writes, at
multiple levels, especially in the CPU and the cache hierarchy in order
to maximize system performance. For example, writebacks from the
cache are performed in an order that is usually completely different
from the program-specified order of writes. Similarly, the memory
controller can reorder writes to memory to optimize performance
(e.g., by optimizing row buffer locality, bank-level parallelism and
write-to-read turnaround delays [25]). Enforcing a strict order of
writes to persistent memory to preserve storage consistency eliminates
the reordering across not only writes/writebacks but also limits
reordering possibilities across other operations, thereby significantly
degrading the performance. This is because ensuring a strict order of
writes requires 1) flushing dirty data blocks from each cache level to
memory, 2) writing them back to main memory in the order specified
by the transaction at transaction commit time, and 3) waiting for
the completeness of all memory writes within the transaction before
a single write for the next transaction can be performed. Doing so
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can greatly degrade system performance, as high as by 10 times for
some memory-intensive workloads we evaluate, as we demonstrate
in Section V-B).

Our goal in this paper is to design new mechanisms that
reduce the performance overhead caused by strict ordering of writes
in persistent memory. To achieve this, we identify different types
of persistence ordering that degrade performance: intra-transaction
ordering (i.e., strict ordering of writes inside a transaction) and inter-
transaction ordering (i.e., strict ordering of writes between transac-
tions). We observe that relaxing either of these types of ordering can
be achieved without compromising storage consistency requirements
by changing the persistent memory log organization and providing
hardware support in the CPU cache. Based on this observation, we
develop two complementary techniques that respectively reduce the
performance overhead due to intra- and inter-transaction (tx) order-
ing requirements. We call the resulting mechanism Loose-Ordering
Consistency (LOC) for persistent memory.

LOC consists of two new techniques. First, a new transaction
commit protocol, Eager Commit, enables the commit of a transaction
without the use of commit records, traditionally employed for storage
systems to record the status of each transaction (which is needed
for recovery purposes on system crash) [17, 19, 20, 26]. Doing so
removes the need to perform a persistent commit record write at the
end of a transaction and eliminates the intra-tx ordering requirement,
improving performance. To achieve this, Eager Commit allocates the
metadata associated with data in the memory log in a static manner
- one metadata block is stored with every seven data blocks and
the metadata is updated atomically along with data and written to
persistent memory. This static log organization enables the system
to determine the status of each transaction during recovery without
requiring the use/query of a commit record and thus enables the
system to recover from crashes effectively as it would know which
transactions are fully committed by inspecting the metadata informa-
tion. Hence, Eager Commit removes the recording of data persistence
for an entire transaction from the critical path of transaction commit
time and delays it until the recovery phase, when the inspection of
metadata is truly necessary.

Second, Speculative Persistence relaxes the ordering of writes
between transactions by allowing writes to be speculatively written to
persistent memory. This allows data blocks from multiple transactions
to be written to persistent memory, potentially out of the specified
program order. A speculative write is made visible to software only
after its associated transaction commits, and transactions commit in
program order. To enable this, our mechanism requires the tracking of
committed transaction ID and support for multi-versioning in the CPU
cache. Hence, Speculative Persistence ensures that storage consistency
requirements are met while ordering of persistent memory writes is
relaxed, improving performance.

The major contributions of this paper are as follows:
• We identify two types of persistence ordering that lead to

performance degradation in persistent memory: intra-transaction
ordering and inter-transaction ordering.

• We introduce a new transaction commit protocol, Eager Commit,
that eliminates the use of commit records (traditionally needed
for correct recovery from system crash) and thereby reduces the
overhead due to intra-transaction persistence ordering.

• We introduce a new technique, Speculative Persistence, that
allows writes from different transactions to speculatively update
persistent memory in any order while making them visible to
software only in program order, thereby reducing the overhead of
inter-transaction persistence ordering.

• We evaluate our proposals and their combination, Loose-Ordering
Consistency (LOC), with a variety of workloads ranging from
basic data structures to graph and database workloads. Results
show that LOC significantly reduces the average performance
overhead due to persistence ordering from 66.9% to 34.9%.

II. BACKGROUND AND MOTIVATION
A. Non-volatile Memory

Emerging byte-addressable non-volatile memory technologies,
also called storage-class memory technologies, have performance
characteristics close to that of DRAM. For example, one source [27]
reports a read latency of 85ns and a write latency of 100-500ns
for Phase Change Memory (PCM). Spin-Transfer Torque RAM
(STT-RAM) has lower latency, e.g., less than 20ns for reads and
writes [27]. Their DRAM-comparable performance and better-than-
DRAM technology-scalability, which can enable high memory ca-
pacity at low cost, make these technologies promising alternatives
to DRAM [3, 4, 5]. As such, many recent works examined the use
of these technologies as part of main memory [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16], providing disk-like data persistence at
DRAM-like latencies.

B. Storage Consistency
Storage Transactions. In database management systems, transaction
management provides four properties: atomicity (A), consistency (C),
isolation (I), and durability (D). To achieve the ACID properties,
transaction management has to provide 1) concurrency control for
the execution of multiple transactions, 2) transaction recovery in case
of failure. Isolation of concurrent execution of multiple transactions is
the subject of concurrency control, and the atomic and durable update
of state by each transaction is the subject of transaction recovery [28].
The two concepts are respectively borrowed by transactional mem-
ory [29, 30] and storage transactions [19, 20, 21, 22, 23, 31]. In this
paper, we focus on storage transactions, which provide atomicity and
durability in the presence of system failures.
Transaction Recovery. Transaction recovery requires data blocks
modified by one transaction to be atomically persisted to storage
devices, such that the persistent data blocks can be used to recover the
system to a consistent state after an unexpected system crash/failure.
To enable this, existing transaction recovery protocols maintain 1)
two copies/versions of each written data within a transaction, and 2)
a strict write order to the storage device, which enables the atomic
switch from the old version of data to the new version upon transac-
tion commit. We briefly describe Write-Ahead Logging (WAL) [17],
the state-of-the-art protocol which we use as our baseline.
Write-Ahead Logging (WAL) [17] is a commonly used protocol for
transaction recovery. A transaction commit occurs in four phases to
ensure correct recoverability of data, as illustrated in Figure 1. In
Phase 1 (during transaction execution), WAL writes the new version
of each updated data block to the log area in persistent memory, while
the old version is kept safe in its home/original location. In Phase
2 (which starts right after the program issues a transaction commit
request), WAL first waits until all the data blocks the transaction has
updated are written into the log. After this, WAL writes a commit
record to the log to keep the transaction status. At the end of Phase II,
the new-version data and the commit record are persisted completely
and WAL sends an acknowledgment to the program indicating that the
transaction commit is done. In Phase 3, WAL copies the new version
of each updated data block from the log to its home location to make
it visible to accesses from the software (this is called in-place update
of data). Finally, after in-place update completes, in Phase 4, WAL
truncates the log such that the committed transaction is removed from
the log. We call each of these phases an I/O phase.
Ordering. To achieve atomicity and durability, I/O phases are per-
formed one by one, in strict order. This is done to ensure correct
recovery in case the system fails/crashes during transaction commit.
Updates to persistent memory across the I/O phases are performed
in a strict order such that one phase cannot be started before the
previous phase is complete. This is called persistence ordering. Note
that this is different from the ordering of program instructions (loads
and stores), which is enforced by the CPU. Persistence ordering is
the ordering of cache writebacks to persistent memory such that the
correct ordering of storage transactions is maintained. As shown in
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Fig. 1: I/O Phases and Ordering in Write-Ahead Logging (illustrated with a tree data structure in persistent memory).

Figure 1, there are two kinds of persistence ordering in transaction
recovery.

Intra-transaction (Intra-tx) Ordering refers to the ordering re-
quired within a transaction. Before a transaction commits, WAL needs
to ensure that the new version of each updated data block of the
transaction is completely persisted. Only after that, WAL updates the
commit record. Otherwise, if the commit record is updated before all
data blocks updated by the transaction are persisted, the transaction
recovery process after a system crash may incorrectly conclude that
the transaction is committed, violating atomicity and consistency
guarantees. Intra-tx ordering ensures that the new versions of data are
completely and safely written to persistent memory when the commit
record is found during the transaction recovery process.

Inter-transaction (Inter-tx) Ordering refers to the ordering re-
quired across transactions. The program needs to wait for the commit
acknowledgment (shown as “Software Acknowledgment” in Figure 1)
of a transaction in order to start the next transaction. Inter-tx ordering
ensures that the transaction commit order is the same as the order
specified by the program.
C. Mitigating the Ordering Overhead

As explained in Section I, in order to preserve persistence or-
dering from the CPU cache to persistent memory, software combines
cache flush (e.g., clflush) and memory fence (e.g., mfence) instructions
to force the ordering of cache writebacks [11, 13, 14, 15]. The average
overhead of a clflush and mfence combined together is reported to be
250ns [14], which makes this approach costly, given that persistent
memory access times are expected to be on the order of tens to
hundreds of nanoseconds [3, 4, 7].1 The two instructions flush dirty
data blocks from the CPU cache to persistent memory and wait for
the completeness of all memory writes, and incur high overhead in
persistent memory [10, 14, 32, 33].

Several works tried to mitigate the ordering overhead in persistent
memory with hardware support [10, 32, 33, 34, 35]. These can be
classified into two approaches:

(1) Making the CPU cache non-volatile: This approach aims to
reduce the time gap between volatility and persistence by employing
a non-volatile cache. Kiln [32] uses a non-volatile last-level cache
(NV-LLC), so that the path of data persistence becomes shorter and
the overhead of the required ordering is smaller. Kiln also uses the
NV-LLC as the log to eliminate the need to perform multiple writes
in main memory. Whole-system persistence [35] takes this approach
to the extreme by making all levels of the CPU cache non-volatile.
The approach we develop in this paper, LOC, is complementary to
the approach of employing NV caches.

(2) Allowing asynchronous commit of transactions: This approach
allows the execution of a later transaction without waiting for the
persistence of previous transactions. To ensure consistency, the pro-
gram queries the hardware for the persistence status of transactions.
BPFS [10] and CLC [34] use versions of this approach. They inform
the CPU cache hardware of the ordering points within the program
via the epoch command, and let the hardware keep the ordering asyn-
chronously without waiting for data persistence within each epoch.
Strand persistency [33] enables the reordering of the commit sequence

1Recent research argues that these commands, which are used for cache
coherence, do not correctly flush cache data to persistent memory, and thus
proposes to ensure ordering in CPU hardware [10, 12].

of transactions for better concurrency (instead of requiring a strict
order in which transactions have to be committed). This technique
requires the software to inform the hardware which transactions can
be reordered, increasing the burden on the programmer/system.

Although these asynchronous commit approaches allow data
blocks to be written to the CPU cache without waiting for the
persistence of previous transactions, data blocks are written to per-
sistent memory in transactions one by one. Strict ordering is still
required in persistent memory writes. In other words, asynchronous
commit approaches change only the execution order (i.e., the order
of CPU cache writes) but not persistence order (i.e., the order of
persistent memory writes) as specified by the program2. In contrast,
our proposal, LOC, allows the reordering of persistent memory
writes of different transactions in a finer-grained manner and can
be combined with the asynchronous commit approaches.

III. LOOSE-ORDERING CONSISTENCY
Loose-Ordering Consistency (LOC) is designed to mitigate the

performance degradation caused by strict ordering of writes by
loosening the ordering without compromising consistency in persis-
tent memory. It aims to reduce both intra-tx and inter-tx ordering
overheads. LOC consists of two techniques:

1) Eager Commit, a commit protocol, that eliminates the use of
commit records, thereby removing intra-tx ordering.

2) Speculative Persistence that allows writes from different trans-
actions to speculatively update persistent memory in any order
while making them visible to software only in program order,
thereby relaxing inter-tx ordering.

This section describes both techniques in detail.

A. Eager Commit
Commit protocol in storage transactions is the consensus between

normal execution and recovery on system failure. It is used to
determine when to switch between the old and new versions of
data that is updated by a transaction. In the commonly used WAL
protocol (described in Section II-B), a commit record is used for
each transaction to indicate this switch. The commit protocol in
WAL makes sure that (1) the new version of data is persisted before
writing the commit record, and (2) the old version of the data is
overwritten only after the persistent update of the commit record. On
a system crash/failure, the recovery logic checks the availability of
the commit record for a transaction. If the commit record exists, the
transaction is determined to be committed, and the new versions of the
committed data blocks are copied from the log to their home locations
in persistent memory; otherwise, the transaction is determined to be
not committed (i.e., system might have crashed before the transaction
commit is complete), and the log data associated with the transaction
is discarded.

Unfortunately, it is the commit record itself that introduces the
intra-tx ordering requirement (described in Section II-B) and therefore
degrades performance heavily in persistent memory. Eager Commit
eliminates the use of the commit record and thus removes the intra-
tx ordering. The key idea is to not wait for the completeness of
log writes and instead eagerly commit a transaction. The completion
check of log writes is delayed until the recovery phase. The removal of

2Even with strand persistency [33], the persistence order is fixed once
transaction concurrency has been specified in the program.

218



completion check from the critical commit path removes the intra-tx
ordering and thus reduces commit latency for each transaction. Eager
Commit enables a delayed completion check at recovery time using
a static log organization with a count-based commit protocol, which
we describe next. This static log organization enables 1) the system
to determine the status of each transaction during recovery without
requiring the use/query of a commit record, 2) enables updates of
different transactions to the log to be interleaved in the log.
Log Organization. Eager Commit organizes the memory log space
in a static manner, as opposed to appending all updated data blocks
and the commit record at the end of the log for a transaction as done
in WAL. It divides the memory log area into block groups, as shown
in Figure 2. Each block group consists of eight data blocks, seven
for the log data and one for the metadata associated with the seven
data blocks. The size of the block group is 64 bytes, which can be
transmitted to memory in a single burst [36]. Thus, data and metadata
blocks in each block group are written atomically. During recovery
after a system crash, the metadata of the block group can be read to
determine the status of the data blocks of the block group.

Fig. 2: Memory Log Organization: Every eight blocks form a block group,
where one is used for metadata and the others for data.

In a block group, the metadata block stores the sequence ID (SID),
which is the unique number in the memory log area to represent a
block group, and the metadata (BLK-TAG) of the other blocks. BLK-
TAG records the CPU core ID (CID), the hardware thread ID (TID),
the transactional identifier (TxID), the transactional counter (TxCnt)
and the home location address (ADDR) of the data in the block.
The first three IDs are used to identify the transaction. Therefore,
block groups from different transactions can be written to the log in
an interleaved manner. On recovery, each data block is identified as
belonging to some transaction using the three IDs. Afterwards, the
commit protocol uses the pairs <TxID, TxCnt> to determine the
transaction status, as described below.
Commit Protocol. In the memory log area, each data block has
associated transactional metadata, <TxID, TxCnt>. Eager Commit
uses the pair <TxID, TxCnt> to determine the committed/not-
committed status of each transaction. For each transaction, the last
data block has its associated TxCnt value set to the total number
of data blocks in its transaction, and all the others have TxCnt set
to zero. During recovery, the number of data blocks logged for a
transaction (those that have the same TxID) is counted and this count
is compared with the non-zero TxCnt stored with one of the data
blocks. If the count matches the non-zero TxCnt (indicating that
all of the transaction’s data blocks are already written to the log),
the transaction is deemed to be committed and the recovery process
copies its updated blocks from the log to the home locations of the
blocks in persistent memory. Otherwise, the transaction is deemed to
be not committed and its entries in the log are discarded. This count-
based commit protocol is borrowed from [20], where it is described
in more detail.

Thus, Eager Commit removes the intra-tx ordering by using a
static log organization and a count-based commit protocol that can
enable the determination of transaction status upon recovery without
requiring a commit record.
B. Speculative Persistence

Inter-tx ordering guarantees that the commit sequence of trans-
actions in the storage system is the same as the commit issue order

of transactions by the program (i.e., the order in which transaction
commit commands are issued). To maintain this order, all blocks in
one transaction must be persisted to the memory log before any block
of a later transaction is persisted. To ensure this, a cache conflict in the
CPU cache that causes a block of a later transaction to be evicted must
force the eviction of all data blocks of itself and previous transactions.
Thus, inter-tx ordering not only causes significant serialization of
persistent memory requests but it also results in inefficient utilization
of the CPU cache and higher memory traffic, thereby degrading
system performance.

Speculative Persistence relaxes inter-tx ordering by allowing
blocks from different transactions to be written to the persistent
memory log speculatively, out of the software-specified transaction
commit issue order. However, the written blocks become visible to
software only in the software-specified order. As such, the high-level
idea is somewhat similar to out-of-order execution in processors:
persistent memory writes are completed out-of the program-specified
transaction order (within a window) but they are made visible to
software in program transaction commit order. We call this property
“out-of-order persistence, in-order commit”.

With Speculative Persistence, a transaction starts persisting its
data blocks without waiting for the completion of the persistence
of previous transactions’ data blocks. Instead, there is a speculation
window, in which all transactions are persisted out-of-order. The
size of the speculation window is called speculation degree (SD).
Speculation degree defines the maximum number of transactions that
are allowed to persist log blocks out-of-order. As such, the inter-
tx ordering is relaxed. Relaxed inter-tx ordering brings two benefits.
First, cache conflict of one data block does not force eviction of all
blocks of its and all previous transactions. This improves the cache
utilization. Second, writes from multiple transactions are coalesced
when written back to memory, which leads to lower memory traffic.

Figure 3 illustrates transaction persistence in a speculation win-
dow with a speculation degree of four. Within the speculation window,
data blocks from the four transactions can be persisted in any order.
For instance, blocks in T3 can be persisted before blocks in T2. For
a data block that has multiple versions across transactions, only the
latest version needs to be persisted. All blocks, A, B, C, D, in T1 do
not need to be written to memory because their later versions, block
A in T2 and blocks B, C, D in T3, will overwrite them. Therefore,
inter-tx ordering is relaxed within the speculation window.

A B C D A F B C E D E F G

A B C D E

T1 T2 T4T3
Speculation Window

Persistent

Data Block

Volatile

Data Block

Execution

(CPU Cache)

Persistence

(Memory Log)

PersistedNot-Persisted

Fig. 3: Illustration of Speculative Persistence.

Figure 3 also illustrates that Speculative Persistence preserves
the “out-of-order persistence, in-order commit” property: transaction
T1 is reported to be committed while T3 is not, because T2 has
not finished its updates to the persistent memory log. To preserve
this property, Speculative Persistence has to carefully deal with 1)
overlapping writes from different transactions (to the same block) to
ensure that any write to any block is recoverable, and 2) commit
dependencies between transactions to ensure that transactions are
committed in program order. To enable the former, our mechanism
supports multi-versioning in the CPU cache. To enable the latter, our
proposal not only leverages multi-versioning in the CPU cache but
also keeps track of the committed transaction ID based on the commit
issue order of transactions by the program. Both of these, we describe
next.
Multiple Versions in the CPU Cache. In Speculative Persistence,
multiple versions of a data block are maintained in the volatile CPU
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cache, similarly to the versioning cache [37]. Otherwise, if only a
single copy (the latest copy) is kept but the transaction that last
wrote to the block aborts, all previously committed transactions that
were supposed to write to the block would also have to be aborted.
With multiple versions of a data block present in the cache, one
version can be removed only when one of its succeeding versions has
been committed (i.e., the software has committed a later-in-program-
order transaction that writes to the data block). This is because the
committed version in a future transaction that is committed later
in program order is guaranteed to overwrite any previous version
regardless of whether the transaction that is supposed to write to the
previous version is aborted or committed.

There are two issues with keeping multiple versions in the
cache: 1) version overflow, 2) increased cache pressure. First, version
overflow refers to the case that the associativity of the cache is not
enough to keep all active versions of a cache block (or different
cache blocks) in the corresponding cache set. When this happens,
our design evicts the oldest version to the memory log to make
space for the new version. This eviction can reduce the benefit
of Speculative Persistence: probability of merging of writes from
different transactions reduces and an old version of the block may
be written to persistent memory unnecessarily. However, this eviction
does not affect the correctness of the commit protocol. Second, since
multiple versions of a block are kept in the cache set, the pressure on
the cache set increases compared to a conventional cache, which may
lead to higher miss rates. Note that, although Speculative Persistence
keeps multiple cache versions of a block, only the latest version is
persisted to the memory log when versions do not overflow. As such,
write coalescing is enabled across transactions within a speculation
window.
Commit Dependencies Between Transactions. Write coalescing
for a block across different transactions causes new transaction
dependencies that need to be resolved carefully at transaction commit
time. This happens due to two reasons: 1) an aborted transaction may
have overwritten a block in its preceding transactions, 2) an aborted
transaction may have a block that is overwritten by succeeding
transactions that have completed the update of their logs with the new
version. To maintain the out-of-order persistence, in-order commit
property of Speculative Persistence, we have to deal with the two
problems when a transaction aborts: 1) how to rescue the preceding
transactions that have overlapped writes with the aborted transaction?,
and 2) how to abort the succeeding transactions that have completed
the write of their logs for an overlapping write with the aborted
transaction?

The two problems are solved by tracking the commit issue
order of the transactions within each speculation window along with
leveraging the multi-versioning support in the CPU cache. To solve
the first problem, when an abort happens, preceding transactions
that have overlapped writes with the aborted transaction write their
versions of the blocks written by the aborted transaction from the CPU
cache to the persistent memory log. To solve the second problem,
we simply abort the transactions that come later in the commit
issue order than the aborted transactions. In the recovery phase, a
transaction is determined to be committed only if it is checked to be
committed using the count-based commit protocol that checks TxCnt
(as described in Section III-A) and its preceding transactions in its
speculation window are committed.
Modifications to the Commit Protocol. In Speculative Persistence,
overlapped writes in the same speculation window are merged, as
described above. As a result, a transaction that has overlapped writes
with succeeding transactions does not write the overlapped data
blocks to the persistent memory log. This requires a modification
to the commit protocol we described in Section III-A because,
without modification of the commit protocol, the transaction might
be mistaken as a not-committed transaction as the actual number
of data blocks in the memory log area that are stored for it is

different from the non-zero TxCnt. To differentiate between the
two kinds of transactions (those with overlapped writes and non-
overlapped writes), we add a new field of metadata, Transaction (Tx)
Dependency Pair, in the memory log to represent the dependency
between transactions with overlapped writes. Tx Dependency Pair
<Tx, Ty , n> represents that transaction Tx has n overlapped writes
with its succeeding transaction Ty . Transaction Tx is determined
to be committed if and only if Ty is committed and the actual
number of log blocks of Tx plus n equals its non-zero TxCnt. As
such, Tx Dependency Pairs help the commit status identification for
transactions with coalesced writes.

C. Recovery from System Failure
Upon a system crash/failure, LOC scans the memory log area to

recover the system to a consistent state. It first checks the start and end
addresses of the valid logs, and then reads and processes the logs in
the unit of speculation window. It processes each speculation window
one by one, in program order. Since strict ordering is required between
speculation windows, transactions across speculation windows have
no dependencies. Each speculation window can thus be recovered
independently.

First, the META block of each data block group is read in each
speculation window,. LOC counts the number of BLK-TAGs for each
<CID, TID, TxID>; this is the number of logged blocks of this
transaction. If the number matches the non-zero TxCnt in any BLK-
TAG of this transaction, the transaction is marked as committed.

Second, Tx Dependency Pairs from the memory log area are read.
For each pair <Tx, Ty , n>, LOC adds the value n to Tx if Ty is
committed. These pairs are checked in the reverse sequence, from tail
to head. After this step, transactions that have overlapped writes are
marked as committed using the commit protocol.

Third, the first not-committed transaction is found. All trans-
actions after it are marked as not-committed. This guarantees the
in-order commit property. After this, LOC finishes the committed
transactions by writing the data blocks of these transactions to
the home locations of the data blocks. Recovery completes after
discarding all data blocks of the not-committed transactions from the
log, and the system returns to a consistent state.

IV. IMPLEMENTATION AND HARDWARE OVERHEAD
We now describe the architecture implementation details and

discuss the hardware overhead of LOC. Figure 4 shows the overview
of LOC design. CPU issues load and store instructions to perform
memory I/O operations. From the program’s point of view, the volatile
CPU cache and the persistent main memory are not differentiated;
all stores to memory within a storage transaction are deemed to be
persistent memory updates. In order to keep the storage system that
resides in persistent memory consistent, both the I/O interface and
the CPU cache hardware are extended to make sure data in volatile
cache are persisted to persistent memory atomically.

A. Interface
The I/O interface, which lies between the CPU core and the CPU

cache hardware, is extended with transactional commands: TxBegin,
TxCommit, TxAbort and TxFlush. TxBegin, TxCommit and TxAbort
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(Bits) L1 L2 L3 TxST
CID 0 0 3 3
TID 1 1 1 1
TxID 8 8 8 8

TxDirty 0 0 1 0
TxCnt 0 0 0 16
State 0 0 0 2
Phase 0 0 0 2
Wrts 0 0 0 16
Total 9 9 12 48
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Bit State
0 invalid
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(c) Tx States
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1 in-place

write
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(d) Tx Phases

Fig. 5: LOC Hardware Extensions and Their Storage Overhead.

are respectively used to start, commit and abort a transaction. TxFlush
is used to explicitly write data to persistent memory from the CPU
cache. In LOC, durability and atomicity are decoupled, similarly to
the approaches of [26, 10, 34]. TxCommit and TxFlush are combined
to provide both atomicity and durability in LOC.

B. Components
LOC adds three new components to the system: Tx Tracking

Component, Commit/Recovery Logic, and Memory Log Area. Figure 5
shows where these components reside.
Tx Tracking Component has two parts: Tx Dirty Block Table and
Tx State Table. Tx Dirty Block Table tracks the dirty blocks for each
transaction at each level of the CPU cache hierarchy. It is supported
with extra bits added to the tag store of each cache. As shown in
Figure 5(a), each tag in all cache levels is extended with the hardware
thread ID (TID) and the transaction ID (TxID). In the LLC, two other
fields, the CPU core ID (CID) and the transaction dirty flag (TxDirty),
are also added. TxDirty indicates whether the block has been written
to the persistent memory log, and the original dirty flag indicates
whether the block has been written to its home location. Transaction
durability is achieved when log writes are persistent, i.e., TxDirty
is unset. After that, home-location writes can be performed using
the original dirty flag as in a conventional CPU cache. The storage
overhead of each cache is illustrated in Figure 5(b). Only 9 bits (or 12
bits) are added for each 64B block in each level of cache (or LLC).

Tx State Table (TxST) tracks the status of active transactions,
as shown in Figure 5. Each TxST entry has the CID, TID, TxID,
TxCnt, State, Phase and Wrts fields. State denotes the transaction
state, as shown in Figure 5(c). State transitions are induced by
transactional commands. For instance, TxBegin changes the state from
invalid to active; TxCommit (TxAbort) changes the state from active
to committed (aborted). Phase denotes the current status of the write-
back of the transaction: the transaction could be in the log writing
phase, in-place writing phase updating home locations or could have
completed the entire write-back, as shown on Figure 5(d). Wrts
denotes the number of blocks written back in each phase, and is used
to keep track of the completeness of log writing or in-place writing
to determine the status of each transaction. The storage overhead
is shown in Figure 5(b). Each TxST entry has 48 bits. For 128
transactions allowed in the system, the total size of TxST is 768
bytes.
Commit/Recovery Logic (CRL) receives transactional commands
and manages the status of each transaction in the Tx State Table. CRL
stalls new transactions until the current speculation window com-
pletes. For each speculation window, CRL tracks different versions
of each data block and adds a 32KB volatile buffer to store its Tx
Dependency Pairs. When a speculation window completes, the buffer
is written back to the memory log area. In addition, CRL maintains

a LastCommittedTxID register to keep the ID of the last committed
transaction, which tells software that all transactions with smaller IDs
are committed.
Memory Log Area is a contiguous physical memory space to log the
writes from transactions. At the beginning of the memory log area,
there is a log head, which records the start and end addresses of the
valid data logs. The main body of memory log area consists of the
log data block groups (as shown in Figure 2) and the metadata of Tx
Dependency Pairs (introduced in Section III-B). In our evaluations,
32MB memory is allocated for the Memory Log Area as this was
empirically found to be enough for the supported 128 transactions,
but this space can be dynamically expanded.

C. Operations
A transaction writes data in three phases: execution, logging and

checkpointing. In execution phase, data are written to the CPU cache.
In this phase, transactional semantics are passed to the CPU cache
with the extended transactional interface. Transactional writes are
buffered in the CPU cache until the transaction commits. When a
transaction commits, it enters the logging phase, in which data are
persisted to the memory log area (i.e., log write). Only after all
data are completely persisted to the log, a transaction can enter the
checkpointing phase, in which data are written to their home locations
in persistent memory (i.e., in-place write). Rather than keeping two
copies (log write and in-place write) of each data block in the CPU
cache, LOC stores only a single copy with an additional dirty flag
(TxDirty). The Tx Tracking Component updates the TxDirty flag of
each transactional write during different phases. The Tx Tracking
Component allows the in-place writes only after all log writes in the
transaction have completed. In the logging phase, when a transaction
has all its data blocks persisted, the Commit/Recovery Logic checks
the statuses of its previous transactions. If all its previous transactions
have been committed, it also updates the LastCommittedTxID register
to inform the software of the last committed transaction.

V. EVALUATION
In this section, we first compare LOC with previous transaction

protocols. Then, we analyze the performance gains of Eager Commit
and Speculative Persistence. We also study sensitivity to memory
latency.

A. Experimental Setup
We evaluate different transaction protocols using a full-system

simulator, GEM5 [38]. GEM5 is configured using the syscall emu-
lation (SE) mode. Benchmarks can directly run on the full system
simulator without modification or recompilation. In the evaluation,
GEM5 uses the Timing Simple CPU mode and the Ruby memory
system. The CPU is 1 GHz, and the CPU cache and memory have the
parameters shown in Table I. We revise both the cache and memory
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controllers in GEM5 to simulate LOC, as shown in Figure 5. We
faithfully model all overheads associated with LOC. In our evaluation,
the Speculation Degree of LOC is set to 16 by default.

TABLE I: Simulator Configuration.
L1 Cache 32KB, 2-way associative, 64B block size,

LRU replacement, block access latency = 1 cycle
L2 Cache 256KB, 8-way associative, 64B block size

LRU replacement, block access latency = 8 cycles
LLC 1MB, 16-way associative, 64B block size

LRU replacement, block access latency = 21 cycles
Memory 8 banks, memory access latency = 168 cycles

Workloads. Table II lists the workloads we evaluate. B+ tree
is a widely used data structure in both file systems and database
management systems. We implement a B+ tree, in which each 4KB
node contains 200 key(8B)-value(4B) pairs. Each transaction consists
of multiple key-value insert or delete operations. Similarly, we use
hash table, red-black tree and random array swap data structures,
also used in literature [13]. Our graph processing workload inserts
and deletes edges in a large graph [39]. We also evaluate a database
workload [40] on SQLite 3.7.17 [41].

TABLE II: Workloads.
Workloads Description
B+ Tree Insert/delete nodes in a B+ tree
Hash [13] Insert/delete entries in a hash table
RBTree [13] Insert/delete nodes in a red-black tree
SPS [13] Random swaps of array entries
SDG [39] Insert/delete edges in a large graph
SQLite [40] Database benchmark on SQLite

B. Overall Performance
We measure and compare transaction throughput of five different

transaction protocols: S-WAL, H-WAL, LOC-WAL, Kiln and LOC-
Kiln. S-WAL is a software WAL protocol that manages logging
and ordering in software [17]. H-WAL is a hardware WAL protocol
that manages logging in hardware. Different from S-WAL, which
writes two copies respectively for log and in-place writes in the
CPU cache, H-WAL keeps only a single copy in the CPU cache
and lets the hardware manage the log and in-place writes. H-WAL
does not change the ordering behavior of S-WAL. LOC-WAL is our
proposed protocol in this paper. Kiln is a recent protocol that uses
non-volatile last-level cache to reduce the persistence overhead [32],
as we described in Section II. Since Kiln’s optimization is orthogonal
to our LOC mechanism, we combine the two and also evaluate this
combined version, called LOC-Kiln. LOC-Kiln achieves the best of
both Kiln and LOC by only flushing L1 and L2 caches (as in Kiln)
and performing loose ordering (as in LOC).

Figure 6 shows the normalized transaction throughput of the five
protocols. The results are normalized to the transaction throughput of
the baseline, which runs benchmarks without any transaction support
and thus without the associated overheads of transactions. Note that
this baseline does not provide consistency upon system failure and
is intended to show the overhead of providing such consistency
via different mechanisms. Transaction throughput is calculated by
dividing the total number of committed transactions with the total
runtime of each benchmark. We make two key observations.

(1) LOC significantly improves the performance of WAL, includ-
ing both S-WAL and H-WAL. Normalized transaction throughput
increases from 0.316 in S-WAL and 0.331 in H-WAL to 0.651 in
LOC-WAL. In other words, LOC-WAL reduces ordering overhead
from 68.4% in S-WAL and 66.9% in H-WAL to 34.9%. This is
because S-WAL manages logging in software. The log writes and
home-location writes have different memory addresses, and thus are
independently cached in CPU cache. Keeping two copies in CPU
cache hurts cache efficiency, which H-WAL removes, but this does
not greatly reduce the overhead of WAL. LOC greatly reduces the
overhead of WAL by removing intra-tx ordering using Eager Commit
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and loosening inter-tx ordering using Speculative Persistence. The
loosened ordering improves cache efficiency and increases probability
of write coalescing in the CPU cache.

(2) LOC and Kiln can be combined favorably. Doing so improves
normalized transaction throughput to 0.811 on average, i.e., the
ordering overhead is reduced to 18.9%. Kiln shortens the persistence
path by employing an NV last-level cache. LOC mitigates perfor-
mance degradation via a complementary technique, i.e., loosening
the persistence ordering overhead that still exists in an NV cache.

We conclude that LOC effectively mitigates performance degra-
dation from persistence ordering by relaxing both intra- and inter-
transaction ordering.

C. Effect of the Eager Commit Protocol
We compare the transaction throughput of H-WAL and EC-WAL.

EC-WAL is the LOC mechanism for WAL with only Eager Commit
but without Speculative Persistence. Figure 7 plots the normalized
transaction throughput of the two techniques. EC-WAL outperforms
H-WAL by 6.4% on average. This is because the completeness check
in Eager Commit is removed from the critical path of transaction
commit. The elimination of intra-tx ordering leads to fewer cache
flushes and improves cache efficiency.
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D. Effect of Speculative Persistence
To evaluate performance gains from Speculative Persistence, we

vary the speculation degree (SD) from 1 to 32 (SD was set to 16
in previous evaluations). Figure 8 shows the normalized transaction
throughput of LOC-WAL with different SD values. On average, the
normalized transaction throughput of LOC-WAL increases from 0.353
to 0.689 with 95.5% improvement, going from SD=1 to SD=32. This
benefit comes from two aspects of Speculative Persistence. First,
Speculative Persistence allows out-of-order persistence of different
transactions. A cache block without a cache conflict is not forced to
be written back to persistent memory within a speculation window (as
explained in Section III-B), reducing memory traffic and improving
cache efficiency. Second, Speculative Persistence enables write coa-
lescing across transactions within the speculation window, reducing
memory traffic. Both of these effects increase as the speculation
degree increases, leading to larger performance benefits with larger
speculation degrees.

E. Sensitivity to Memory Latency
We evaluate LOC performance with different memory latencies

to approximate the effect of different types of non-volatile memories.
We vary memory latency from 35, 95, 168 and 1000 nanoseconds (our
default evaluations so far were with a 168-nanosecond latency). We
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measure the transaction throughput of both H-WAL and LOC at each
latency. Figure 9 shows the performance improvement of LOC over
H-WAL at different memory latencies. In the figure, the black part of
each stacked bar shows the normalized transaction throughput of H-
WAL, and the gray part shows the performance improvement of LOC
over H-WAL. Two major observations are in order. First, performance
of H-WAL reduces as memory latency increases. This shows that
higher memory latency in NVMs leads to higher persistence ordering
overheads. Second, LOC’s performance improvement increases as
memory latency increases. This is because LOC is able to reduce
the persistence overhead, which increases with memory latency. We
conclude that persistence ordering overhead is becoming a more
serious issue with higher-latency NVMs, which LOC can effectively
mitigate.
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VI. CONCLUSION
Persistent memory provides disk-like data persistence at DRAM-

like latencies, but requires memory writes to be written to persistent
memory in a strict program order to maintain storage consistency.
Enforcing such strict persistence ordering requires flushing dirty
blocks from all levels of the volatile CPU caches and waiting for their
completion at the persistent memory, which dramatically degrades
system performance. To mitigate this performance overhead, we
introduced Loose-Ordering Consistency (LOC), which relaxes the
persistence ordering requirement without compromising storage con-
sistency. LOC’s two key mechanisms, Eager Commit and Speculative
Persistence, in combination, relax write ordering requirements both
within a transaction and across multiple transactions. Our evaluations
show that LOC can greatly improve system performance by reducing
the ordering overhead across a wide variety of workloads. LOC
also combines favorably with non-volatile CPU caches, providing
performance benefits on top of systems that employ non-volatile last-
level caches. We conclude that LOC can provide a high-performance
consistency substrate for future persistent memory systems.
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