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Abstract 

This paper provides an overview of an experimental 
system developed at the IBM T. J. Watson Research Center. It 
consists of a running hardware prototype, a control program and 
an optimizing compiler. The basic concepts underlying the 
system are discussed as are the performance characteristics of 
the prototype. In particular, three principles are examined: 

- system orientation towards the pervasive use of high 
level language programming and a sophisticated compiler, 

- a primitive instruction set which can be completely 
hard-wired, 

- storage hierarchy and I /O  organization to enable the 
CPU to execute an instruction at almost every cycle. 

Introduction 

In October, 1975, a group of about twenty researchers 
at the IBM T. J. Watson Research Center began the design of 
a minicomputer, a compiler, and a control program whose goal 
was to achieve significantly better cost /performance for high 
level language programs than that attainable by existing sys- 
tems. The name 801 was chosen because it was the IBM num- 
ber of the building in which the project resided• (The twenty 
creative researchers were singularly uninspired namers.) 

in addition to a running research prototype the project 
resulted in an understanding of many design mistakes and thus 
has spawned a second generation research activity which is 
currently being pursued. This paper is a description of the basic 
design principles and the resulting system components 
(hardware and software). 

Basic Concepts  

Single Cycle Implementation 

Probably the major distinguishing characteristic of the 
801 architecture is that its instructions are constrained to execu- 
te in a single, straightforward, rather primitive machine cycle. 
A similar general approach has been pursued by a group at the 
University of California [1]. 

Complex, high-function instructions, which require 
several cycles to execute, are conventionally realized by some 
combination of random logic and microcode. It is often true 
that implementing a complex function in random logic will result 
in its execution being significantly faster than if the function 
were programmed as a sequence of primitive instructions. Exam- 
ples are floating point arithmetic and fixed point multiply. We 
have no objection to this strategy, provided the frequency of 
use justifies the cost and, more important, provided these com- 
plex instructions in no way slow down the primitive instructions. 
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But it is just this pernicious effect on the primitive 
instructions that has made us suspicious. Most instruction 
frequency-studies show a sharp skew in favor of high usage of 
primitive instructions (such as Load, Store, Branch, Compare, 
Add). If the presence of a more complex set adds just one logic 
level to a 10 level basic machine cycle (e.g. to fetch a micro 

• instruction from ROS), the CPU has been slowed down by 
10%. The frequency and performance improvement of the 
complex functions must first overcome this 10% degradation, 
and then justify the additional cost. If the presence of complex 
functions results in the CPU exceeding a packaging constraint 
on some level (e.g. a chip, a-board), the performance degrada- 
tion can be even more substantial. 

Often, however, a minicomputer that boasts of a rich set 
of complex instructions has not spent additional hardware at all, 
but has simply microprogrammed the functions. These microin- 
structions are designed to execute in a single cycle and, in that 
cycle, to set controls most useful for the functions desired. This 
however, is exactly the design goal of the 801 primitive instruc- 
tion set. We question, therefore, the need for a separate set of 
instructions. 

In fact, for "vertical microcode", the benefits claimed 
are generally not due to the power of the instructions as much 
as to their residence in a high-speed control store. This 
amounts to a hardware architect attempting to guess which 
subroutines, or macros, are most frequently used and assigning 
high speed memory to them. It has resulted, for instance, in 
functions like Extended-Precision Floating Point Divide and 
Translate-and-Test on S/370 's  residing in high speed storage, 
while procedure prologues and the First-Level-Interrupt- 
Handler are in main storage. The 801 CPU gets its instructions 
from an "instruction cache" which is managed by LRU informa- 
tion. Thus all frequently used functions are very likely to be 
found in this high-speed storage, exhibiting the performance 
characteristics of vertical microcode. 

Programming complex functions as software procedures 
or macros rather than in microcode has three advantages: 

First, the CPU is interruptible at "microcode" bounda- 
ries, hence more responsive. Architectures with complex in- 
structions either restrict interrupts to instruction boundaries, or 
(as in, for instance, the Move Characters Long instruction on 
the S/370) define specific interruptible points. If the instruc- 
tion must be atomic, the implementation must ensure that it can 
successfully complete before any observable state is saved. 
Thus, in the S/370 Move Character instruction, before starting 
the move all pages are pretouched (and locked, in an MP sys- 
tem) to guard against a page fault interrupt occurring after the 
move has begun. If interruptible points are architected, the 
state must be such that the instruction is restartable. 
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The second advantage of programming these functions 
is that  an opt imizing compiler  can often separate their  compo- 
nents,  moving some parts out of a loop, commoning others, etc. 

Thirdly, it is often possible for parts of a complex in- 
struction to be computed at compile time. Consider,  for in- 
stance, the S / 3 7 0  Move Charac ter  instruction once again. Each 
execution of this instruction must  determine the opt imal  move 
s t ra tegy by examining  the lengths  of the source a n d - t a r g e t  
strings, whether  (and in what  direct ion) they overlap, and what 
their  a l ignment  characteris t ics  are. But, for most  programming 
languages,  these may all be known at compile time. Consider  
also a mult iply instruction. If one of the operands is a constant ,  
known at compile time, the compiler, can of ten produce more 
efficient " sh i f t / add"  sequences than the general  mult iply micro- 
code subroutine.  

The major disadvantage to using procedures instead of 
microcode to impldment  complex funct ions occurs wheri the 
micro ins t ruct ion set is def ined to permit  its operands  to be 
indirectly named by the register  name fields in the instruction 
which i s  being interpreted.  Since, in the 801 and in most  con- 
vent ional  architectures,  the register  numbers  are bound into the 
instructions a compiler  must  adopt some specific register  usage 
convent ion for the procedure operands,  and move the operands  
to these registers when necessary. 

A computer  whose ins t ruct ions  all execute  very effi- 
ciently, however,  is a t t ract ive only if the number  of such in- 
s t ruct ions  required to perform a task is not  commensura te ly  
larger than that  required of a more complex instruction set. The 
801 project  was concerned only with the execut ion of programs 
compiled by our  opt imizing compiler.  Therefore ,  within the 
constraints  of a primitive data flow, we left the actual  defini t ion 
of the instructions to the compiler  writers.  The results will be 
discussed later,  b u t g e n e r a l l y  show pathlengths  ( that  is, number  
of instructions executed)  about  equivalent  to those on a S / 3 7 0  
for systems code, and up to 5 0 %  longer for commercial  and 
scientific applicat ions (given no hardware f loat ing point).  

Overlapped Storage Access 

801 instruction mixes show that  about  3 0 %  of instruc- 
t ions go to s torage to send or receive data,  and be tween 10% 
and 2 0 %  of instructions are taken branches.  Moreover,  for 
many applications,  a significant port ion of the memory band-  
width is used by I / O .  If the CPU is forced to wait many cycles 
for storage access its internal  performance will be wasted.  

The second major  design goal of the 801 project,  there-  
fore, was to organize the storage hierarchy and develop a sys- 
tem archi tec ture  to minimize  CPU idle t ime due to s torage 
access.  First ,  it was clear  that  a cache was required whose 
access t ime was consis tent  with the machine cycle of the CPU. 
Secondly we chose a " s to re - in -cache"  s t ra tegy  ( ins tead  of 
"s tor ing  through"  to the back ing  s tore)  so that  the 10% of 
expected store instructions would not degrade the performance 
severely. (For  instance,  if the t ime to store a word through to 
the backing  store is ten cycles,  and 10% of ins t ruct ions  are 
stores, this will add up to one cycle to each instruction on aver- 
age depending on the amount  of execut ion overlap.)  

But a CPU organizat ion that  needs a new instruct ion at 
every cycle as well as accessing data every third cycle will still 
be degraded by a single convent ional  cache that  delivers a word 
every cycle. Thus we decided to split  the cache into a part 
containing data  and a part containing instructions.  In this way 
we effectively doubled the bandwidth  to the cache and allowed 
asynchronous fetching of instruct ions and data  at the backing 
store. 

Most  convent iona l  archi tec tures  make  this decis ion 
difficult because every store of data  can be a~modification of an 
instruction, perhaps even the one following the store. Thus the 
hardware  must  ensure that  the two caches are proper ly  syn- 
chronized, a job that  is e i ther  expensive or degrading, or both. 
Even  ins t ruct ion prefe tch mechanisms are complex since the 
effective address of a store must  be compared to the Instruct ion 
Address  Register.  

Historically,  as soon as index registers were in t roduced 
into computers  the frequency of instruct ion modif icat ion fell 
dramatical ly  until,  today, instruct ions are a lmost  never  modified. 
Therefore  the 801 archi tec ture  does not require  this hazard  
detection.  Ins tead it exposes the exis tence of the spli t-cache t9 
sof tware and provides instruct ions by which sof tware can syn- 
chronize  the caches  when required.  In our  sys tem the only  
program tha t  modif ies  ins t ruc t ions  is the one that  loads pro- 
grams into memory. 

Similarly, in convent ional  systems in which the existence 
of a cache is unobservable  to the software,  I / O  must (logically) 
go through the cache. This is often accomplished in less expen-  
sive systems by sending the I / O  physical ly through the cache. 
The result  is that  the CPU is idle while the I / O  proceeds,  and 
that  af ter  an I / O  burst  the conten ts  of the cache no longer  
reflect the working set of the process being executed,  forcing it 
back into t ransient  mode. Even in more expensive systems a 
b roadcas t ing  or d i rec to ry-dupl ica t ion  s t ra tegy  may result  in 
some performance degradat ion.  

We observed that  responsibi l i ty  for the ini t ia t ion of I / O  
in current  sys tems was evolving towards  paging supervisors ,  
system I / O  managers  using fixed block transfers,  and, for low 
speed devices,  a buffer  s t ra tegy  which moves  da ta  be tween  
subsystem buffers and user areas. This results in the I / O  man- 
ager knowing the locat ion and extent  of the storage being ac- 
cessed, and knowing  when an 1 /O  transfer  is in process. Thus 
this sof tware can properly synchronize  the caches, and the I / O  
hardware can transmit  directly to and from the backing store. 
The result  of this system approach in our proto type  is that  even 
when half of the memory bandwidth  is being used for I / O  the 
CPU is virtually undegraded.  

Not ice  that  in the preceding  discussions (and in the 
earlier discussion of complex instruct ions)  an underlying strate-  
gy is being pervasively applied. Namely,  wherever  there is a 
system function that  is expensive or slow in all its general i ty,  
but where sof tware can recognize a f requent ly  occurr ing degen-  
erate case (or can move the entire  function from run time to 
compile time) that  function is moved from hardware to soft-  
ware, result ing in lower cost and improved performance.  

An interest ing example of the appl icat ion of this s trate-  
gy concerns managing the cache itself. In the 801 the cache 
line is 32 bytes and the largest  unit of a store is four bytes. In 
such a cache, whose line size is larger than the unit of a store 
and in which a "store in cache" approach is taken,  a store di- 
rected at a word which is not in the cache must ini t iate a fetch 
of the entire  line from the backing store into the cache. This is 
because,  as far as the cache can tell, a load of another  word 
from this line might  be reques ted  subsequent ly .  Frequent ly ,  
however ,  the store is s imply the first  s tore into what  to the 
program is newly acquired space. It could be a new act ivat ion 
on a process  s tack just pushed on procedure  call (e.g. P L / I  
Automat ic) ;  it could be an area obta ined by a request  to the 
operat ing system; or it could be a register save area used by the 
First Level  Interrupt  Handler.  In all of these cases the hard- 
ware does not know that  no old values from that  line will be 
needed, while to the compiler  and supervisor  this s i tuat ion is 
quite clear. We have defined explicit  instruct ions in the 801 for 
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cache  m a n a g e m e n t  so tha t  so f tware  can  reduce  these unneces -  
sary  loads and  s tores  of cache  lines. 

One  o ther  801 sys tem s t ra tegy  leads to more  effect ive 
use of the cache.  Conven t iona l  so f tware  assumes  tha t  its mem-  
ory is r andomly  addressable .  Because  of this a s sumpt ion  each  
service p rog ram in the superv isor  and  subsys tems  has  its own  
local t e m p o r a r y  s torage.  Thus  an appl ica t ion  p r o g r a m  reques t -  
ing these services will cause  re fe rences  to m a n y  di f ferent  ad-  
dresses.  In a h igh- l eve l - l anguage-based  sys tem like the 801,  
cont ro l  p rog ram services are C A L L ' e d  just  like a user ' s  sub rou t -  
ines. The resul t  is tha t  all these service p r o g r a m s  get  thei r  
t e m p o r a r y  areas  f rom the same s tack,  resul t ing in much reuse of 
cache  lines and,  therefore ,  h igher  cache  hit ratios.  

So fa r  we have  d iscussed  801 f ea tu re s  tha t  resul t  in 
over lapped  access  to the cache  be tween  ins t ruc t ions  and  da ta ,  
over lapped  back ing  s tore  access  a m o n g  the caches  and  1 /O,  less 
h a r d w a r e  synchron iz ing  a m o n g  the caches  and  I / O ,  and  techni -  
ques  to improve  the cache  hit rat ios.  One  o ther  aspect  of the 
801 C P U  design and  a rch i tec tu re  should be  descr ibed  to com-  
plete the picture.  

Even  if a lmost  all ins t ruc t ion  and  da t a  r e fe rences  are 
found  in the cache ,  and  the cache  and  back ing  s tore  are a lways  
avai lable  to the CPU,  a conven t iona l  C P U  will still o f t en  be  idle 
while wa i t ing  for  a load to comple t e  or  fo r  the t a rge t  of  a 
b r anch  to be  fe tched.  Sophis t ica ted  C P U ' s  of ten  keep  b r anch -  
taken  histories or fe tch ahead  on  bo th  pa ths  in o rder  to over-  
come this idle time. In the 801 pro jec t  we obse rved  that ,  with a 
small n u m b e r  of h a r d w a r e  primitives,  so f tware  (i.e. the compi -  
ler) could  r eo rde r  p r o g r a m s  so tha t  the seman t i c s  r e m a i n e d  
u n c h a n g e d  but  the h a r d w a r e  could  easily over lap  this idle t ime 
with useful  work .  

O n  load ins t ruct ions  the regis ter  tha t  is to be the t a rge t  
of the load is locked by  the CPU.  The C P U  then con t inues  
execut ion  of  the ins t ruc t ion  s t ream until  it r eaches  an  ins t ruc-  
t ion tha t  requires  this register ,  at  which  time it idles unti l  the 
load is comple ted .  Thus ,  if the compi ler  can  f ind a useful  in- 
s t ruc t ion  to put  a f te r  the load tha t  does  not  requi re  the result  of  
the load,  the C P U  will not  be idle at  all while the da t a  cache  
fe tches  the r eques t ed  word .  ( A n d  if the compi l e r  can  f ind 
several  such  ins t ruc t ions  to put  a f t e r  the load ,  execu t ion  of  
these will even over lap  cache  miss.) 

Similarly for  b ranches ,  the 801 a rch i tec tu re  def ines ,  fo r  
every  type  of  b r a n c h  ins t ruc t ion ,  an  a l t e rna t e  fo rm cal led 
Branch  with Execute .  (This is similar to the de layed  b ranch  in 
the RISC c o m p u t e r  [1].)  These  ins t ruc t ions  have  exac t ly  the  
same semant i c s  as thei r  c o r r e s p o n d i n g  b r a n c h  ins t ruc t ions ,  
except  tha t  while the ins t ruc t ion  cache  is f e tch ing  the b r anch  
ta rge t  the C P U  executes  the ins t ruc t ion  tha t  has  been  placed 
immedia te ly  a f t e r  the B r a n c h  wi th  Execu t e  ins t ruc t ion .  F o r  
ins tance,  in the sequence:  

L O A D  R1,  A 
BNZ L 

the C P U  would  be idle while the ins t ruc t ion  cache  was fe tch ing  
L, if the b r a n c h  was taken.  C h a n g i n g  the B R A N C H - N O N -  
Z E R O  to a B R A N C H  N O N - Z E R O  W I T H  E X E C U T E ,  and  
moving  the L O A D  ins t ruct ion  results  in: 

B N Z X  L 
L O A D  R 1 , A  

which  has exact ly  the same semant ics  but  allows the C P U  to 
execute  the L O A D  while the ins t ruc t ion  cache  is fe tch ing  the 
ins t ruct ion at  L. The 801 compi ler  is able,  general ly ,  to conve r t  
abou t  6 0 %  of the b ranches  in a p r o g r a m  into the execute  form.  

A Compiler-Based System 

So fa r  we have  d iscussed two m a j o r  ideas which  pe rvade  
the 801 system. First ,  build a C P U  tha t  can  execute  its ins t ruc-  
t ions quickly  (i.e. in one  relat ively shor t  mach ine  cycle) ,  and  
define these ins t ruc t ions  to be a good  ta rge t  fo r  compi la t ion  so 
tha t  resul t ing  p a t h l e n g t h s  are  genera l ly  c o m m e n s u r a t e  wi th  
those  for  the same func t ions  on  more  complex  ins t ruc t ion  sets 
(e.g. S / 3 7 0 ) .  Second ,  def ine the s to rage  h i e ra rchy  a rch i tec ture ,  
the C P U  ins t ruct ions ,  the 1 / O  a rch i tec tu re  and  the so f tware  so 
tha t  the C P U  will genera l ly  not  have  to wait  for  s to rage  access• 
The  third m a j o r  idea cen te rs  abou t  the 801 compiler .  A funda -  
menta l  decis ion of the 801 pro jec t  was  to base  the ent i re  sys tem 
on its pervasive use. This  has resul ted  in the fol lowing sys tem 
character is t ics :  

Ins t ruc t ion  sets fo r  conven t iona l  C P U ' s  have been  de-  
f ined with an  implicit  a s sumpt ion  tha t  m a n y  p r o g r a m m e r s  will 
use a s sembly  l anguage .  This  a s s u m p t i o n  has  m o t i v a t e d  the  
def in i t ion  of  complex  ins t ruc t ions  ( such  as Edi t  a n d  M a r k ,  
Trans la te  and  Test)  a lmost  as much  as has the no t ion  of  a fas t  
con t ro l  store.  But,  increas ingly ,  p r o g r a m m e r s  do  not  use assem-  
bly l anguage  except  where  opt imal  p e r f o r m a n c e  is essential  or  
mach ine  func t i ons  are r equ i red  t ha t  are  no t  re f lec ted  in the  
source  language.  

The compiler  for  the 801 has d e m o n s t r a t e d  tha t  it c a n  
p roduce  ob jec t  code  tha t  is c lose e n o u g h  to bes t  h a n d  code  
genera l ly  so tha t  a s sembly  l anguage  p r o g r a m m i n g  is a lmos t  
never  needed  for  pe r fo rmance•  The  ope ra t ing  sys tem has  isolat-  
ed those  m a c h i n e - d e p e n d e n t  func t i ons  no t  re f lec ted  in the  
language  (such as Disable,  Star t  I / .O,  Dispa tch)  and  deve loped  
eff ic ient  p rocedures  which  provide these func t ions  with minimal  
l inkage overhead .  

The  resul t  is a sys tem in wh ich  less t han  a t h o u s a n d  
lines of  superv isor  code  (and  some of the " m i c r o e o d e "  sub rou t -  
ine imp lemen ta t i ons  of  the complex  func t ions )  are  wr i t t en  in 
Assembly  language .  This  has rel ieved the 801 a rch i tec tu re  of  
the bu rden  of  being easy to p r o g r a m  direct ly.  Vir tual ly  the on ly  
p r o g r a m m e r s  who  are c o n c e r n e d  with the na ture  of  the a rch i tec-  
ture are the compi ler  wri ters ,  and  the " c o r e "  supervisor  writers.  
All o thers  see the sys tem only  th rough  a high level l anguage .  
Because  of  this, the 801 archi tec ts  were  able to base  thei r  deci-  
s ions solely on  the needs  of these  few p r o g r a m m e r s ,  and  on  
c o s t / p e r f o r m a n c e  cons idera t ions .  

Thus  the 801 a r ch i t e c tu r e  was  de f ined  as t ha t  set of  
run- t ime  ope ra t ions  which:  

- could  no t  be moved  to compile  time, 
- could  not  be more  eff ic ient ly  execu ted  by  ob jec t  code  

p r o d u c e d  by  a compi le r  which  unde r s tood  the high level in tent  
of  the p rog ram,  

- was  to be  implemented  in r a n d o m  logic more  ef fec-  
t ively than  the equivalent  s equence  of  so f tware  ins t ruct ions .  

It migh t  a t  f irst  seem surpr i s ing  tha t  compi l e r  wr i te r s  
would  no t  wan t  power fu l  high level instruct ions•  But  in fac t  
these ins t ruc t ions  are o f ten  ha rd  to use since the compi ler  must  
f ind those  cases  wh ich  exac t ly  fit the  a r ch i t ec t ed  cons t ruc t .  
Code  se lect ion becomes  no t  just  f inding  the fewest  ins t ruc t ions ,  
but  the r ight  ins t ruct ions .  A n d  when  these ins t ruc t ions  name  
o p e r a n d s  in s to rage  ins tead  of  in registers ,  code  select ion will 
depend  upon  the results  of  regis ter  a l locat ion.  

The 801 a p p r o a c h  to p ro tec t ion  is s t rongly  based  upon  
this compi l e r  i n t e r m e d i a r y  b e t w e e n  users  and  the  h a r d w a r e .  
C o n v e n t i o n a l  sys tems  expec t  app l i ca t ion  p r o g r a m m e r s ,  a n d  
cer ta in ly  subsys tem p r o g r a m m e r s ,  to use assembly  l anguage  or  
o the r  l anguages  in which  it is possible to subver t  the sys tem 
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(ei ther  del iberately or accidentally) .  Thus hardware facilities 
are required to properly isolate these users. The most  popular 
examples  of these facil i t ies are s torage protect  keys,  mult iple 
virtual address spaces, and supervisor state. These facilit ies are 
often costly and sometimes degrade performance.  But what  is 
more important  is that  they are often inadequate.  Since even 
16 d i f ferent  keys are insuff ic ient  to assign uniquely,  for in- 
stance, different  users are somet imes given the same key or the 
system limits the number  of active users. Also, because the key 
disciplines are only two level, many subsystems are forced to 
run with full addressing capabil i ty.  

If, however,  users are Constrained to a properly defined 
source language, and their  programs are processed by an intelli- 
gent  compiler  and run on an operat ing system that  unders tands  
the addressing strategies of the compiler,  it. is possible to pro- 
vide bet ter  protect ion at less cost. The 801 system, therefore,  is 
based upon the assumption that  cer ta in  critical components  of 
the compiler  are correct,  and that  all programs execut ing on the 
system (except  for a small supervisor  core) have been compiled 
by this compiler. The system will guarantee:  

• that  all references to data  (scalars, arrays, structures,  
areas) really do point  to that  data,  and that  the extents  of the 
references are included in the extents  of the data,  

• that  a reference to dynamica l ly  a l loca ted-and- f reed  
data  is made only be tween an al locat ion and a free, 

• that  all branches  are to labels,  and all calls are to 
proper entry points in procedures,  

• that  the extents  of all arguments  to a procedure match 
the extents  of their  corresponding parameters ,  so that  the pro- 
tect ion persists across calls, 

• that  all declara t ions  of global (external)  var iables  in 
separately compiled procedures have consis tent  extents.  

This checking is of ten done at compile time, link edit  
time, or program fetch time, but, when necessary,  trap instruc- 
t ions are introduced into the object  code to check at run time. 
The result ing increase in pathlength due to this run t ime check-  
ing is general ly less than 10% because this code is opt imized 
along with the rest of the program [5]. 

Notice that  this is not  a "s t rongly typed"  approach to 
checking. Overlays of one data type on another  are permit ted,  
provided the domains are not exceeded.  But our exper ience in 
running code convent ional ly  on the S / 3 7 0  and then on the 801 
with this checking has shown that  many program bugs are dis- 
covered and that,  more important ly ,  they tend to be the kinds of 
bugs that  elude normal  component  test  procedures.  

It was noted earl ier  that,  because the operat ing system 
was also wri t ten in the 801 's  high level language and compiled 
by the 801 compiler,  its service programs were simply C A L L ' e d  
like any external  procedure,  result ing in bet ter  cache behavior.  
An even more impor tant  consequence of this design, however,  is 
that  the checking of matches be tween arguments  and parameters  
is performed at the t ime a program is loaded into memory and 
l inked to the supervisor.  This results in efficient calls to super- 
visor services, especial ly when compared to convent ional  over- 
head. It means,  also, that  the compiler-generated " t raceback"  
mechanism continues into the operat ing system, so tha t  when an 
error occurs the entire  symbolic  call chain can be displayed. 

The l inkage between procedures on the 801 is another  
example of a consis tent  machine design based on a system used 
solely via a high level language. We wanted applicat ions on the 
801 to be programmed using good programming  style. This 
implies a large number  of procedures and many calls. In part ic-  
ular it implies that  very short  procedures can be freely writ ten 
and invoked. Thus, for these short  procedures,  the l inkage must 
be minimal. 

The 801 procedure l inkage a t tempts  to keep arguments  
in registers where possible. It also expects  some register values 
to be destroyed across a CALL.  The result  is that a procedure 
call can be as cheap as a Branch and Link instruction when the 
called procedure can execute  ent irely out of avai lable registers.  
As more complex functions are required they increase the over- 
head for l inkage incremental ly.  

Finally,  the pervasive use of a high level language and 
compiler  has given the project  great  f reedom to change. The 
archi tecture has undergone several  drast ic  changes,  and count-  
less minor  ones. The l inkage convent ions ,  s torage mapping  
strategies,  and run time l ibrary have similarly been changed as 
exper ience provided new insights. In a lmost  every case the cost 
of the change was l imited to recompilat ions.  

This abil i ty to preserve source code, thus l imit ing the 
impact  of change,  can have s ignif icant  long range impact  on 
systems. New technologies (and packaging)  often offer  great 
pe r fo rmance  and cost  benef i t s  if they can be exploi ted  with 
archi tecture  changes.  

System Components 

The Programming Language 

The source language for the 801 system is called PL.8. 
It was def ined to be an appropriate  language for wri t ing systems 
programs and to produce op t imized  code wi th  the checking  
described above. 

PL.8 began as an a lmost -compat ib le  subset  of P L / I ,  so 
that  the PL.8 compiler  was initially compiled by the P L / I  Op- 
t imizer.  It contains ,  for ins tance,  the P L / I  s torage classes,  
funct ions,  f loat ing point  var iables ,  vary ing  charac ter  str ings,  
arrays with adjustable  extents ,  the s t ructured control  pr imit ives 
of P L / I ,  the s t r ing-handl ing buil t - in-funct ions,  etc. I t  differs 
from P L / I  in its in terpre ta t ion  of bit s tr ings as binary numbers,  
in its binary ar i thmetic  (which simply reflects the ar i thmetic  of 
the 801 hardware)  and in some language addi t ions  bor rowed  
from Pascal.  It does  not  conta in  full P L / I  ON condi t ions ,  
mult iple entry .points, or the abil i ty to develop absolute pointers  
to Automat ic  or Static storage. Relat ive pointers,  called Off- 
sets, can be developed only to Areas.  This discipline has sever- 
al advantages:  

- All program and data  areas can be moved freely by 
the system, since absolute addresses are never  s tored in user- 
addressable  data  structures. 

- Any ar i thmet ic  da ta  type can be used as an offset  
( re la t ive poin ter )  and all a r i thmet ic  opera t ions  can be freely 
performed,  since the extent  checks will be made on every use. 

- A store, using a computed  offset,  can only affect  other 
data  in that  part icular  area. Thus, the locat ions whose values 
could have been changed by this store are s ignif icantly limited. 
This enhances  the power of the opt imizat ion algorithms. 

- I t  leads to be t te r  s t ructured,  more easi ly readable  
programs. 
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The Optimizing ~ompiler  

There have been about  seven programmers in the com- 
piler group since the project  began. A running compiler  was 
completed after  about  two years. Since then the group has been 
involved with language extensions,  new opt imizat ion techniques,  
debugging, and useabili ty aids. It should be noted, however,  
that  the Compute r  Sciences depar tment  at York town Heights  
has been working on compiler  a lgor i thms for about  twenty  
years, many of which were simply incorporated into this compi- 
ler. 

The PL.8 compiler  adopts  two strategies which lead to 
its excellent  object  code. The first is a s t ra tegy which translates  
in the most  s t ra ight forward,  ineff icient  (but  correct)  manner  
from P L 8  source language to an intermediate  language (IL).  
This t ransla t ion has as its only object ive  the product ion  of 
semant ica l ly  correct  object  code. It seeks a lmost  no special  
cases, so that it is relatively easy to debug. Moreover  the inter-  
mediate language which is its target  is at a very low level, al- 
most the real 801 machine. 

The next phase of the compiler  develops flow graphs of 
the program as described in [2], and, using these graphs, per- 
forms a series of convent ional  opt imizat ion algorithms, such as: 

• common sub-expression el imination,  
• moving code out of loops, 
• e l iminat ing dead code, 
• s trength reduction. 

Each of these algori thms transforms an IL program into 
a semantical ly equivalent ,  but more efficient,  IL program. Thus 
these procedures can be (and are) called repeti t ively and in any 
order. While these procedures are quite sophist icated,  since each 
of them acts on the entire program and on all programs, a bug 
in one of them is very easily observed. 

The power of this approach is not only in the opt imizing 
power of the algori thms but in the fact that  they are applied to 
such a low level IL. Convent ional  global opt imizing compilers 
perform their t ransformations at a much higher level of text,  
primarily because they were designed to run in relat ively small 
size memory.  Thus they can often not do much more than 
convert  one program to another  which could have been wri t ten 
by a more careful  programmer.  The PL.8 compiler ,  on the 

other  hand,  applies  its op t imiza t ion  a lgor i thms to address ing 
code, domain checking code, procedure l inkage code, etc. 

The second compiler  s t ra tegy which is d i f ferent  from 
convent iona l  compilers  is our  approach to regis ter  a l locat ion 
[3,4]. The IL, like that  of most  compilers,  assumes an arbitrari-  
ly large number of registers. In fact the result  of each different  
computat ion in the program is assigned a different  (symbolic) 
register. The job for register  al locat ion is simply to assign real 
registers to these symbolic registers. Conven t iona l  approaches 
use some subset  of the real registers for slaecial purposes (e.g. 
pointers to the stack, to the code, to the parameter  list). The 
remaining set is assigned locally within a s ta tement ,  or at best  a 
basic block (e.g. a loop). Between these assignments  results 
which are to be preserved are temporari ly stored, and variables 
are redundant ly  loaded. 

The 801 approach observes that  the register ass ignment  
problem is equivalent  to the graph coloring problem, where each 
symbolic register is a node and the real registers are different  
colors. If two symbolic registers have the property that  there is 
at least one point in the program where both their  values must 
be retained,  we model that  property on the graph as a vertex 
between the two nodes. Thus the register al locat ion problem is 

equivalent  to the problem of coloring the graph so that  no two 
nodes connected by a vertex are colored with the same crayon. 

This global approach has proven very effective. Surpris- 
ingly many procedures "color"  so that  no s t o r e / l oad  sequences 
are necessary to keep results in s torage temporari ly.  (At  pres- 
ent the compiler  "colors"  only computat ions.  There is, howev-  
er, no technical  reason why local variables  could not also be 
"col6red"  and we intend to do this eventual ly.)  When it does 
fail, o ther  algori thms which use this graph informat ion are em- 
ployed to decide what  to store. Because of this abili ty of the 
compiler  to effect ively utilize a large number  of registers,  we 
decided to implement  32 ge~neral purpose registers in the hard- 
ware. 

The compiler  will also accept Pasca[  programs, produc- 
ing compat ible  object  code so that  PL.8 and Pascal procedures 
can freely call one another.  It will also produce efficient object  
code for the S /370 ,  thus providing source code portabil i ty.  

Instructions and O p e r a n d s  

Instruct ion formats  and data  representa t ions  are areas 
which saw significant change as the project  evolved.  This sec- 
t ion describes the current  version of the architecture;  "The kind 
of instruction and operand set requested by the compiler  devel-  
opers turned out, fortunately,  to be precisely one which made 
hardware  implementa t ion  easier. The overr id ing theme was 
regularity. For  instance: 

- All operands must be aligned on boundar ies  consis tent  
with their  size (i.e. halfwords on halfword boundaries,  words on 
word boundaries) .  All instructions are fullwords on fullword 
boundaries.  (This results in an increase in program size over 
two-and-four  byte formats,  but the larger format  allows us to 
define more powerful  ins t ruct ions  resul t ing in shor ter  pa th-  
lengths . )  Since the 801 was des igned for a c a c h e / m a i n  
s to re /ha rd  disk hierarchy, and virtual  memory addressing,  the 
consequence of larger programs is l imited to more disk space 
and larger  working  sets (i.e., penal t ies  in cache-h i t - ra t io  and 
page-fault  frequency).  

With this a l ignment  constra int  the hardware  is great ly 
simplified. Each data  or instruction access can cause at most  
one cache miss or one page fault.  The caches  will have  to 
access at most  one aligned word. Instruct ion prefetch mecha-  
nisms can easily find op codes if they are searching for branch-  
es. Instruct ion a l ignment  and data  a l ignment  are unnecessary.  
Ins t ruct ion Length  Count  fields (as in the S / 3 7 0  PSW) are 
unnecessary  and sof tware  can a lways  back t rack  instruct ions.  
Moreover,  for data,  traces show that  misal igned operands rarely 
appear  and when they do are often the result  of poor program- 
ming style. 

- Given four byte  instruct ions,  o ther  benef i t s  accrue. 
Register  fields in instructions are made five bits long so that  the 
801 can name 32 registers. (This aspect  of 801 archi tecture 
makes it feasible to use the g01 to emulate  other  architectures 
which have 16 GPR's ,  since 16 801 registers are still avai lable 
for emulator  use.) 

Four  byte instructions also allow the target  register  of 
every instruction to be named explicit ly so that  the input  ope- 
rands need not be destroyed. This facility is applied pervasive- 
ly, as in "Shift  Reg A Left by contents  of Reg B and Store 
Result in Reg C".  This feature of the archi tecture  simplifies 
register al locat ion and, e l iminates  many Move Register  instruc- 
tions. 
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- The 801 is a true 32 .bit a rch i tec ture ,  not  a 16 bit  
a r ch i t ec tu re  with ex t ended  regis ters .  Addres ses  are  32 bits 
long; ar i thmet ic  is 32 bit two ' s  complement ;  logical and  shift  
ins t ruct ions  deal with 32 bit words  (and can  shift  d i s tances  up 
to 32).  A useful way  to reduce pa th leng th  (and  cache  misses) is 
to def ine a rich set of immedia te  fields, but  of  course  it is im- 
possible., to encode  a genera l  32 bit cons t an t  to fil into an imme- 
diate  field in a four  byte  inst ruct ion.  The 801 defines  the fol- 
lowing subsets  of  such cons t an t s  which  meet  most  requi rements :  

• A 16 bit  immedia te  field for  a r i thmet ic  and  
address  ca lcu la t ion  (D field) which  is in te rpre ted  as a 
two ' s  com p lemen t  s igned integer .  (Thus  the cons t an t s  
_+.215 can  be  r ep resen ted  immedia te ly . )  

• A 16 bit  logical  coos tan t .  Each  logical  ope ra -  
t ion has two immedia te  fo rms  - u p p e r . a n d  lower,  so tha t  
in a t  mos t  two ins t ruc t ions  "(cycles) logical  opera t ions  
can  be  pe r fo rmed  using a 32  bit  logical cons tan t .  

• A n  11 bit  encod ing  of a Mask  (i.e. a subs t r ing  
of ones  s u r r o u n d e d  by  zeros  or  zeros  s u r r o u n d e d  by  
ones) .  Thus  for  shift,  insert ,  and  isolate ope ra t ions  the 
subs t r ing  c a n  be  def ined  immediate ly .  

• A 16 bi t  immed ia t e  f ield fo r  b r a n c h  t a rge t  
ca lcu la t ion  (D-f ie ld)  wh ich  is i n t e rp re t ed  as a s igned 
two ' s  c o m p l e m e n t  of fse t  f rom the address  of the cu r ren t  
ins t ruct ion.  (Thus  a relat ive b r a n c h  to and  f rom any-  
where  wi th in  a 3 2 K  by te  p r o c e d u r e  c a n  be speci f ied  
immedia te ly . )  

• A 26 bit  immedia te  field spec i fy ing  an  offse t  
f rom the address  of the cu r ren t  ins t ruc t ion  or  an  abso-  
lute address ,  so tha t  b r anches  be tween  p rocedures ,  to 
supervisor  services,  or  to " m i c r o c o d e  sub rou t i ne s "  can  
be specif ied wi thout  hav ing  to es tabl ish addressabi l i ty .  

- L o a d  a n d  Store  ins t ruc t ions  are  ava i lab le  in every  
combina t i on  of the fol lowing opt ions:  

• L o a d  or Store,  
• cha rac te r ,  ha l fword ,  s ign-ex tended  ha l fword ,  full- 

word ,  
• Base  + Index,  or  Base  + Disp lacement  effect ive 

address  ca lcula t ion .  (Usage  stat ist ics for  S / 3 7 0  
show low use for  the full B + X + D  form. Thus  a 
three  input  adde r  did no t  seem war r an t ed . )  

• S tore  the ef fec t ive  addres s  b a c k  in to  the base  
regis ter  (i.e. " a u t o i n c r e m e n t " )  or not .  

- B r a n c h e s  are ava i lab le  wi th  the  fo l lowing  b r a n c h  
ta rge t  speci f ica t ions  

• abso lu te  26 bit  address ,  
• In s t ruc t ion  A d d / e s s  Reg i s t e r  + D i sp l acemen t  

(s igned 16 or  26 bit  word  of fse t ) ,  
• Regis te r  + Regis ter ,  

B ranch  and  L ink  forms are def ined  normal ly .  But  con-  
di t ional  b r anches  are def ined  not  only  based  upon  the s ta te  of 
the Cond i t ion  Regis ter  but  on  the presence  or  absence  of a one  
in any  bit  posi t ion in any  register .  (This al lows tile Test  U n d e r  
Mask  - B r a n c h  Cond i t ion  sequence  in S / 3 7 0  to be  execu ted  in 
one  mach ine  cycle  (and  no s to rage  r e fe rences )  if the bit  is 
a l ready  in a register .  Aga in  the p o w e r  of  global  regis ter  a l loca-  
t ion makes  this more  p robab le . )  

- There  are C o m p a r e  and  T r a p  ins t ruc t ions  de f ined  
which allow the S / 3 7 0  C o m p a r e  - Branch  Cond i t ion  sequence  
to be execu ted  in one machine  cycle for  those cases where  the 
test  is for  an  i n f r e q u e n t l y - e n c o u n t e r e d  excep t ion  cond i t ion .  
These  ins t ruct ions  are used to implement  the run- t ime  extent  
checking  discussed earlier.  

- Ar i t hme t i c  is 32 bit  t w o ' s  c o m p l e m e n t .  T h e r e  are  
special  ins t ruc t ions  def ined to al low M A X ,  M I N , . a n d  decimal  
add  and  sub t r ac t  to be coded  eff iciently.  There  are also two 
ins t ruct ions  def ined  (Mult iply Step and  Divide Step) to al low 
two 32 bit words  to be mult ipl ied in 16 cycles  (yielding a 64 bit  
p roduc t )  and  a 64 bit  d ividend to be divided by  a 32 bit  divisor  
in 32 cycles  (yielding a 32 bit  quo t ien t  and  a 32 bit r emainder ) .  

- The 801 has a rich set of shift  and  inser t  ins t ruct ions .  
These  were  deve loped  to make  device con t ro l le r  " m i c r o c o d e " ,  
e m u l a t o r  " m i c r o c o d e "  and  sys tems  code  very ef f ic ient .  The  
funct ions ,  all avai lable  in One mach ine  cycle,  are:  

• r ing shift a regis ter  up to 31 posi t ions  (specif ied 
in a n o t h e r  zegis ter  or  in an  immedia te  field),  

• using a mask (in a n o t h e r  regis ter  or in an  imme-  
diate  field) merge  this shi f ted  word  with all ze- 
ros (i.e. isolate the field) or with any  o ther  reg-  
ister (i.e. merge) ,  or  with the result  of  the previ-  
ous  shift  (i.e. long'  shif t) ,  

• s tore  this b a c k  in to  a n y  o t h e r  regis te r  or  in to  
s to rage  (i.e. move  c h a r a c t e r  s tr ing) .  

(This last  faci l i ty  a l lows misa l igned  source  and  t a rge t  
c h a r a c t e r  s t r ing  moves  to execu te  as fas t  as two  
c h a r a c t e r s / c y c l e . )  

I n t e r r u p t s  a n d  1 / 0  

I / O  in the 801 p ro to type  is con t ro l l ed  by  a set of  a d a p -  
ters which  a t t ach  to the C P U  and  m e m o r y  by  two buses.  The  
Externa l  Bus a t t aches  the adap te r s  to the CPU.  It is used by  
so f tware  to send  c o m m a n d s  and  receive  s ta tus ,  by means  of  
s y n c h r o n o u s  Read  and  Wri te  ins t ruc t ions .  Da t a  is t r ansmi t t ed  
b e t w e e n  the a d a p t e r s  and  the 801 b a c k i n g  s tore  t h r o u g h  the 
MIO ( M e m o r y - I / O )  bus. (As descr ibed  above  it is the respon-  
sibility of  the so f tware  to synchron ize  the caches . )  

R a t h e r  t han  suppo r t  i n t eg r a t ed  a n d  complex  (mul t i -  
level) i n t e r rup t  h a r d w a r e ,  the 801 aga in  moves  to s o f t w a r e  
func t ions  tha t  c a n  be  pe r fo rmed  more  eff ic ient ly  by  p r o g r a m -  
ming.  Sof tware  on  sys tems  tha t  provide ,  say,  e ight  in te r rupt  
levels o f ten  f ind this n u m b e r  inadequa te  as a d is t inguisher  of  
in te r rup t  handlers .  Thus  a so f tware  first  level in te r rup t  hand le r  
is p r o g r a m m e d  on  top of the ha rdware ,  inc reas ing  the real t ime 
to respond .  M o r e o v e r  the r equ i r emen t  to suppor t  e ight  sets of  
regis ters  resul ts  in these  be ing  s to red  in some fas t  m e m o r y  
r a the r  than  in logic on-chip .  This  results  in a s lower  mach ine  
cycle.  If the real t ime respons iveness  of  a sys tem is measu red  
realist ical ly it mus t  include not  only  the t ime to get  to an inter-  
rup t  hand le r  bu t  the t ime to process  the in te r rup t ,  which  clear ly 
depends  on  the length  of the mach ine  cycle.  Thus  in a prac t ica l  
sense the 801 is a good  rea l - t ime system. 

I n t e r r u p t  d e t e r m i n a t i o n  a n d  p r io r i ty  h a n d l i n g  is pack -  
aged  o u t b o a r d  of  the C P U  chips  in a specia l  uni t  ca l led  the 
Ex te rna l  I n t e r rup t  con t ro l l e r  ( a long  wi th  the sys tem c locks ,  
t imers ,  a n d  a d a p t e r  locks) .  (This  p a c k a g i n g  dec is ion  a l lows 
o the r  vers ions  of 801 sys t ems  to c h o o s e  d i f f e ren t  in t e r rup t  
s t ra tegies  wi thou t  impac t ing  the C P U  design. )  in this cont ro l le r  
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there are ( logical ly)  two bit vectors .  The first,  the In te r rup t  
Reques t  Vec to r  ( IRV)  con ta ins  a bit fo r  each  device which  may  
wish to in te r rupt  the C P U  (plus one each  for  the clocks,  t imers,  
and  the C P U  itself for  s imula t ing  externa l  in ter rupts) .  These  
bits are tied by  lines to the devices.  

The s econd  vec tor ,  cal led the In t e r rup t  Mask  V e c t o r  
( IMV) con ta ins  a bit co r r e spond ing  to each  bit  in the IRV. The 
IMV is loaded by sof tware  in the CPU.  It dynamica l ly  e s t ab -  
lishes the pr ior i ty  levels of the in te r rupt  requesters .  If there  is a 
one  in a pos i t ion  in the IRV c o r r e s p o n d i n g  to a one  in the 
co r r e spond ing  posi t ion of the IMV, and  the 801 C P U  is enab led  
for  in ter rupt ,  the C P U  is in te r rup ted .  

On  in te r rupt  the C P U  becomes  disabled and  unre loca t -  
ed,  and  begins  execu t ing  the F i rs t  Level  I n t e r rup t  H a n d l e r  
( F L I H )  in lower  memory .  The  F L I H  s tores  the in t e r rup ted  
state,  reads  the IRV and  de te rmines  the reques ter .  Us ing  this 
posi t ion number ,  it sends  a new IMV (ref lect ing the pr ior i ty  of 
the reques ter )  and  b ranches  to the in te r rupt  hand le r  for  tha t  
requester ,  which  executes  enab led  a n d  re located.  Pa th leng ths  
for  the F L I H  are less than  100 ins t ruc t ions  (and  can  be reduced  
for  a subclass  of  f a s t - response  in te r rupts ) ,  and  less than  150 
ins t ruc t ions  for  the d i s p a t c h e r  ( w h e n  the in t e r rup t  hand le r  
comple tes ) .  

I n t e r n a l  B u s  

We have,  so far, descr ibed  a C P U  that  must  have the 
fol lowing (logical)  buses  to s torage:  

- a c o m m a n d  bus  to descr ibe  the func t ion  reques ted ,  
- an address  bus, 
- a source  da ta  bus for  Stores,  
- a ta rge t  da ta  bus  for  Loads .  

We obse rved  tha t  o the r  func t ions  might  be implemented  
o u t b o a r d  of the C P U  and  could  a t t a ch  to the C P U  via these 
same buses  (e.g. f loat ing point) .  There fo re  we exposed  these 
buses  in an 801 ins t ruct ion ,  cal led In terna l  Bus Ope ra t ion .  This 
ins t ruct ion has o p e r a n d s  to name the fol lowing:  

- the bus  unit  being reques ted ,  
- the c o m m a n d ,  
- the two o p e r a n d s  (B,D, or B,X)  which  will be added  

to p roduce  the ou tpu t  on the address  bus,  
- the source  register ,  
- the t a rge t  register ,  if needed ,  

and  three flags: 
- privileged c o m m a n d  or not,  
- t a rge t  regis ter  requi red  or  not ,  
- address  bus  sent  back  to Base register ,  or  not.  

P r o t o t y p e  H a r d w a r e  

A h a r d w a r e  p ro to type  has been  buil t  fo r  an  ear ly  ver-  
sion of the 801 a rch i tec tu re ,  ou t  of M E C L  10K DIP 's .  It runs  
at  1.1 cycles  per  ins t ruc t ion .  (This n u m b e r  mus t  be  t aken  as an  
o u t - o f - c a c h e  p e r f o r m a n c e  f igure because  the appl ica t ions  which  
cur ren t ly  run show hit ra t ios  at  close to 1 0 0 %  af te r  the initial 
cache  load.)  We do  not  yet  have mul t ip le -user  measurement s .  

The regis ter  file is capab le  of  r ead ing  out  a n y  three  and  
wri t ing back  any  two registers  wi thin  a single cycle.  Thus  the 
C P U  is pipel ined as follows: 

- The first  level of the pipel ine decodes  the ins t ruc t ion ,  
reads  two registers  in to  the A L U ,  executes  the A L U ,  and  e i ther  
la tches  the result  or,  fo r  L o a d  o r  Store ins t ruc t ions ,  sends  the 
c o m p u t e d  address  to the cache .  O n  a s tore  ins t ruc t ion ,  the da ta  
word  is also fe tched  f rom the regis ter  file and  sent  to the cache.  

- The  s econd  level of  the pipel ine sends  the l a t ched  
result  t h rough  the shif ter ,  sets the cond i t ion  regis ter  bits, and  
s tores  the resul t  back  into a register .  Dur ing  this cycle also,  if a 
word  has  been  received f rom the cache  as the  resul t  of  a load 
ins t ruct ion  it is loaded into the register .  

(The  h a r d w a r e  mon i to r s  reg is te r  n a m e s  to bypas s  the 
load when  the result  is being immedia te ly  used.)  

The  cache  is des igned so tha t  on  a miss the reques ted  
word  is sent  direct ly  to the CPU,  thus  r6ducing  lockout  while 
the cache  line is being filled. 

P e r f o r m a n c e  C o m p a r i s o n s  

Figures  1 and  2 show some ea~'ly p e r f o r m a n c e  compar i -  
sons. Since the compi ler  will p r o d u c e  ob jec t  code  for  the S / 3 7 0  
as well as the 801,  these  c o m p a r i s o n s  are possible  for  the same 
source  p r o g r a m s  and  the same compiler .  We use the n u m b e r  of  
cycles  in the inner  loops,  a n d  the n u m b e r  of  s to rage  re fe rences  
in the inner  loops to a p p r o x i m a t e  dynamic  pe r fo rmance .  

Figure  1 shows results  for  an  i n - m e m o r y  sor t  p rocedure .  
F igure  2 shows the results  fo r  r a n d o m l y  se lected modules  f rom 
the compi le r  itself. No te  tha t  as the modules  get  l a rger  the 
p o w e r  of  g lobal  regis ter  a l loca t ion  results  in fewer  s to rage  refer-  
ences.  No te  also that ,  in spite of  the f ac t  tha t  the 801 con ta ins  
no complex  ins t ruc t ions ,  the 801 modules  con ta in  fewer  ins t ruc-  
t ions  a n d  f e w e r  ins t ruc t ion  execu t ions .  This  is because  the 
complex  ins t ruc t ions  are genera l ly  very in f requen t  whereas  the 
801 has a more  power fu l  set of  primit ive ins t ruct ions .  

Hav ing  def ined this gener ic  ins t ruc t ion  we gave bus unit  
names  to the ins t ruct ion and  da ta  caches ,  the externa l  in te r rupt  
control ler ,  the t imer,  and  the re locate  control ler ,  and  ass igned 
the IBO op code  to all ins t ruc t ions  d i rec ted  to these units.  
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Figure 1 

Performance Comparisons 

Program: Heap Sor.._..t programmed in PL.8 

CPU 

In Inner Loop 

Code Size (Bytes) No. of Instructions Data Ref's Cycles Cycles/Inst. 

S/370-168 236 33 8 56 1.7 

801 240 28 6 31 1.1 

Figure 2 

Programs: 

Module 

Random.L ~ Selected Modules in PL.8 Compiler 

Code Size (Bytes) Dynamic Comparisons 

Instructions Data Storage 
Executed References 

(In increasing 
size order 

801/S/370 801/S/370 801/370 

FIND 1.02 .91 .60 
SEARCHV .93 .83 .38 
LOAD S .83 .91 .43 
P2 EXTS 1.00 1.00 .57 
SORT S1 .86 .78 .59 
PM ADD1 .86 .96 .63 
ELMISS .87 .86 .69 
PM GKV .92 .76 .46 
P5DBG .98 .81 .52 
DESCRPT .86 .75 .42 
ENTADD .79 .76 .42 

Total .90 .80 .50 
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Conclusions 

While we do not have nearly enough measurements  to 
draw hard conclusions,  the 801 group has developed a set of 
intuitive principles which seem to hold consistently:  

- At least  in the low-to-mid range of processor  com- 
plexity, a general purpose, regis ter-or iented instruction set can 
be at least  as good as any special vertical microcode set. Thus 
there should be only one hard-wired ins t ruct ion set, and it 
should be directly available to the compiler. 

- A good global register al locator  can effectively use a 
large number of general purpose registers. Therefore  all the 
registers which the CPU can afford to build in hardware should 
be directly and s imul taneously  addressable .  Stack machines ,  
machines  that  hide some of the registers  to improve C A L L  
performance,  mul t ip le- in ter rupt  level machines,  all seem to 
make poorer  use of the avai lable registers. 

- Protect ion is far more effectively provided at a level 
where the source language program is understood.  

- It is easy to design and build a fast, cheap CPU, and 
will be more so as VLS1 evolves. The harder  problem is to 
develop software,  a rchi tec ture  and hardware  which does not 
keep the CPU idling due to storage access. 
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