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Reminder: Homework 2

Homework 2 out

a Due February 11 (next Monday)

o LC-3b microcode

o ISA concepts, ISA vs. microarchitecture, microcoded machines



Reminder: L.ab Assignment 2

= Lab Assignment 1.5
o Verilog practice
o Not to be turned in

= Lab Assignment 2
o Due Feb 15
a Single-cycle MIPS implementation in Verilog
a All labs are individual assignments
o No collaboration; please respect the honor code




Lookahead: Extra Credit for L.ab Assignment 2

Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

For the extra credit, the microcoded implementation should
execute the same programs that your ordinary
implementation does, and you should demo it by the normal
lab deadline.

You will get maximum 4% of course grade
Document what you have done and demonstrate well



Readings for Today

= Pipelining
o P&H Chapter 4.5-4.8
o Optional: Hamacher et al. book, Chapter 6, "Pipelining”

= Pipelined LC-3b Microarchitecture

o http://www.ece.cmu.edu/~eced447/s13/lib/exe/fetch.php?medi
a=18447-Ic3b-pipelining.pdf
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Today’s Agenda

Finish microprogrammed microarchitectures

Start pipelining



Review: Last Lecture

= An exercise in microprogramming




Review: An Exercise in
Microprogramming




Handouts

= 7/ pages of Microprogrammed LC-3b design

http://www.ece.cmu.edu/~eced44//s13/doku.php?id=manu
als

= http://www.ece.cmu.edu/~eceq447/s13/lib/exe/fetch.php?m

edia=Ic3b-figures.pdf



http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf

A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components
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Signal Name  Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l  NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/:  PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals



IR[15:11]
BEN

!

Microsequencer

//6

Control Store

2% x 35

//35

Microinstruction

A9 %26

(J, COND, IRD)




J[5] J[4] J[3]

-

J[2]

COND1 CONDO
l @ ‘
. o
BEN R IR[11]
Branch Ready Addr.
Mode
J[1] J[O]

0,0,IR[15:12]

RE

<t IRD

ia

Address of Next State



000000 (State 0)
000001 (State 1)
000010 (State 2)
000011 (State 3)
000100 (State 4)
000101 (State 5)
000110 (State 6)
000111 (State 7)
001000 (State 8)
001001 (State 9)
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001011 (State 11
001100 (State 12
001101 (State 17
001110 (State 14
001111 (State 1£
010000 (State 1€
010001 (State 17
010010 (State 1€
010011 (State 1¢
010100 (State 2C
010101 (State 21
010110 (State 22
010111 (State 23
011000 (State 24
011001 (State 2¢
011010 (State 2€
011011 (State 27
011100 (State 2¢
011101 (State 2¢
011110 (State 3C
011111 (State 31
100000 (State 32
100001 (State 32
100010 (State 34
100011 (State 3¢
100100 (State 3€
100101 (State 37
100110 (State 3¢
100111 (State 3¢
101000 (State 4C
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101100 (State 44
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101110 (State 4€
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110000 (State 4€
110001 (State 4<
110010 (State 5¢
110011 (State 51
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110111 (State 5¢
111000 (State 5€
111001 (State 57
111010 (State 5¢
111011 (State 5¢
111100 (State 6C
111101 (State 61
111110 (State 62
111111 (State 62
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Review: End of the Exercise in
Microprogramming
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The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables

o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND
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The Control Store: Some Questions

What control signals can be stored in the control store?

VS.

What control signals have to be generated in hardwired
logic?

o i.e., what signal cannot be available without processing in the
datapath?
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Variable-Latency Memory

The ready signal (R) enables memory read/write to execute
correctly

o Example: transition from state 33 to state 35 is controlled by
the R bit asserted by memory when memory data is available

Could we have done this in a single-cycle
microarchitecture?
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The Microsequencer: Advanced Questions

What happens if the machine is interrupted?
What if an instruction generates an exception?

How can you implement a complex instruction using this
control structure?

o Think REP MOVS
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The Power of Abstraction

The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

The designer can translate any desired operation to a
sequence microinstructions

All the designer needs to provide is

o The sequence of microinstructions needed to implement the
desired operation

o The ability for the control logic to correctly sequence through
the microinstructions

o Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)

25



Let’s Do Some More Microprogramming

Implement REP MOVS in the LC-3b microarchitecture

What changes, if any, do you make to the
o state machine?

o datapath?

o control store?

0 Mmicrosequencer?

Show all changes and microinstructions
Coming up in Homework 3
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Aside: Alignment Correction in Memory

Remember unaligned accesses

LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary

o Convenience to the programmer/compiler

How does the hardware ensure this works correctly?
o Take a look at state 29 for LDB

o States 24 and 17 for STB

o Additional logic to handle unaligned accesses

27



Aside: Memory Mapped I/0O

Address control logic determines whether the specified
address of LDx and STx are to memory or I/O devices

Correspondingly enables memory or I/O devices and sets
up muxes

Another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store

o Dependent on address

28



Advantages of Microprogrammed Control

Allows a very simple datapath to do powerful computation by
controlling the datapath (using a sequencer)

o High-level ISA translated into microcode (sequence of microinstructions)

o Microcode enables a minimal datapath to emulate an ISA

o Microinstructions can be thought of a user-invisible ISA

Enables easy extensibility of the ISA
o Can support a new instruction by changing the ucode
o Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence

an arbitrary “program” as a microprogram sequence

o will need some new state (e.g. loop counters) in the microcode for sequencing
more elaborate programs

29



Update of Machine Behavior

The ability to update/patch microcode in the field (after a
processor is shipped) enables

o Ability to add new instructions without changing the processor!
o Ability to “fix” buggy hardware implementations

Examples

o IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

o IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

o B1700 microcode can be updated while the processor is running
User-microprogrammable machine!
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An Example Microcoded Multi-Cycle MIPS Design

P&H, Appendix D
Any ISA can be implemented this way

We will not cover this in class

However, you can do the extra credit assignment for Lab 2
o Partial credit even if your full design does not work
o Maximum 4% of your grade in the course
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A Microprogrammed MIPS
Design: Lab 2 Extra Credit




Microcoded Multi-Cycle MIPS Design
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Control Logic for MIPS FSM
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Microprogrammed Control for MIPS FSM
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End: A Microprogrammed MIPS
Design: Lab 2 Extra Credit
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Vertical Microcode
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Nanocode and Millicode

Nanocode a level below traditionattode

o nprogrammed control for suisystems (e.g., a complicated floating
point module) that acts as a slave imeontrolled datapath

Millicode a level above traditionailtode

o ISAlevel subroutines that can be called by timeontroller to handle
complicated operations and system functions

o E.g., Heller and FarrefiMillicode in an IBM zSeries procesgséBM
JR&D, May/Jul 2004.

In both cases, we avoid complicating the mamontroller

You can think of these amicrocode at different levels of
abstraction

39



Nanocode Concept Illustrated

a nctoded processor implementation
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Multi-Cycle vs. Single-Cycle uArch

Advantages
Disadvantages

You should be very familiar with this right now
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Microprogrammed vs. Hardwired Control

= Advantages
= Disadvantages

= You should be very familiar with this right now
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Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

a “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

43



Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its

processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
Instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (Id/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

44



Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...
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Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F|(D|E|W
F D |E |W
F|D|E |W
F|D|E|wW
Time

Pipelined: 4 cycles per 4 instructions (steady state)

F|D|E|wW
F|D|E|wW
F|D|E|wW
F|D|E |W

Time
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The Laundry Analogy

.
] \Z
=//
D ——
=
v

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes

away” _
- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

47
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Base

Pipelining Multiple L.oads of Laundry

— - 4 loads of laundry in parallel

'. - N0 additional resources

‘ ' - throughput increased by 4
y

B

do=l - latency per load Is the same

48
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Pipelining Multiple LLoads ot Laundry: In Practice

the slowest step decides throughp
49

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple LLoads ot Laundry: In Practice

Throughput restored (2 loads per hour) using 2 dn
50

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
51



Ideal Pipelining

T psec

A

| combinational logic (FD,EMW) | | | BW=~(1/T)

. BW=—(2/T)

— » T/2 ps (F,D,E) — > T/2 ps (MW) (—
. | T/3 X | T/3 X | /3 X
ps (kD) ps (E,M) ps (M\W)

. BW=~(3/T)
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More Realistic Pipeline: Throughput

Nonpipelined version with delaly
BW = 1/(T+Syhere S= latch delay

— » T ps

k-stage pipelined version
BW gtage= 1/ (T/k +S)
BW, .,=1/(1gatedelay +S)

T/k

— > » | —> 6 o o6 o6 o o6 o6 —)

PS

T/k
pS
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More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+whereL = latch cost

—> » G gates o —

k-stage pipelined version
COSf gtage= G + Lk

N o G/k > —> o o 0o 0 0 0o ¢ — Gk
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Pipelining Instruction Processing
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Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W
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Remember the Single-Cycle Uarch

| pC

Instruction [257 0] \ ®\

Jump address [31i 0]

A AY
26 left 2 28

ReadO
address

Instructiond
[31i 0]
InstructionO
memory

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

0
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—P > I >
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Dividing Into Stages

200ps 100ps 200ps 200ps 100ps

IF: Instruction fetch ID: Instruction decode/O EX: Execute/O MEM: Memory access | WB: Write back
register file read address calculation
0
MO
ul)
: ignore
----- for now

.
.
ey
.
.
.
"""
.
.
ey
.
.
.

Add ,\
4 Add
resu
Shift
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Add It
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ca data 1 [RCLRTEERTEEREEEY
Zero > . H
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Is this the correct partitioning?

Why not 4 or 6 stages? Why not different boundaries?
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Instruction Pipeline Throughput

Program[
executionO _ 2 200 400 600 800 1000 1200 1400 1600 1800
orderd Time T T T T T T T T T >
(in instructions)
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5-stage speedup Is 4, not 5 as predicated by the ideal model. W
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Enabling Pipelined Processing: Pipeline Registers

) No resource Is used by more than 1 stage!

IF/ID ID/EX EX/MEM MEM/WB
Add a‘? (_?
. o c
R do
— (J Add = register 1 Read
o = ReadO datal "5§_>
Instruction = gister 2 o 0_;
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Pipelined Operation Example

All instruction classes must follow the same path and timing
through the pipeline stages. Any performance impact?

IF/ID ID/EX EX/MEM MEM/WB

Add ’\L
4 — A
Shift
left 2

dq Add
result
c ReadO
= P C Address -5 register 1 Read ,\
=
= Readl data 1

E i Zero > —
Instructiond £ register 2.
egisters ea A ALU ALub
memor -
’ e data 2 result Address Readll__ ——
register M data
ut DataO MDD
» u
| Write O X memory «
data
rite
g ata

|
Iltl
o
Q
Y
a

1
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Pipelined Operation Example

| sub $11, $2, $3 |
prep>{
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uo | W rite back !
X
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[lustrating Pipeline Operation: Operation View

nst,

nst,
nst,
nst,

nst,

P {3 ty L5 —
|F ID EX |[MEM|WB
|F ID EX ||MEM|WB

|F ID EX ||MEM|WB
|F 1D EX |[MEM|WB <
|F 1D EX |[MEM
|F 1D EX 2
|F ID 2
IF 2
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[lustrating Pipeline Operation: Resource View
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Control Points 1n a Pipeline

PCSrc
0
MO
uld
X
|
> IF/ID ID/EX EX/MEM MEM/WB
Add
Add AddD
4 result
Branch
Shiftl
RegW rite left 2
< Read0 MemWrite
o .
PC [=®=>| Address = register 1 Read
E] >
= Readl data 1 ALU Src
i £ register 2 Zero >
Instructiond
memor ] Registers Read ALU ALuD
. >
Y WriteO data 2 0 result »| Address Read
register M data
. uo Datal
Write O X memory
data -
WriteOd
data
Instructiond [
[157 0] 16 6 ‘
AN \ ALU
\ N control MemRead

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

ldentical set of control points as the singigcle datapath!!

Instructiond
[207 16]

Instructiond
[157 11]

0
MO| ALvop

uldl

MemtoReg
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Control Signals in a Pipeline

= For a given instruction
o same control signals as singlgcle, but
o control signals required at different cycles, depending on stage

v decode once using the same logic as sHaglede and buffer control
signals until consumed n L

Instruction -
—»| Control > M | WB ‘

EX

]

IF/ID ID/EX EX/MEM MEM/W B

v or carry relevant instruction word/field down the pipeline and
decode locally within each stage (still same logic)

Which one is better?
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Pipelined Control Signals

PCSrc
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Control
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Instructiond
memory
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Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]
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An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
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Instruction Pipeline: Not An Ideal Pipeline

Identical operations ... NOT!

Y different instructions do not need all stages

- Forcing different instructions to go through the same mfiltiction pipe
- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

Y difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work

- internal fragmentation (some pipe stages are #@ast but take the
same clock cycle time)

Independent operations ... NOT!

Ve

Y instructions are not independent of each other

- Need to detect and resolve intaénstruction dependencies to ensure the
pipeline operates correctly

-> Pipeline is not always moving (it stalls)
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Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls
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Causes ot Pipeline S7alls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations
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Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependencies dictate ordering requirements between
Instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately
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Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?
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Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

o For all of them, we need to ensure semantics of the program
are correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them
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Flow dependence
3 .« L OP I

Anti dependence
r « r,opr
3 & N Op bk
£l « Tg 0P Ig

Output-dependence
I3 « I 0p 5

K«
M3 « Tsg OPp

Data Dependence Types

Readafter-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)
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How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
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