18-447

Computer Architecture
Lecture 8: Pipelining

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2013, 2/4/2013

Reminder: Homework 2

Homework 2 out

a Due February 11 (next Monday)

o LC-3b microcode

o ISA concepts, ISA vs. microarchitecture, microcoded machines

Reminder: L.ab Assignment 2

= Lab Assignment 1.5
o Verilog practice
o Not to be turned in

= Lab Assignment 2
o Due Feb 15
a Single-cycle MIPS implementation in Verilog
a All labs are individual assignments
o No collaboration; please respect the honor code

Lookahead: Extra Credit for L.ab Assignment 2

Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

For the extra credit, the microcoded implementation should
execute the same programs that your ordinary
implementation does, and you should demo it by the normal
lab deadline.

You will get maximum 4% of course grade
Document what you have done and demonstrate well

Readings for Today

= Pipelining
o P&H Chapter 4.5-4.8
o Optional: Hamacher et al. book, Chapter 6, "Pipelining”

= Pipelined LC-3b Microarchitecture

o http://www.ece.cmu.edu/~eced447/s13/lib/exe/fetch.php?medi
a=18447-Ic3b-pipelining.pdf

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

Today’s Agenda

Finish microprogrammed microarchitectures

Start pipelining

Review: Last Lecture

= An exercise in microprogramming

Review: An Exercise in
Microprogramming

Handouts

= 7/ pages of Microprogrammed LC-3b design

http://www.ece.cmu.edu/~eced44//s13/doku.php?id=manu
als

= http://www.ece.cmu.edu/~eceq447/s13/lib/exe/fetch.php?m

edia=Ic3b-figures.pdf

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf

A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]
0
DR<! SR1+OP2» [BEN]
LDB LDW 1 22
To18 HRr< SR1&OP2
: PC< PC+LSHF(off9,1
To 18 9 \
° DR<! SR1 XOR OP2 To 18
set CC
To 18/ 15
6AR<! LSHF(ZEXT[IR[?:O]],9 To 18
MDR<! M[MAR]
R7<! PC R7< PC
PCd BaseR
R R o1
PC< MDR R7< PC
To18 (PC< PC+LSHF(0ff11,1
1
To 18 BbR<I SHF(SR,A,D,amt
set CC To 18
14 2 6 7 3
To 18 DR<! PC+LSHF(off9, 1)
set CC CMAR<! B+off6) @AR<! B+LSHF(0ﬁ6,9 @AR<! B+LSHF(off6,§ CMAR<! B+off6)

To 18

29 A 4 25 v y 23
NOTES CG/IDR« M[MAR[1} G/ID]R! BI[MAR] MDR<! SR
B+off6 : Base + SEXT[offset6] —_—
PC+0ff9 : PC + SEXT[offset9] R Ry v R R

*OP2 may be SR2 or SEXT[imm5] 31@R 2z 16 17
.3

** [15:8] or [7:0] depending on < SEXT[BYTE-DAT@ (DR<! MDR M[MAR]< ! MDR i ?@[MARJ«MDR*p
l R R

4

set CC

MARIO] set CC

l ¢R R

To 18 To 18 To 18 To 19

LD .IR—

GateMARMUX

GatePC

ZEXT &

LSHF1

&7:0]

[10:0]

g SHE

=\
-

ADDR2MUX

\<—ADDRIMUX

LD.REG—

3
SR2 74(>

REG
FILE

I<—<—DR
SR2 SR1

3
OUT OUT [<—SRI

o

p 4 1000 | |

g

SR2MUX

CONTROL
[4:Q
Y SEXT T ? A A A
R
IR v v
2 B A q
LD.CC—>|N|Z|P .
6 eI CIVAN IS
ALUK
. .
” GateALU GateSHF
6
GateMDR
Il .D MAR
<—DATA SIZE oS
R.W
LOGIC WE
<MAR(0] LOGIC N —-nm e RN
SATA MIQEN | npyT | OUTPUT
v SIZE | | | -
WEI WEO | KBDR "DDR | -
3 ADDR.CTL
: : [KBSR | | DSR |
MEMORY _
_ _]
L 5 ! Tl]
R .D.MDR MEM.EN |<
AR MIO.EN t
c 46
Y,
LOGIC

<—DATA SIZE
<—MAR[0]

INMUX

g

State 18 (010010
State 33 (100001
State 35 (100011
State 32 (100000
State 6 (00011(
State 25 (011001
State 27 (011011

State Machine for LDW

—
.

P

R

/
[TR < MDR

M

v

-
| MDR <M
e

R §

| MAR <— PC
PC <—PC+2

18, 19

\

——

3

S

Se N

\

BEN<—IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

|
|
Sy

N

s ™
|MAR<—B+LSHF(off6.1)|
N _/'

235

- Y
IIMDR*:—M[N[AR]r)
~ =

h 4

27 IR

re

\

DR<-MDR |

set CC

T,

W,

R

~

IS

q COND1 CONDO
BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[o]
0,0,IR[15:12]
l 6
<F—IRD
iﬁ
Address of Next State
& & & .
= LS 8 A& &
FE 20, TIFTELE &HF 5T F & = 9
T AT ANL P IS & 958 & §F & Y, o8&
SIS FUIST T FFFg 8 0 T80 9 F I oasNFE
Sy FEEE S S e S A, TS = TS
SN S NSSSNSN AEAE E T e U . R e
e e i e = - T o= o= N NN

IR[11:9] — =

111 —————= /

DRMUX

(@)

IR[11:9]

—— DR

L~

N —
z —>
P —

Logic

IR[11:9] ——=

IR[8:6] ———=

SR1IMUX

(b)

BEN =

(c)

—— SR1

Signal Name Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/: PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals

IR[15:11]
BEN

!

Microsequencer

//6

Control Store

2% x 35

//35

Microinstruction

A9 %26

(J, COND, IRD)

J[5] J[4] J[3]

-

J[2]

COND1 CONDO
l @ ‘
. o
BEN R IR[11]
Branch Ready Addr.
Mode
J[1] J[O]

0,0,IR[15:12]

RE

<t IRD

ia

Address of Next State

000000 (State 0)
000001 (State 1)
000010 (State 2)
000011 (State 3)
000100 (State 4)
000101 (State 5)
000110 (State 6)
000111 (State 7)
001000 (State 8)
001001 (State 9)
001010 (State 1C
001011 (State 11
001100 (State 12
001101 (State 17
001110 (State 14
001111 (State 1£
010000 (State 1€
010001 (State 17
010010 (State 1€
010011 (State 1¢
010100 (State 2C
010101 (State 21
010110 (State 22
010111 (State 23
011000 (State 24
011001 (State 2¢
011010 (State 2€
011011 (State 27
011100 (State 2¢
011101 (State 2¢
011110 (State 3C
011111 (State 31
100000 (State 32
100001 (State 32
100010 (State 34
100011 (State 3¢
100100 (State 3€
100101 (State 37
100110 (State 3¢
100111 (State 3¢
101000 (State 4C
101001 (State 41
101010 (State 42
101011 (State 42
101100 (State 44
101101 (State 4€
101110 (State 4€
101111 (State 47
110000 (State 4€
110001 (State 4<
110010 (State 5¢
110011 (State 51
110100 (State 52
110101 (State 52
110110 (State 54
110111 (State 5¢
111000 (State 5€
111001 (State 57
111010 (State 5¢
111011 (State 5¢
111100 (State 6C
111101 (State 61
111110 (State 62
111111 (State 62

J[5] J[4] J[3]

-

J[2]

COND1 CONDO
l @ ‘
. o
BEN R IR[11]
Branch Ready Addr.
Mode
J[1] J[O]

0,0,IR[15:12]

RE

<t IRD

ia

Address of Next State

Review: End of the Exercise in
Microprogramming

20

The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables

o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND

21

The Control Store: Some Questions

What control signals can be stored in the control store?

VS.

What control signals have to be generated in hardwired
logic?

o i.e., what signal cannot be available without processing in the
datapath?

22

Variable-Latency Memory

The ready signal (R) enables memory read/write to execute
correctly

o Example: transition from state 33 to state 35 is controlled by
the R bit asserted by memory when memory data is available

Could we have done this in a single-cycle
microarchitecture?

23

The Microsequencer: Advanced Questions

What happens if the machine is interrupted?
What if an instruction generates an exception?

How can you implement a complex instruction using this
control structure?

o Think REP MOVS

24

The Power of Abstraction

The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

The designer can translate any desired operation to a
sequence microinstructions

All the designer needs to provide is

o The sequence of microinstructions needed to implement the
desired operation

o The ability for the control logic to correctly sequence through
the microinstructions

o Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)

25

Let’s Do Some More Microprogramming

Implement REP MOVS in the LC-3b microarchitecture

What changes, if any, do you make to the
o state machine?

o datapath?

o control store?

0 Mmicrosequencer?

Show all changes and microinstructions
Coming up in Homework 3

26

Aside: Alignment Correction in Memory

Remember unaligned accesses

LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary

o Convenience to the programmer/compiler

How does the hardware ensure this works correctly?
o Take a look at state 29 for LDB

o States 24 and 17 for STB

o Additional logic to handle unaligned accesses

27

Aside: Memory Mapped I/0O

Address control logic determines whether the specified
address of LDx and STx are to memory or I/O devices

Correspondingly enables memory or I/O devices and sets
up muxes

Another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store

o Dependent on address

28

Advantages of Microprogrammed Control

Allows a very simple datapath to do powerful computation by
controlling the datapath (using a sequencer)

o High-level ISA translated into microcode (sequence of microinstructions)

o Microcode enables a minimal datapath to emulate an ISA

o Microinstructions can be thought of a user-invisible ISA

Enables easy extensibility of the ISA
o Can support a new instruction by changing the ucode
o Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence

an arbitrary “program” as a microprogram sequence

o will need some new state (e.g. loop counters) in the microcode for sequencing
more elaborate programs

29

Update of Machine Behavior

The ability to update/patch microcode in the field (after a
processor is shipped) enables

o Ability to add new instructions without changing the processor!
o Ability to “fix” buggy hardware implementations

Examples

o IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

o IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

o B1700 microcode can be updated while the processor is running
User-microprogrammable machine!

30

An Example Microcoded Multi-Cycle MIPS Design

P&H, Appendix D
Any ISA can be implemented this way

We will not cover this in class

However, you can do the extra credit assignment for Lab 2
o Partial credit even if your full design does not work
o Maximum 4% of your grade in the course

31

A Microprogrammed MIPS
Design: Lab 2 Extra Credit

Microcoded Multi-Cycle MIPS Design

Start

Memory address

computation o of 0e
ons
ALUSreA =1
ALUSHcB = 10
ALUOPp =00
P
SRS
" %,
=% e L A
O Memory Meamary

ACCass ACOEES

Mamrite
lorD = 1

MemRead

lorD = 1

Write-back stap

RegDst = 0

Y Instruction fetch

Instruction decode/
register felch

ALUSICA = i)

> ALUSrcB = 11

completion

8
ALUScA =1
ALUSHCA = 1 ALUSreB = 00
ALUSEB = 00 ALUOp =01
ALUOp = 10 PCWriteCond
PCSource = 01

Branch @Q

ALUOp = 0D

{Op="4)

Jump
completion

R-type complation

RegDst=1
RegWrite
MemtoReg =0

Fieg'u'-l'nta -
MemtoReg = 1

[Based on original figure from P&H CO&B;€OPYRIGH

2004 Elsevier. ALL RIGHTS RESERVEU‘]GU“ D.3.1 The finite-state diagram for multicycle control.

Control Logic for MIPS FSM

Control logic

Inputs
A

Outputs {

DA/
HOWrnte

PCWriteCond

lorD

MemRead

MemWrite

IRWrite

MemtoReqg

b~ e

PCSource

4 9 ?éf
9l g a[9 5l 2
O O] O] O| O| O]

|

Instruction register
opcode field

o i
s—

FIGURE D.3.2 The control unit for MIPS will consist of some control logic and a register
[Based on original figure from P&+ BB UG PR gtate. The state register is written at the active clock edge and is stable during the clock

2004 Elsevier. ALL RIGHTS RESERWEiﬂ-

34

Microprogrammed Control for MIPS FSM

Control unit PCWrite

PLA or ROM

Address select 10gIC @ — e __.._J

NSNS
= J}

instruction reqistie

opcode tield

FIGURE D.4.1 The control unit using an explicit counter to compute the next state. I this
control unit, the next state is computed using a counter (at least in some states). By comparison, Figure D.3.2

[Based on original figure from P&H CO&BEdPYRIGHEXT state in the control logic for every state. In this control unit, the signals labeled AddrCtl 35
2004 Elsevier. ALL RIGHTS RESERVEDntrol how the next state is determined.

End: A Microprogrammed MIPS
Design: Lab 2 Extra Credit

Horizontal Microcode

-

>

o

-

Microcodel - ALUSICA 8
storage

lorD o

outputs < IRWrite 9

PCWrite I

PCWriteCond 8

~ X P
n-bit mPC input | _ 5
i

| |

Jr Sequencingl

Microprogram counter
\/ control
-
Adder

Address select logic

4 A

Inputs from instructionO
register opcode field

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED] Control Store: 2 k bit (not including sequencing) 3’

Vertical Microcode

Microcodel
storage

Outputs <

n-bit nPCinput

1

{

l ! |
Microprogram counter

N
Adder

Address select logic

Sequencingl
control

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.] Inputs from instruction
register opcode field

1-bit signal means do this R

B
o
K
o
o
o

(or combination of RTs

PCU PC+4

PCU ALUOut
PCU PC[31:28],IR[
IR MEM[PC]

25:0 1,800

A« RF[IR[25:21]]
B« RF[IR[20:16]]
XX XX P

If done right (i.e., m<<n, and m<<k), two ROMs together

XX®

m-bit input
ROM

K-bit output
X U U {3 o >

(2= m+2™3 k bit) should be smaller than horizontal microcode ROM K2bit) 38

Nanocode and Millicode

Nanocode a level below traditionattode

o nprogrammed control for suisystems (e.g., a complicated floating
point module) that acts as a slave imeontrolled datapath

Millicode a level above traditionailtode

o ISAlevel subroutines that can be called by timeontroller to handle
complicated operations and system functions

o E.g., Heller and FarrefiMillicode in an IBM zSeries procesgséBM
JR&D, May/Jul 2004.

In both cases, we avoid complicating the mamontroller

You can think of these amicrocode at different levels of
abstraction

39

Nanocode Concept Illustrated

a nctoded processor implementation

RONI

A

nPC

A

processor
datapath

We refer to this
as nanocode
when antoded

subsystem is embedded f

INn antoded system

e,
N
N
LN
N
N
N
N
N
.
LN
.
.
.
N
N
g
.
N
N
N
N
N
.
.
.
N
N
0N
N
N
g
.
N
N
N
LN
N
N
.
.
N
N
0

‘e

.
.,..
...

ROI\{] '
arithmetic

datapath

...

Multi-Cycle vs. Single-Cycle uArch

Advantages
Disadvantages

You should be very familiar with this right now

41

Microprogrammed vs. Hardwired Control

= Advantages
= Disadvantages

= You should be very familiar with this right now

42

Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

a “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

43

Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its

processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
Instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (Id/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

44

Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...

45

Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F|(D|E|W
F D |E |W
F|D|E |W
F|D|E|wW
Time

Pipelined: 4 cycles per 4 instructions (steady state)

F|D|E|wW
F|D|E|wW
F|D|E|wW
F|D|E |W

Time

46

The Laundry Analogy

.
] \Z
=//
D ——
=
v

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes

away” _
- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

47

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Base

Pipelining Multiple L.oads of Laundry

— - 4 loads of laundry in parallel

'. - N0 additional resources

‘ ' - throughput increased by 4
y

B

do=l - latency per load Is the same

48

d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple LLoads ot Laundry: In Practice

the slowest step decides throughp
49

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple LLoads ot Laundry: In Practice

Throughput restored (2 loads per hour) using 2 dn
50

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
51

Ideal Pipelining

T psec

A

| combinational logic (FD,EMW) | | | BW=~(1/T)

. BW=—(2/T)

— » T/2 ps (F,D,E) — > T/2 ps (MW) (—
. | T/3 X | T/3 X | /3 X
ps (kD) ps (E,M) ps (M\W)

. BW=~(3/T)

52

More Realistic Pipeline: Throughput

Nonpipelined version with delaly
BW = 1/(T+Syhere S= latch delay

— » T ps

k-stage pipelined version
BW gtage= 1/ (T/k +S)
BW, .,=1/(1gatedelay +S)

T/k

— > » | —> 6 o o6 o6 o o6 o6 —)

PS

T/k
pS

53

More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+whereL = latch cost

—> » G gates o —

k-stage pipelined version
COSf gtage= G + Lk

N o G/k > —> o o 0o 0 0 0o ¢ — Gk

54

Pipelining Instruction Processing

55

Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W

56

Remember the Single-Cycle Uarch

| pC

Instruction [257 0] \ ®\

Jump address [31i 0]

A AY
26 left 2 28

ReadO
address

Instructiond
[31i 0]
InstructionO
memory

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

0
PC+4 [317 28] “SD "L’l'D
X X
ALU
Add result \1/ 0
Jump
Instruction [317 26]
—————————
Instruction [257 21] Read
1
register Read
Instruction [207 16] ReadO data 1
| register 2
0 Registers Read ALU ALy
MO Writel) data 2 0 result Address Readl ()
ull register M data
ull MO
Instruction [157 11] x ulj
[—>1 Z‘;‘;‘;EE * Datal X
1 memory 0
} Writeld
bcond| ;4a
. 1 2
Instruction [157 0] \6 Signo 3\
N extend N
Instruction [51 0]
—P > I >

— BW=~(1/T)
57

Dividing Into Stages

200ps 100ps 200ps 200ps 100ps

IF: Instruction fetch ID: Instruction decode/O EX: Execute/O MEM: Memory access | WB: Write back
register file read address calculation
0
MO
ul)
: ignore
----- for now

.
.
ey
.
.
.
"""
.
.
ey
.
.
.

Add ,\
4 Add
resu
Shift
left 2

Add It
ReadO
| pC Address register 1 Read [l\
ca data 1 [RCLRTEERTEEREEEY
Zero > . H

ReadO
gister 2
Instruction Registers Read ALU arub E
W rite O data 2 0 result Address ZZ?: 1 : RF
Instruction register M y :
memory ug Datad Y] P
e Ewrite

data p—b| 1 E
0 . .
Write . H
data H H
16 32
A\ SignO| \

Is this the correct partitioning?

Why not 4 or 6 stages? Why not different boundaries?
58

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

Program[
executionO _ 2 200 400 600 800 1000 1200 1400 1600 1800
orderd Time T T T T T T T T T >
(in instructions)
Inst tionf] Datal

lw $1,100($0) nSferltjcchlon Reg ALU accans Reg

W $2, 200(80) *|instuctiontt ALU patall o

w $2, ($0) 800ps fetch 9 access g

< Plinstruction

lw $3, 300($0) 800ps fetch

\ 4
800p
Program0 5 200 400 600 800 1000 1200 1400
executionO . -
order Time T T T T T T I "
(in instructions)
| i [l D [}
w $1,100(s0) |"Srueton Reg| ALU 287 I Reg
fetch access
W $2. 200($0) < »instruction Re ALU DatalO Re
' 200ps fetch 9 access g

w $3, 300($0) < > Instruction Re ALU DataO Re

v ! ZOOpS fetch 9 access 9

— PP ¢——— P 4——>

200ps 200ps 200ps 200ps 200ps

5-stage speedup Is 4, not 5 as predicated by the ideal model. W

59

Enabling Pipelined Processing: Pipeline Registers

) No resource Is used by more than 1 stage!

IF/ID ID/EX EX/MEM MEM/WB
Add a‘? (_?
. o c
R do
— (J Add = register 1 Read
o = ReadO datal "5§_>
Instruction = gister 2 o 0_;
memory " n_p . Regist Readlfl Readll
Write data 2 < Address ead i oyl D e 1
— regist dat 2 M
Datal
. uld
W rite O memory .
data
0
WriteO
dat 5
16
\ >
N J (@)

1 Tk Tik

—> > > —» © 0 0 0 ¢ o o —)p

PS pS

'

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERY

Pipelined Operation Example

All instruction classes must follow the same path and timing
through the pipeline stages. Any performance impact?

IF/ID ID/EX EX/MEM MEM/WB

Add ’\L
4 — A
Shift
left 2

dq Add
result
c ReadO
= P C Address -5 register 1 Read ,\
=
= Readl data 1

E i Zero > —
Instructiond £ register 2.
egisters ea A ALU ALub
memor -
’ e data 2 result Address Readll__ ——
register M data
ut DataO MDD
» u
| Write O X memory «
data
rite
g ata

|
Iltl
o
Q
Y
a

1

601

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelined Operation Example

| sub $11, $2, $3 |
prep>{
M .
uo | W rite back !
X
s
IF/ID ID/EX EX/MEM MEM/W B
— — 1 L
Add >
4 A Add
result
Shift
left 2
c ReadO
s | P C Address % register 1 Read
S
= ReadO data 1 R
Instruction] = regiSterRzegisters —
Read
memory Write data 2 0 Address Read 1
register M| data -
. ud Datall (]
»| WriteD X memory N
data p—>{ 1 7
W rite O
data
16 32
\ SignO] \ >
A extend A
Clock 6 T BB BB ___l

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

[lustrating Pipeline Operation: Operation View

nst,

nst,
nst,
nst,

nst,

P {3 ty L5 —
|F ID EX |[MEM|WB
|F ID EX ||MEM|WB

|F ID EX ||MEM|WB
|F 1D EX |[MEM|WB <
|F 1D EX |[MEM
|F 1D EX 2
|F ID 2
IF 2

03

[lustrating Pipeline Operation: Resource View

| =S R P R I PO Y PO S PR YR I

ID b | | R I PO N PO O PO

EX R R N P PO W R
MEM b [L Lol s |

WB N E Lol |

Control Points 1n a Pipeline

PCSrc
0
MO
uld
X
|
> IF/ID ID/EX EX/MEM MEM/WB
Add
Add AddD
4 result
Branch
Shiftl
RegW rite left 2
< Read0 MemWrite
o .
PC [=®=>| Address = register 1 Read
E] >
= Readl data 1 ALU Src
i £ register 2 Zero >
Instructiond
memor] Registers Read ALU ALuD
. >
Y WriteO data 2 0 result »| Address Read
register M data
. uo Datal
Write O X memory
data -
WriteOd
data
Instructiond [
[157 0] 16 6 ‘
AN \ ALU
\ N control MemRead

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

ldentical set of control points as the singigcle datapath!!

Instructiond
[207 16]

Instructiond
[157 11]

0
MO| ALvop

uldl

MemtoReg

65

Control Signals in a Pipeline

= For a given instruction
o same control signals as singlgcle, but
o control signals required at different cycles, depending on stage

v decode once using the same logic as sHaglede and buffer control
signals until consumed n L

Instruction -
—»| Control > M | WB ‘

EX

]

IF/ID ID/EX EX/MEM MEM/W B

v or carry relevant instruction word/field down the pipeline and
decode locally within each stage (still same logic)

Which one is better?

06

Pipelined Control Signals

PCSrc

PC

Control

Address

Instructiond
memory

Instructiond
[157 0]

Instruction
[207 16]

IF/ID
° result
= Shift
left 2
ALUSrc
c ReadO
] > R
k3] register 1 Read \
=]
= ReadO data 1
= register 2 Zero
| Registers Read Iss ALU ALup
W riteO data 2 0 result
register M
uld
R W riteO X
data b= 1

Instructiond
[157 11]

Branch
1)¢
2
£
[}
=
Read
Address
data
DatalO
memory
WriteO
data
MemRead

RegDst

MemtoReg

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

(@)

Y

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
68

Instruction Pipeline: Not An Ideal Pipeline

Identical operations ... NOT!

Y different instructions do not need all stages

- Forcing different instructions to go through the same mfiltiction pipe
- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

Y difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work

- internal fragmentation (some pipe stages are #@ast but take the
same clock cycle time)

Independent operations ... NOT!

Ve

Y instructions are not independent of each other

- Need to detect and resolve intaénstruction dependencies to ensure the
pipeline operates correctly

-> Pipeline is not always moving (it stalls)
69

Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls

70

Causes ot Pipeline S7alls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations

71

Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependencies dictate ordering requirements between
Instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

72

Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?

73

Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

o For all of them, we need to ensure semantics of the program
are correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them

74

Flow dependence
3 .« L OP I

Anti dependence
r « r,opr
3 & N Op bk
£l « Tg 0P Ig

Output-dependence
I3 « I 0p 5

K«
M3 « Tsg OPp

Data Dependence Types

Readafter-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

75

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences

76

