
18-447: Computer Architecture

Lecture 30A: Advanced Prefetching

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 4/22/2013

Homework 6

 Due Today

 Topics: Virtual memory and cache interaction, main
memory, memory scheduling

2

Lab 6: Memory Hierarchy

 Due Wednesday (April 24)

 Cycle-level modeling of L2 cache and DRAM-based main
memory

 Extra credit: Prefetching

 Design your own hardware prefetcher to improve system
performance

3

Feedback

 Many of you wanted more lectures

 Plan for the rest of the semester

 3 lectures this week and 1 next Monday

 2 wrap–up and recitation sessions next Wednesday and Friday

4

Office Change

 I am no longer in Hamerschlag Hall A305

 New office: CIC 4105

 Office hours are still the same:

 Wed 2:30-3:30pm, or by appointment

5

Pictorially, …

6

Last Lecture

 Prefetching

 Software prefetchers

 Hardware prefetchers

 Next-line

 Stride

 Stream

7

Today

 More Prefetching

 Prefetcher performance metrics

 Prefetching for more irregular access patterns

 Multiprocessing Fundamentals

 Why parallel processing?

 Tightly vs. loosely coupled multiprocessing

 Parallel speedup

 Amdahl’s Law

8

Advanced Prefetching

Review: Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

 Idea:

 Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

 Next time the same load instruction is fetched,
prefetch last address + stride

10

Review: Instruction Based Stride Prefetching

 What is the problem with this?

 Hint: how far can this get ahead? How much of the miss latency can
the prefetch cover?

 Initiating the prefetch when the load is fetched the next time can be
too late

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

11

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Review: Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address
based stride prefetching where N = 1

 Read the Jouppi paper

 Stream buffer also has data storage in that paper (no prefetching
into cache)

12

Address tag Stride Control/Confidence

……. ……

Block

address

Review: Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of
sequentially prefetched cache lines

 On a load miss check the head of all
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache

with data

 if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

 Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

13

FIFO

FIFO

FIFO

FIFO

DCache

M
e
m

o
ry

 i
n
te

rf
a
c
e

Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance

14

Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream

 Prefetch degree: how many prefetches per demand access

15

Predicted Stream Predicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive

 Well ahead of the load access stream

 Hides memory access latency better

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

 16

Prefetcher Performance (IV)

17

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 I
P

C
 c

h
a
n
g

e
 o

v
e
r

N
o

 P
re

fe
tc

h
in

g

Prefetcher Accuracy

Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 18

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip
2

ga
p

m
cf

pa
rs

er

vo
rte

x
vp

r

am
m

p

ap
pl
u ar

t

eq
ua

ke

fa
ce

re
c

ga
lg
el

m
es

a

m
gr

id

si
xt
ra

ck

sw
im

w
up

w
is
e

gm
ea

n

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

No Prefetching

Very Conservative

Middle-of-the-Road

Very Aggressive

48%
 29%

Feedback-Directed Prefetcher Throttling (I)

 Idea:

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past
performance

 Change the location prefetches are inserted in cache based on
past performance

19

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 20

11% 13%

How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers

21

Markov Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

22

A B C

D E F
1.0

.33 .5

.2

1.0 .6
.2

.67

.6

.5

.2

Markov

Model

Markov Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch accuracy is generally low so prefetch up to N next addresses to
increase coverage

 Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) (C)

 (A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

23

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Markov Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses
is infeasible

 Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

 Consumes a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
24

Content Directed Prefetching (I)

 A specialized prefetcher for pointer values

 Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

 Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache
block’s address if most-significant few bits match, pointer

 25

Content Directed Prefetching (II)

26

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220 X800

11100 x800

Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

27

28

Efficient CDP – An Example

HashLookup(int Key) {

 …

 for (node = head ; node -> Key != Key;

Struct node{

 int Key;

 int * D1_ptr;

 int * D2_ptr;

 node * Next;

}

node = node -> Next;

 if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

29

Efficient CDP – An Example

= = = = = = = =

[3
1

:2
0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

30

Efficient CDP – An Example

HashLookup(int Key) {

 …

 for (node = head ; node = node -> Next;

 if (node)

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key

31

Efficient CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]

Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context (think fine-grained
multithreading)

 On the same thread context in idle cycles (during cache misses)

32

Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

33

Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

34

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

 35

Thread-Based Pre-Execution Issues

 Read

 Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed

36

An Example

37

Example ISA Extensions

38

Results on an SMT Processor

39

Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

40

Fork Point for Prefetching Thread

41

Pre-execution Slice Construction

42

Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 43

Review: Runahead Execution (Mutlu et al., HPCA 2003)

44

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

