
THE 801 MINICOMPUTER

George Radin, IBM Fellow
IBM Thomas J. Watson Research Center

P. O. Box 218
Yorktown Heights, New York 10598

Abstract

This paper provides an overview of an experimental
system developed at the IBM T. J. Watson Research Center. It
consists of a running hardware prototype, a control program and
an optimizing compiler. The basic concepts underlying the
system are discussed as are the performance characteristics of
the prototype. In particular, three principles are examined:

- system orientation towards the pervasive use of high
level language programming and a sophisticated compiler,

- a primitive instruction set which can be completely
hard-wired,

- storage hierarchy and I /O organization to enable the
CPU to execute an instruction at almost every cycle.

Introduction

In October, 1975, a group of about twenty researchers
at the IBM T. J. Watson Research Center began the design of
a minicomputer, a compiler, and a control program whose goal
was to achieve significantly better cost /performance for high
level language programs than that attainable by existing sys-
tems. The name 801 was chosen because it was the IBM num-
ber of the building in which the project resided• (The twenty
creative researchers were singularly uninspired namers.)

in addition to a running research prototype the project
resulted in an understanding of many design mistakes and thus
has spawned a second generation research activity which is
currently being pursued. This paper is a description of the basic
design principles and the resulting system components
(hardware and software).

Basic Concepts

Single Cycle Implementation

Probably the major distinguishing characteristic of the
801 architecture is that its instructions are constrained to execu-
te in a single, straightforward, rather primitive machine cycle.
A similar general approach has been pursued by a group at the
University of California [1].

Complex, high-function instructions, which require
several cycles to execute, are conventionally realized by some
combination of random logic and microcode. It is often true
that implementing a complex function in random logic will result
in its execution being significantly faster than if the function
were programmed as a sequence of primitive instructions. Exam-
ples are floating point arithmetic and fixed point multiply. We
have no objection to this strategy, provided the frequency of
use justifies the cost and, more important, provided these com-
plex instructions in no way slow down the primitive instructions.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 A C M 0 - 8 9 7 9 1 - 0 6 6 - 4 8 2 / 0 3 / 0 0 3 9 $ 0 0 . 7 5

But it is just this pernicious effect on the primitive
instructions that has made us suspicious. Most instruction
frequency-studies show a sharp skew in favor of high usage of
primitive instructions (such as Load, Store, Branch, Compare,
Add). If the presence of a more complex set adds just one logic
level to a 10 level basic machine cycle (e.g. to fetch a micro

• instruction from ROS), the CPU has been slowed down by
10%. The frequency and performance improvement of the
complex functions must first overcome this 10% degradation,
and then justify the additional cost. If the presence of complex
functions results in the CPU exceeding a packaging constraint
on some level (e.g. a chip, a-board), the performance degrada-
tion can be even more substantial.

Often, however, a minicomputer that boasts of a rich set
of complex instructions has not spent additional hardware at all,
but has simply microprogrammed the functions. These microin-
structions are designed to execute in a single cycle and, in that
cycle, to set controls most useful for the functions desired. This
however, is exactly the design goal of the 801 primitive instruc-
tion set. We question, therefore, the need for a separate set of
instructions.

In fact, for "vertical microcode", the benefits claimed
are generally not due to the power of the instructions as much
as to their residence in a high-speed control store. This
amounts to a hardware architect attempting to guess which
subroutines, or macros, are most frequently used and assigning
high speed memory to them. It has resulted, for instance, in
functions like Extended-Precision Floating Point Divide and
Translate-and-Test on S/370 's residing in high speed storage,
while procedure prologues and the First-Level-Interrupt-
Handler are in main storage. The 801 CPU gets its instructions
from an "instruction cache" which is managed by LRU informa-
tion. Thus all frequently used functions are very likely to be
found in this high-speed storage, exhibiting the performance
characteristics of vertical microcode.

Programming complex functions as software procedures
or macros rather than in microcode has three advantages:

First, the CPU is interruptible at "microcode" bounda-
ries, hence more responsive. Architectures with complex in-
structions either restrict interrupts to instruction boundaries, or
(as in, for instance, the Move Characters Long instruction on
the S/370) define specific interruptible points. If the instruc-
tion must be atomic, the implementation must ensure that it can
successfully complete before any observable state is saved.
Thus, in the S/370 Move Character instruction, before starting
the move all pages are pretouched (and locked, in an MP sys-
tem) to guard against a page fault interrupt occurring after the
move has begun. If interruptible points are architected, the
state must be such that the instruction is restartable.

39

The second advantage of programming these functions
is that an opt imizing compiler can often separate their compo-
nents, moving some parts out of a loop, commoning others, etc.

Thirdly, it is often possible for parts of a complex in-
struction to be computed at compile time. Consider, for in-
stance, the S / 3 7 0 Move Charac ter instruction once again. Each
execution of this instruction must determine the opt imal move
s t ra tegy by examining the lengths of the source a n d - t a r g e t
strings, whether (and in what direct ion) they overlap, and what
their a l ignment characteris t ics are. But, for most programming
languages, these may all be known at compile time. Consider
also a mult iply instruction. If one of the operands is a constant ,
known at compile time, the compiler, can of ten produce more
efficient " sh i f t / add" sequences than the general mult iply micro-
code subroutine.

The major disadvantage to using procedures instead of
microcode to impldment complex funct ions occurs wheri the
micro ins t ruct ion set is def ined to permit its operands to be
indirectly named by the register name fields in the instruction
which i s being interpreted. Since, in the 801 and in most con-
vent ional architectures, the register numbers are bound into the
instructions a compiler must adopt some specific register usage
convent ion for the procedure operands, and move the operands
to these registers when necessary.

A computer whose ins t ruct ions all execute very effi-
ciently, however, is a t t ract ive only if the number of such in-
s t ruct ions required to perform a task is not commensura te ly
larger than that required of a more complex instruction set. The
801 project was concerned only with the execut ion of programs
compiled by our opt imizing compiler. Therefore , within the
constraints of a primitive data flow, we left the actual defini t ion
of the instructions to the compiler writers. The results will be
discussed later, b u t g e n e r a l l y show pathlengths (that is, number
of instructions executed) about equivalent to those on a S / 3 7 0
for systems code, and up to 5 0 % longer for commercial and
scientific applicat ions (given no hardware f loat ing point).

Overlapped Storage Access

801 instruction mixes show that about 3 0 % of instruc-
t ions go to s torage to send or receive data, and be tween 10%
and 2 0 % of instructions are taken branches. Moreover, for
many applications, a significant port ion of the memory band-
width is used by I / O . If the CPU is forced to wait many cycles
for storage access its internal performance will be wasted.

The second major design goal of the 801 project, there-
fore, was to organize the storage hierarchy and develop a sys-
tem archi tec ture to minimize CPU idle t ime due to s torage
access. First , it was clear that a cache was required whose
access t ime was consis tent with the machine cycle of the CPU.
Secondly we chose a " s to re - in -cache" s t ra tegy (ins tead of
"s tor ing through" to the back ing s tore) so that the 10% of
expected store instructions would not degrade the performance
severely. (For instance, if the t ime to store a word through to
the backing store is ten cycles, and 10% of ins t ruct ions are
stores, this will add up to one cycle to each instruction on aver-
age depending on the amount of execut ion overlap.)

But a CPU organizat ion that needs a new instruct ion at
every cycle as well as accessing data every third cycle will still
be degraded by a single convent ional cache that delivers a word
every cycle. Thus we decided to split the cache into a part
containing data and a part containing instructions. In this way
we effectively doubled the bandwidth to the cache and allowed
asynchronous fetching of instruct ions and data at the backing
store.

Most convent iona l archi tec tures make this decis ion
difficult because every store of data can be a~modification of an
instruction, perhaps even the one following the store. Thus the
hardware must ensure that the two caches are proper ly syn-
chronized, a job that is e i ther expensive or degrading, or both.
Even ins t ruct ion prefe tch mechanisms are complex since the
effective address of a store must be compared to the Instruct ion
Address Register.

Historically, as soon as index registers were in t roduced
into computers the frequency of instruct ion modif icat ion fell
dramatical ly until, today, instruct ions are a lmost never modified.
Therefore the 801 archi tec ture does not require this hazard
detection. Ins tead it exposes the exis tence of the spli t-cache t9
sof tware and provides instruct ions by which sof tware can syn-
chronize the caches when required. In our sys tem the only
program tha t modif ies ins t ruc t ions is the one that loads pro-
grams into memory.

Similarly, in convent ional systems in which the existence
of a cache is unobservable to the software, I / O must (logically)
go through the cache. This is often accomplished in less expen-
sive systems by sending the I / O physical ly through the cache.
The result is that the CPU is idle while the I / O proceeds, and
that af ter an I / O burst the conten ts of the cache no longer
reflect the working set of the process being executed, forcing it
back into t ransient mode. Even in more expensive systems a
b roadcas t ing or d i rec to ry-dupl ica t ion s t ra tegy may result in
some performance degradat ion.

We observed that responsibi l i ty for the ini t ia t ion of I / O
in current sys tems was evolving towards paging supervisors ,
system I / O managers using fixed block transfers, and, for low
speed devices, a buffer s t ra tegy which moves da ta be tween
subsystem buffers and user areas. This results in the I / O man-
ager knowing the locat ion and extent of the storage being ac-
cessed, and knowing when an 1 /O transfer is in process. Thus
this sof tware can properly synchronize the caches, and the I / O
hardware can transmit directly to and from the backing store.
The result of this system approach in our proto type is that even
when half of the memory bandwidth is being used for I / O the
CPU is virtually undegraded.

Not ice that in the preceding discussions (and in the
earlier discussion of complex instruct ions) an underlying strate-
gy is being pervasively applied. Namely, wherever there is a
system function that is expensive or slow in all its general i ty,
but where sof tware can recognize a f requent ly occurr ing degen-
erate case (or can move the entire function from run time to
compile time) that function is moved from hardware to soft-
ware, result ing in lower cost and improved performance.

An interest ing example of the appl icat ion of this s trate-
gy concerns managing the cache itself. In the 801 the cache
line is 32 bytes and the largest unit of a store is four bytes. In
such a cache, whose line size is larger than the unit of a store
and in which a "store in cache" approach is taken, a store di-
rected at a word which is not in the cache must ini t iate a fetch
of the entire line from the backing store into the cache. This is
because, as far as the cache can tell, a load of another word
from this line might be reques ted subsequent ly . Frequent ly ,
however , the store is s imply the first s tore into what to the
program is newly acquired space. It could be a new act ivat ion
on a process s tack just pushed on procedure call (e.g. P L / I
Automat ic) ; it could be an area obta ined by a request to the
operat ing system; or it could be a register save area used by the
First Level Interrupt Handler. In all of these cases the hard-
ware does not know that no old values from that line will be
needed, while to the compiler and supervisor this s i tuat ion is
quite clear. We have defined explicit instruct ions in the 801 for

40

cache m a n a g e m e n t so tha t so f tware can reduce these unneces -
sary loads and s tores of cache lines.

One o ther 801 sys tem s t ra tegy leads to more effect ive
use of the cache. Conven t iona l so f tware assumes tha t its mem-
ory is r andomly addressable . Because of this a s sumpt ion each
service p rog ram in the superv isor and subsys tems has its own
local t e m p o r a r y s torage. Thus an appl ica t ion p r o g r a m reques t -
ing these services will cause re fe rences to m a n y di f ferent ad-
dresses. In a h igh- l eve l - l anguage-based sys tem like the 801,
cont ro l p rog ram services are C A L L ' e d just like a user ' s sub rou t -
ines. The resul t is tha t all these service p r o g r a m s get thei r
t e m p o r a r y areas f rom the same s tack, resul t ing in much reuse of
cache lines and, therefore , h igher cache hit ratios.

So fa r we have d iscussed 801 f ea tu re s tha t resul t in
over lapped access to the cache be tween ins t ruc t ions and da ta ,
over lapped back ing s tore access a m o n g the caches and 1 /O, less
h a r d w a r e synchron iz ing a m o n g the caches and I / O , and techni -
ques to improve the cache hit rat ios. One o ther aspect of the
801 C P U design and a rch i tec tu re should be descr ibed to com-
plete the picture.

Even if a lmost all ins t ruc t ion and da t a r e fe rences are
found in the cache , and the cache and back ing s tore are a lways
avai lable to the CPU, a conven t iona l C P U will still o f t en be idle
while wa i t ing for a load to comple t e or fo r the t a rge t of a
b r anch to be fe tched. Sophis t ica ted C P U ' s of ten keep b r anch -
taken histories or fe tch ahead on bo th pa ths in o rder to over-
come this idle time. In the 801 pro jec t we obse rved that , with a
small n u m b e r of h a r d w a r e primitives, so f tware (i.e. the compi -
ler) could r eo rde r p r o g r a m s so tha t the seman t i c s r e m a i n e d
u n c h a n g e d but the h a r d w a r e could easily over lap this idle t ime
with useful work .

O n load ins t ruct ions the regis ter tha t is to be the t a rge t
of the load is locked by the CPU. The C P U then con t inues
execut ion of the ins t ruc t ion s t ream until it r eaches an ins t ruc-
t ion tha t requires this register , at which time it idles unti l the
load is comple ted . Thus , if the compi ler can f ind a useful in-
s t ruc t ion to put a f te r the load tha t does not requi re the result of
the load, the C P U will not be idle at all while the da t a cache
fe tches the r eques t ed word . (A n d if the compi l e r can f ind
several such ins t ruc t ions to put a f t e r the load , execu t ion of
these will even over lap cache miss.)

Similarly for b ranches , the 801 a rch i tec tu re def ines , fo r
every type of b r a n c h ins t ruc t ion , an a l t e rna t e fo rm cal led
Branch with Execute . (This is similar to the de layed b ranch in
the RISC c o m p u t e r [1].) These ins t ruc t ions have exac t ly the
same semant i c s as thei r c o r r e s p o n d i n g b r a n c h ins t ruc t ions ,
except tha t while the ins t ruc t ion cache is f e tch ing the b r anch
ta rge t the C P U executes the ins t ruc t ion tha t has been placed
immedia te ly a f t e r the B r a n c h wi th Execu t e ins t ruc t ion . F o r
ins tance, in the sequence:

L O A D R1, A
BNZ L

the C P U would be idle while the ins t ruc t ion cache was fe tch ing
L, if the b r a n c h was taken. C h a n g i n g the B R A N C H - N O N -
Z E R O to a B R A N C H N O N - Z E R O W I T H E X E C U T E , and
moving the L O A D ins t ruct ion results in:

B N Z X L
L O A D R 1 , A

which has exact ly the same semant ics but allows the C P U to
execute the L O A D while the ins t ruc t ion cache is fe tch ing the
ins t ruct ion at L. The 801 compi ler is able, general ly , to conve r t
abou t 6 0 % of the b ranches in a p r o g r a m into the execute form.

A Compiler-Based System

So fa r we have d iscussed two m a j o r ideas which pe rvade
the 801 system. First , build a C P U tha t can execute its ins t ruc-
t ions quickly (i.e. in one relat ively shor t mach ine cycle) , and
define these ins t ruc t ions to be a good ta rge t fo r compi la t ion so
tha t resul t ing p a t h l e n g t h s are genera l ly c o m m e n s u r a t e wi th
those for the same func t ions on more complex ins t ruc t ion sets
(e.g. S / 3 7 0) . Second , def ine the s to rage h i e ra rchy a rch i tec ture ,
the C P U ins t ruct ions , the 1 / O a rch i tec tu re and the so f tware so
tha t the C P U will genera l ly not have to wait for s to rage access•
The third m a j o r idea cen te rs abou t the 801 compiler . A funda -
menta l decis ion of the 801 pro jec t was to base the ent i re sys tem
on its pervasive use. This has resul ted in the fol lowing sys tem
character is t ics :

Ins t ruc t ion sets fo r conven t iona l C P U ' s have been de-
f ined with an implicit a s sumpt ion tha t m a n y p r o g r a m m e r s will
use a s sembly l anguage . This a s s u m p t i o n has m o t i v a t e d the
def in i t ion of complex ins t ruc t ions (such as Edi t a n d M a r k ,
Trans la te and Test) a lmost as much as has the no t ion of a fas t
con t ro l store. But, increas ingly , p r o g r a m m e r s do not use assem-
bly l anguage except where opt imal p e r f o r m a n c e is essential or
mach ine func t i ons are r equ i red t ha t are no t re f lec ted in the
source language.

The compiler for the 801 has d e m o n s t r a t e d tha t it c a n
p roduce ob jec t code tha t is c lose e n o u g h to bes t h a n d code
genera l ly so tha t a s sembly l anguage p r o g r a m m i n g is a lmos t
never needed for pe r fo rmance• The ope ra t ing sys tem has isolat-
ed those m a c h i n e - d e p e n d e n t func t i ons no t re f lec ted in the
language (such as Disable, Star t I / .O, Dispa tch) and deve loped
eff ic ient p rocedures which provide these func t ions with minimal
l inkage overhead .

The resul t is a sys tem in wh ich less t han a t h o u s a n d
lines of superv isor code (and some of the " m i c r o e o d e " sub rou t -
ine imp lemen ta t i ons of the complex func t ions) are wr i t t en in
Assembly language . This has rel ieved the 801 a rch i tec tu re of
the bu rden of being easy to p r o g r a m direct ly. Vir tual ly the on ly
p r o g r a m m e r s who are c o n c e r n e d with the na ture of the a rch i tec-
ture are the compi ler wri ters , and the " c o r e " supervisor writers.
All o thers see the sys tem only th rough a high level l anguage .
Because of this, the 801 archi tec ts were able to base thei r deci-
s ions solely on the needs of these few p r o g r a m m e r s , and on
c o s t / p e r f o r m a n c e cons idera t ions .

Thus the 801 a r ch i t e c tu r e was de f ined as t ha t set of
run- t ime ope ra t ions which:

- could no t be moved to compile time,
- could not be more eff ic ient ly execu ted by ob jec t code

p r o d u c e d by a compi le r which unde r s tood the high level in tent
of the p rog ram,

- was to be implemented in r a n d o m logic more ef fec-
t ively than the equivalent s equence of so f tware ins t ruct ions .

It migh t a t f irst seem surpr i s ing tha t compi l e r wr i te r s
would no t wan t power fu l high level instruct ions• But in fac t
these ins t ruc t ions are o f ten ha rd to use since the compi ler must
f ind those cases wh ich exac t ly fit the a r ch i t ec t ed cons t ruc t .
Code se lect ion becomes no t just f inding the fewest ins t ruc t ions ,
but the r ight ins t ruct ions . A n d when these ins t ruc t ions name
o p e r a n d s in s to rage ins tead of in registers , code select ion will
depend upon the results of regis ter a l locat ion.

The 801 a p p r o a c h to p ro tec t ion is s t rongly based upon
this compi l e r i n t e r m e d i a r y b e t w e e n users and the h a r d w a r e .
C o n v e n t i o n a l sys tems expec t app l i ca t ion p r o g r a m m e r s , a n d
cer ta in ly subsys tem p r o g r a m m e r s , to use assembly l anguage or
o the r l anguages in which it is possible to subver t the sys tem

41

(ei ther del iberately or accidentally) . Thus hardware facilities
are required to properly isolate these users. The most popular
examples of these facil i t ies are s torage protect keys, mult iple
virtual address spaces, and supervisor state. These facilit ies are
often costly and sometimes degrade performance. But what is
more important is that they are often inadequate. Since even
16 d i f ferent keys are insuff ic ient to assign uniquely, for in-
stance, different users are somet imes given the same key or the
system limits the number of active users. Also, because the key
disciplines are only two level, many subsystems are forced to
run with full addressing capabil i ty.

If, however, users are Constrained to a properly defined
source language, and their programs are processed by an intelli-
gent compiler and run on an operat ing system that unders tands
the addressing strategies of the compiler, it. is possible to pro-
vide bet ter protect ion at less cost. The 801 system, therefore, is
based upon the assumption that cer ta in critical components of
the compiler are correct, and that all programs execut ing on the
system (except for a small supervisor core) have been compiled
by this compiler. The system will guarantee:

• that all references to data (scalars, arrays, structures,
areas) really do point to that data, and that the extents of the
references are included in the extents of the data,

• that a reference to dynamica l ly a l loca ted-and- f reed
data is made only be tween an al locat ion and a free,

• that all branches are to labels, and all calls are to
proper entry points in procedures,

• that the extents of all arguments to a procedure match
the extents of their corresponding parameters , so that the pro-
tect ion persists across calls,

• that all declara t ions of global (external) var iables in
separately compiled procedures have consis tent extents.

This checking is of ten done at compile time, link edit
time, or program fetch time, but, when necessary, trap instruc-
t ions are introduced into the object code to check at run time.
The result ing increase in pathlength due to this run t ime check-
ing is general ly less than 10% because this code is opt imized
along with the rest of the program [5].

Notice that this is not a "s t rongly typed" approach to
checking. Overlays of one data type on another are permit ted,
provided the domains are not exceeded. But our exper ience in
running code convent ional ly on the S / 3 7 0 and then on the 801
with this checking has shown that many program bugs are dis-
covered and that, more important ly , they tend to be the kinds of
bugs that elude normal component test procedures.

It was noted earl ier that, because the operat ing system
was also wri t ten in the 801 's high level language and compiled
by the 801 compiler, its service programs were simply C A L L ' e d
like any external procedure, result ing in bet ter cache behavior.
An even more impor tant consequence of this design, however, is
that the checking of matches be tween arguments and parameters
is performed at the t ime a program is loaded into memory and
l inked to the supervisor. This results in efficient calls to super-
visor services, especial ly when compared to convent ional over-
head. It means, also, that the compiler-generated " t raceback"
mechanism continues into the operat ing system, so tha t when an
error occurs the entire symbolic call chain can be displayed.

The l inkage between procedures on the 801 is another
example of a consis tent machine design based on a system used
solely via a high level language. We wanted applicat ions on the
801 to be programmed using good programming style. This
implies a large number of procedures and many calls. In part ic-
ular it implies that very short procedures can be freely writ ten
and invoked. Thus, for these short procedures, the l inkage must
be minimal.

The 801 procedure l inkage a t tempts to keep arguments
in registers where possible. It also expects some register values
to be destroyed across a CALL. The result is that a procedure
call can be as cheap as a Branch and Link instruction when the
called procedure can execute ent irely out of avai lable registers.
As more complex functions are required they increase the over-
head for l inkage incremental ly.

Finally, the pervasive use of a high level language and
compiler has given the project great f reedom to change. The
archi tecture has undergone several drast ic changes, and count-
less minor ones. The l inkage convent ions , s torage mapping
strategies, and run time l ibrary have similarly been changed as
exper ience provided new insights. In a lmost every case the cost
of the change was l imited to recompilat ions.

This abil i ty to preserve source code, thus l imit ing the
impact of change, can have s ignif icant long range impact on
systems. New technologies (and packaging) often offer great
pe r fo rmance and cost benef i t s if they can be exploi ted with
archi tecture changes.

System Components

The Programming Language

The source language for the 801 system is called PL.8.
It was def ined to be an appropriate language for wri t ing systems
programs and to produce op t imized code wi th the checking
described above.

PL.8 began as an a lmost -compat ib le subset of P L / I , so
that the PL.8 compiler was initially compiled by the P L / I Op-
t imizer. It contains , for ins tance, the P L / I s torage classes,
funct ions, f loat ing point var iables , vary ing charac ter str ings,
arrays with adjustable extents , the s t ructured control pr imit ives
of P L / I , the s t r ing-handl ing buil t - in-funct ions, etc. I t differs
from P L / I in its in terpre ta t ion of bit s tr ings as binary numbers,
in its binary ar i thmetic (which simply reflects the ar i thmetic of
the 801 hardware) and in some language addi t ions bor rowed
from Pascal. It does not conta in full P L / I ON condi t ions ,
mult iple entry .points, or the abil i ty to develop absolute pointers
to Automat ic or Static storage. Relat ive pointers, called Off-
sets, can be developed only to Areas. This discipline has sever-
al advantages:

- All program and data areas can be moved freely by
the system, since absolute addresses are never s tored in user-
addressable data structures.

- Any ar i thmet ic da ta type can be used as an offset
(re la t ive poin ter) and all a r i thmet ic opera t ions can be freely
performed, since the extent checks will be made on every use.

- A store, using a computed offset, can only affect other
data in that part icular area. Thus, the locat ions whose values
could have been changed by this store are s ignif icantly limited.
This enhances the power of the opt imizat ion algorithms.

- I t leads to be t te r s t ructured, more easi ly readable
programs.

42

The Optimizing ~ompiler

There have been about seven programmers in the com-
piler group since the project began. A running compiler was
completed after about two years. Since then the group has been
involved with language extensions, new opt imizat ion techniques,
debugging, and useabili ty aids. It should be noted, however,
that the Compute r Sciences depar tment at York town Heights
has been working on compiler a lgor i thms for about twenty
years, many of which were simply incorporated into this compi-
ler.

The PL.8 compiler adopts two strategies which lead to
its excellent object code. The first is a s t ra tegy which translates
in the most s t ra ight forward, ineff icient (but correct) manner
from P L 8 source language to an intermediate language (IL).
This t ransla t ion has as its only object ive the product ion of
semant ica l ly correct object code. It seeks a lmost no special
cases, so that it is relatively easy to debug. Moreover the inter-
mediate language which is its target is at a very low level, al-
most the real 801 machine.

The next phase of the compiler develops flow graphs of
the program as described in [2], and, using these graphs, per-
forms a series of convent ional opt imizat ion algorithms, such as:

• common sub-expression el imination,
• moving code out of loops,
• e l iminat ing dead code,
• s trength reduction.

Each of these algori thms transforms an IL program into
a semantical ly equivalent , but more efficient, IL program. Thus
these procedures can be (and are) called repeti t ively and in any
order. While these procedures are quite sophist icated, since each
of them acts on the entire program and on all programs, a bug
in one of them is very easily observed.

The power of this approach is not only in the opt imizing
power of the algori thms but in the fact that they are applied to
such a low level IL. Convent ional global opt imizing compilers
perform their t ransformations at a much higher level of text,
primarily because they were designed to run in relat ively small
size memory. Thus they can often not do much more than
convert one program to another which could have been wri t ten
by a more careful programmer. The PL.8 compiler , on the

other hand, applies its op t imiza t ion a lgor i thms to address ing
code, domain checking code, procedure l inkage code, etc.

The second compiler s t ra tegy which is d i f ferent from
convent iona l compilers is our approach to regis ter a l locat ion
[3,4]. The IL, like that of most compilers, assumes an arbitrari-
ly large number of registers. In fact the result of each different
computat ion in the program is assigned a different (symbolic)
register. The job for register al locat ion is simply to assign real
registers to these symbolic registers. Conven t iona l approaches
use some subset of the real registers for slaecial purposes (e.g.
pointers to the stack, to the code, to the parameter list). The
remaining set is assigned locally within a s ta tement , or at best a
basic block (e.g. a loop). Between these assignments results
which are to be preserved are temporari ly stored, and variables
are redundant ly loaded.

The 801 approach observes that the register ass ignment
problem is equivalent to the graph coloring problem, where each
symbolic register is a node and the real registers are different
colors. If two symbolic registers have the property that there is
at least one point in the program where both their values must
be retained, we model that property on the graph as a vertex
between the two nodes. Thus the register al locat ion problem is

equivalent to the problem of coloring the graph so that no two
nodes connected by a vertex are colored with the same crayon.

This global approach has proven very effective. Surpris-
ingly many procedures "color" so that no s t o r e / l oad sequences
are necessary to keep results in s torage temporari ly. (At pres-
ent the compiler "colors" only computat ions. There is, howev-
er, no technical reason why local variables could not also be
"col6red" and we intend to do this eventual ly.) When it does
fail, o ther algori thms which use this graph informat ion are em-
ployed to decide what to store. Because of this abili ty of the
compiler to effect ively utilize a large number of registers, we
decided to implement 32 ge~neral purpose registers in the hard-
ware.

The compiler will also accept Pasca[programs, produc-
ing compat ible object code so that PL.8 and Pascal procedures
can freely call one another. It will also produce efficient object
code for the S /370 , thus providing source code portabil i ty.

Instructions and O p e r a n d s

Instruct ion formats and data representa t ions are areas
which saw significant change as the project evolved. This sec-
t ion describes the current version of the architecture; "The kind
of instruction and operand set requested by the compiler devel-
opers turned out, fortunately, to be precisely one which made
hardware implementa t ion easier. The overr id ing theme was
regularity. For instance:

- All operands must be aligned on boundar ies consis tent
with their size (i.e. halfwords on halfword boundaries, words on
word boundaries) . All instructions are fullwords on fullword
boundaries. (This results in an increase in program size over
two-and-four byte formats, but the larger format allows us to
define more powerful ins t ruct ions resul t ing in shor ter pa th-
lengths .) Since the 801 was des igned for a c a c h e / m a i n
s to re /ha rd disk hierarchy, and virtual memory addressing, the
consequence of larger programs is l imited to more disk space
and larger working sets (i.e., penal t ies in cache-h i t - ra t io and
page-fault frequency).

With this a l ignment constra int the hardware is great ly
simplified. Each data or instruction access can cause at most
one cache miss or one page fault. The caches will have to
access at most one aligned word. Instruct ion prefetch mecha-
nisms can easily find op codes if they are searching for branch-
es. Instruct ion a l ignment and data a l ignment are unnecessary.
Ins t ruct ion Length Count fields (as in the S / 3 7 0 PSW) are
unnecessary and sof tware can a lways back t rack instruct ions.
Moreover, for data, traces show that misal igned operands rarely
appear and when they do are often the result of poor program-
ming style.

- Given four byte instruct ions, o ther benef i t s accrue.
Register fields in instructions are made five bits long so that the
801 can name 32 registers. (This aspect of 801 archi tecture
makes it feasible to use the g01 to emulate other architectures
which have 16 GPR's , since 16 801 registers are still avai lable
for emulator use.)

Four byte instructions also allow the target register of
every instruction to be named explicit ly so that the input ope-
rands need not be destroyed. This facility is applied pervasive-
ly, as in "Shift Reg A Left by contents of Reg B and Store
Result in Reg C". This feature of the archi tecture simplifies
register al locat ion and, e l iminates many Move Register instruc-
tions.

43

- The 801 is a true 32 .bit a rch i tec ture , not a 16 bit
a r ch i t ec tu re with ex t ended regis ters . Addres ses are 32 bits
long; ar i thmet ic is 32 bit two ' s complement ; logical and shift
ins t ruct ions deal with 32 bit words (and can shift d i s tances up
to 32). A useful way to reduce pa th leng th (and cache misses) is
to def ine a rich set of immedia te fields, but of course it is im-
possible., to encode a genera l 32 bit cons t an t to fil into an imme-
diate field in a four byte inst ruct ion. The 801 defines the fol-
lowing subsets of such cons t an t s which meet most requi rements :

• A 16 bit immedia te field for a r i thmet ic and
address ca lcu la t ion (D field) which is in te rpre ted as a
two ' s com p lemen t s igned integer . (Thus the cons t an t s
_+.215 can be r ep resen ted immedia te ly .)

• A 16 bit logical coos tan t . Each logical ope ra -
t ion has two immedia te fo rms - u p p e r . a n d lower, so tha t
in a t mos t two ins t ruc t ions "(cycles) logical opera t ions
can be pe r fo rmed using a 32 bit logical cons tan t .

• A n 11 bit encod ing of a Mask (i.e. a subs t r ing
of ones s u r r o u n d e d by zeros or zeros s u r r o u n d e d by
ones) . Thus for shift, insert , and isolate ope ra t ions the
subs t r ing c a n be def ined immediate ly .

• A 16 bi t immed ia t e f ield fo r b r a n c h t a rge t
ca lcu la t ion (D-f ie ld) wh ich is i n t e rp re t ed as a s igned
two ' s c o m p l e m e n t of fse t f rom the address of the cu r ren t
ins t ruct ion. (Thus a relat ive b r a n c h to and f rom any-
where wi th in a 3 2 K by te p r o c e d u r e c a n be speci f ied
immedia te ly .)

• A 26 bit immedia te field spec i fy ing an offse t
f rom the address of the cu r ren t ins t ruc t ion or an abso-
lute address , so tha t b r anches be tween p rocedures , to
supervisor services, or to " m i c r o c o d e sub rou t i ne s " can
be specif ied wi thout hav ing to es tabl ish addressabi l i ty .

- L o a d a n d Store ins t ruc t ions are ava i lab le in every
combina t i on of the fol lowing opt ions:

• L o a d or Store,
• cha rac te r , ha l fword , s ign-ex tended ha l fword , full-

word ,
• Base + Index, or Base + Disp lacement effect ive

address ca lcula t ion . (Usage stat ist ics for S / 3 7 0
show low use for the full B + X + D form. Thus a
three input adde r did no t seem war r an t ed .)

• S tore the ef fec t ive addres s b a c k in to the base
regis ter (i.e. " a u t o i n c r e m e n t ") or not .

- B r a n c h e s are ava i lab le wi th the fo l lowing b r a n c h
ta rge t speci f ica t ions

• abso lu te 26 bit address ,
• In s t ruc t ion A d d / e s s Reg i s t e r + D i sp l acemen t

(s igned 16 or 26 bit word of fse t) ,
• Regis te r + Regis ter ,

B ranch and L ink forms are def ined normal ly . But con-
di t ional b r anches are def ined not only based upon the s ta te of
the Cond i t ion Regis ter but on the presence or absence of a one
in any bit posi t ion in any register . (This al lows tile Test U n d e r
Mask - B r a n c h Cond i t ion sequence in S / 3 7 0 to be execu ted in
one mach ine cycle (and no s to rage r e fe rences) if the bit is
a l ready in a register . Aga in the p o w e r of global regis ter a l loca-
t ion makes this more p robab le .)

- There are C o m p a r e and T r a p ins t ruc t ions de f ined
which allow the S / 3 7 0 C o m p a r e - Branch Cond i t ion sequence
to be execu ted in one machine cycle for those cases where the
test is for an i n f r e q u e n t l y - e n c o u n t e r e d excep t ion cond i t ion .
These ins t ruct ions are used to implement the run- t ime extent
checking discussed earlier.

- Ar i t hme t i c is 32 bit t w o ' s c o m p l e m e n t . T h e r e are
special ins t ruc t ions def ined to al low M A X , M I N , . a n d decimal
add and sub t r ac t to be coded eff iciently. There are also two
ins t ruct ions def ined (Mult iply Step and Divide Step) to al low
two 32 bit words to be mult ipl ied in 16 cycles (yielding a 64 bit
p roduc t) and a 64 bit d ividend to be divided by a 32 bit divisor
in 32 cycles (yielding a 32 bit quo t ien t and a 32 bit r emainder) .

- The 801 has a rich set of shift and inser t ins t ruct ions .
These were deve loped to make device con t ro l le r " m i c r o c o d e " ,
e m u l a t o r " m i c r o c o d e " and sys tems code very ef f ic ient . The
funct ions , all avai lable in One mach ine cycle, are:

• r ing shift a regis ter up to 31 posi t ions (specif ied
in a n o t h e r zegis ter or in an immedia te field),

• using a mask (in a n o t h e r regis ter or in an imme-
diate field) merge this shi f ted word with all ze-
ros (i.e. isolate the field) or with any o ther reg-
ister (i.e. merge) , or with the result of the previ-
ous shift (i.e. long' shif t) ,

• s tore this b a c k in to a n y o t h e r regis te r or in to
s to rage (i.e. move c h a r a c t e r s tr ing) .

(This last faci l i ty a l lows misa l igned source and t a rge t
c h a r a c t e r s t r ing moves to execu te as fas t as two
c h a r a c t e r s / c y c l e .)

I n t e r r u p t s a n d 1 / 0

I / O in the 801 p ro to type is con t ro l l ed by a set of a d a p -
ters which a t t ach to the C P U and m e m o r y by two buses. The
Externa l Bus a t t aches the adap te r s to the CPU. It is used by
so f tware to send c o m m a n d s and receive s ta tus , by means of
s y n c h r o n o u s Read and Wri te ins t ruc t ions . Da t a is t r ansmi t t ed
b e t w e e n the a d a p t e r s and the 801 b a c k i n g s tore t h r o u g h the
MIO (M e m o r y - I / O) bus. (As descr ibed above it is the respon-
sibility of the so f tware to synchron ize the caches .)

R a t h e r t han suppo r t i n t eg r a t ed a n d complex (mul t i -
level) i n t e r rup t h a r d w a r e , the 801 aga in moves to s o f t w a r e
func t ions tha t c a n be pe r fo rmed more eff ic ient ly by p r o g r a m -
ming. Sof tware on sys tems tha t provide , say, e ight in te r rupt
levels o f ten f ind this n u m b e r inadequa te as a d is t inguisher of
in te r rup t handlers . Thus a so f tware first level in te r rup t hand le r
is p r o g r a m m e d on top of the ha rdware , inc reas ing the real t ime
to respond . M o r e o v e r the r equ i r emen t to suppor t e ight sets of
regis ters resul ts in these be ing s to red in some fas t m e m o r y
r a the r than in logic on-chip . This results in a s lower mach ine
cycle. If the real t ime respons iveness of a sys tem is measu red
realist ical ly it mus t include not only the t ime to get to an inter-
rup t hand le r bu t the t ime to process the in te r rup t , which clear ly
depends on the length of the mach ine cycle. Thus in a prac t ica l
sense the 801 is a good rea l - t ime system.

I n t e r r u p t d e t e r m i n a t i o n a n d p r io r i ty h a n d l i n g is pack -
aged o u t b o a r d of the C P U chips in a specia l uni t ca l led the
Ex te rna l I n t e r rup t con t ro l l e r (a long wi th the sys tem c locks ,
t imers , a n d a d a p t e r locks) . (This p a c k a g i n g dec is ion a l lows
o the r vers ions of 801 sys t ems to c h o o s e d i f f e ren t in t e r rup t
s t ra tegies wi thou t impac t ing the C P U design.) in this cont ro l le r

4 4

there are (logical ly) two bit vectors . The first, the In te r rup t
Reques t Vec to r (IRV) con ta ins a bit fo r each device which may
wish to in te r rupt the C P U (plus one each for the clocks, t imers,
and the C P U itself for s imula t ing externa l in ter rupts) . These
bits are tied by lines to the devices.

The s econd vec tor , cal led the In t e r rup t Mask V e c t o r
(IMV) con ta ins a bit co r r e spond ing to each bit in the IRV. The
IMV is loaded by sof tware in the CPU. It dynamica l ly e s t ab -
lishes the pr ior i ty levels of the in te r rupt requesters . If there is a
one in a pos i t ion in the IRV c o r r e s p o n d i n g to a one in the
co r r e spond ing posi t ion of the IMV, and the 801 C P U is enab led
for in ter rupt , the C P U is in te r rup ted .

On in te r rupt the C P U becomes disabled and unre loca t -
ed, and begins execu t ing the F i rs t Level I n t e r rup t H a n d l e r
(F L I H) in lower memory . The F L I H s tores the in t e r rup ted
state, reads the IRV and de te rmines the reques ter . Us ing this
posi t ion number , it sends a new IMV (ref lect ing the pr ior i ty of
the reques ter) and b ranches to the in te r rupt hand le r for tha t
requester , which executes enab led a n d re located. Pa th leng ths
for the F L I H are less than 100 ins t ruc t ions (and can be reduced
for a subclass of f a s t - response in te r rupts) , and less than 150
ins t ruc t ions for the d i s p a t c h e r (w h e n the in t e r rup t hand le r
comple tes) .

I n t e r n a l B u s

We have, so far, descr ibed a C P U that must have the
fol lowing (logical) buses to s torage:

- a c o m m a n d bus to descr ibe the func t ion reques ted ,
- an address bus,
- a source da ta bus for Stores,
- a ta rge t da ta bus for Loads .

We obse rved tha t o the r func t ions might be implemented
o u t b o a r d of the C P U and could a t t a ch to the C P U via these
same buses (e.g. f loat ing point) . There fo re we exposed these
buses in an 801 ins t ruct ion , cal led In terna l Bus Ope ra t ion . This
ins t ruct ion has o p e r a n d s to name the fol lowing:

- the bus unit being reques ted ,
- the c o m m a n d ,
- the two o p e r a n d s (B,D, or B,X) which will be added

to p roduce the ou tpu t on the address bus,
- the source register ,
- the t a rge t register , if needed ,

and three flags:
- privileged c o m m a n d or not,
- t a rge t regis ter requi red or not ,
- address bus sent back to Base register , or not.

P r o t o t y p e H a r d w a r e

A h a r d w a r e p ro to type has been buil t fo r an ear ly ver-
sion of the 801 a rch i tec tu re , ou t of M E C L 10K DIP 's . It runs
at 1.1 cycles per ins t ruc t ion . (This n u m b e r mus t be t aken as an
o u t - o f - c a c h e p e r f o r m a n c e f igure because the appl ica t ions which
cur ren t ly run show hit ra t ios at close to 1 0 0 % af te r the initial
cache load.) We do not yet have mul t ip le -user measurement s .

The regis ter file is capab le of r ead ing out a n y three and
wri t ing back any two registers wi thin a single cycle. Thus the
C P U is pipel ined as follows:

- The first level of the pipel ine decodes the ins t ruc t ion ,
reads two registers in to the A L U , executes the A L U , and e i ther
la tches the result or, fo r L o a d o r Store ins t ruc t ions , sends the
c o m p u t e d address to the cache . O n a s tore ins t ruc t ion , the da ta
word is also fe tched f rom the regis ter file and sent to the cache.

- The s econd level of the pipel ine sends the l a t ched
result t h rough the shif ter , sets the cond i t ion regis ter bits, and
s tores the resul t back into a register . Dur ing this cycle also, if a
word has been received f rom the cache as the resul t of a load
ins t ruct ion it is loaded into the register .

(The h a r d w a r e mon i to r s reg is te r n a m e s to bypas s the
load when the result is being immedia te ly used.)

The cache is des igned so tha t on a miss the reques ted
word is sent direct ly to the CPU, thus r6ducing lockout while
the cache line is being filled.

P e r f o r m a n c e C o m p a r i s o n s

Figures 1 and 2 show some ea~'ly p e r f o r m a n c e compar i -
sons. Since the compi ler will p r o d u c e ob jec t code for the S / 3 7 0
as well as the 801, these c o m p a r i s o n s are possible for the same
source p r o g r a m s and the same compiler . We use the n u m b e r of
cycles in the inner loops, a n d the n u m b e r of s to rage re fe rences
in the inner loops to a p p r o x i m a t e dynamic pe r fo rmance .

Figure 1 shows results for an i n - m e m o r y sor t p rocedure .
F igure 2 shows the results fo r r a n d o m l y se lected modules f rom
the compi le r itself. No te tha t as the modules get l a rger the
p o w e r of g lobal regis ter a l loca t ion results in fewer s to rage refer-
ences. No te also that , in spite of the f ac t tha t the 801 con ta ins
no complex ins t ruc t ions , the 801 modules con ta in fewer ins t ruc-
t ions a n d f e w e r ins t ruc t ion execu t ions . This is because the
complex ins t ruc t ions are genera l ly very in f requen t whereas the
801 has a more power fu l set of primit ive ins t ruct ions .

Hav ing def ined this gener ic ins t ruc t ion we gave bus unit
names to the ins t ruct ion and da ta caches , the externa l in te r rupt
control ler , the t imer, and the re locate control ler , and ass igned
the IBO op code to all ins t ruc t ions d i rec ted to these units.

4 5

Figure 1

Performance Comparisons

Program: Heap Sor.._..t programmed in PL.8

CPU

In Inner Loop

Code Size (Bytes) No. of Instructions Data Ref's Cycles Cycles/Inst.

S/370-168 236 33 8 56 1.7

801 240 28 6 31 1.1

Figure 2

Programs:

Module

Random.L ~ Selected Modules in PL.8 Compiler

Code Size (Bytes) Dynamic Comparisons

Instructions Data Storage
Executed References

(In increasing
size order

801/S/370 801/S/370 801/370

FIND 1.02 .91 .60
SEARCHV .93 .83 .38
LOAD S .83 .91 .43
P2 EXTS 1.00 1.00 .57
SORT S1 .86 .78 .59
PM ADD1 .86 .96 .63
ELMISS .87 .86 .69
PM GKV .92 .76 .46
P5DBG .98 .81 .52
DESCRPT .86 .75 .42
ENTADD .79 .76 .42

Total .90 .80 .50

46

Conclusions

While we do not have nearly enough measurements to
draw hard conclusions, the 801 group has developed a set of
intuitive principles which seem to hold consistently:

- At least in the low-to-mid range of processor com-
plexity, a general purpose, regis ter-or iented instruction set can
be at least as good as any special vertical microcode set. Thus
there should be only one hard-wired ins t ruct ion set, and it
should be directly available to the compiler.

- A good global register al locator can effectively use a
large number of general purpose registers. Therefore all the
registers which the CPU can afford to build in hardware should
be directly and s imul taneously addressable . Stack machines ,
machines that hide some of the registers to improve C A L L
performance, mul t ip le- in ter rupt level machines, all seem to
make poorer use of the avai lable registers.

- Protect ion is far more effectively provided at a level
where the source language program is understood.

- It is easy to design and build a fast, cheap CPU, and
will be more so as VLS1 evolves. The harder problem is to
develop software, a rchi tec ture and hardware which does not
keep the CPU idling due to storage access.

Acknowledgments

The seminal idea for the 801 and many subsequent
concepts are due to John Cocke.

In six years, the list of contr ibutors has grown too large
to list here. The following people have been with the project
from beginning until the present and are responsible for most of
the design and implementat ion.

Hardware: Frank Carrubba, manager. Paul Stuckert,
Norman Kreitzer, Richard Freitas, Kenneth Case

Software: Marc Auslander , manager

Compiler: Mart in Hopkins, manager. Richard
Goldberg, Peter Oden, Philip Owens, Peter Markstein, Gregory
Chait in.

Cont ro l Program: Richard Oehler , manager.
Albert Chang.

References

[11 Patterson, David A. and Sdquin, Carlo H., "RISC-I: A
Reduced Instruct ion Set VLSI Computer , " Eighth An-
nual Symposium in Computer Architecture, May, 1981.

[2] Cocke, John and Markstein, Peter W., "Measurement of
Program Improvemen t Algor i thms," Informat ion Proc-
essing 80, Nor th-Hol land Publishing Co., 1980.

I3l Chait in, Gregory J. et al, "Regis ter Allocat ion via Col-
oring," Computer Languages, Vol. 6, pp. 47-57, 1981,
Grea t Britain.

[41

[51

Chai t in , Gregory J., "Regis te r Al loca t ion and Spilling
via Coloring," IBM Research Repor t RC9124, 1981.

Markste in , V., Coeke, J., and P. Markste in ,
"Opt imiza t ion of Range Checking," IBM Research Re-
port RC8456, 1980.

Joel Birnbaum was the first manager of the project and
later a constant supporter. Bill Worley also contr ibuted signifi-
cantly through the years.

47

