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Homework 6

Due Today

Topics: Virtual memory and cache interaction, main
memory, memory scheduling



Lab 6: Memory Hierarchy

Due Wednesday (April 24)

Cycle-level modeling of L2 cache and DRAM-based main
memory

Extra credit: Prefetching

o Design your own hardware prefetcher to improve system
performance



Feedback

Many of you wanted more lectures

Plan for the rest of the semester
o 3 lectures this week and 1 next Monday
o 2 wrap—up and recitation sessions next Wednesday and Friday



Office Change

I am no longer in Hamerschlag Hall A305
New office: CIC 4105

Office hours are still the same:
o Wed 2:30-3:30pm, or by appointment



Pictorially, ...




l.ast Lecture

Prefetching
o Software prefetchers

o Hardware prefetchers
Next-line
Stride
Stream



Today

More Prefetching
o Prefetcher performance metrics
o Prefetching for more irregular access patterns

Multiprocessing Fundamentals

o Why parallel processing?

o Tightly vs. loosely coupled multiprocessing
o Parallel speedup

o Amdahl’s Law



Advanced Prefetching




Review: Stride Prefetchers

Two kinds

a Instruction program counter (PC) based
o Cache block address based

Instruction based:

o Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

o Idea:

Record the distance between the memory addresses referenced by

a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

Next time the same load instruction is fetched,
prefetch last address + stride
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Review: Instruction Based Stride Prefetching
o Load Inst. Last Address - Last Confidence
Load — PC (tag) Referenced Stride
Inst R R R EEREEEEEEEERRERREREE (EEEEEREEEEEEEEEEEEREEEREEEEEEEEEEEEERE] REEE: N T
PC ....... ' I R
(| e i

What is the problem with this?

o Hint: how far can this get ahead? How much of the miss latency can
the prefetch cover?

o Initiating the prefetch when the load is fetched the next time can be
too late
Load will access the data cache soon after it is fetched!
o Solutions:
Use lookahead PC to index the prefetcher table
Prefetch ahead (last address + N*stride)
Generate multiple prefetches
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Review: Cache-Block Address Based Stride Prefetching

d

Address tag Stride Control/Confidence

Block_>
address

Can detect
o A, A+N, A+2N, A+3N, ...
o Stream buffers are a special case of cache block address
based stride prefetching where N = 1
Read the Jouppi paper

Stream buffer also has data storage in that paper (no prefetching
into cache)
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Review: Stream Bufters (Jouppi, ISCA 1990)

Each stream buffer holds one stream of
sequentially prefetched cache lines

On a load miss check the head of all
stream buffers for an address match

o if hit, pop the entry from FIFO, update the cache
with data

o if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

DCache

Memory interface
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Prefetcher Performance (I)

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance
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Pretetcher Performance (II)

Prefetcher aggressiveness affects all performance metrics
Aggressiveness dependent on prefetcher type

For most hardware prefetchers:
o Prefetch distance: how far ahead of the demand stream
o Prefetch degree: how many prefetches per demand access

Prefetch Degree
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Pretetcher Performance (I11)

How do these metrics interact?

Very Aggressive

o Well ahead of the load access stream

o Hides memory access latency better

o More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

Very Conservative

o Closer to the load access stream

o Might not hide memory access latency completely

o Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely
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Pretetcher Performance (IV)
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Pretetcher Performance (V)
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= Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware Prefetchers”,

HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

= Idea:
a Dynamically monitor prefetcher performance metrics

a Throttle the prefetcher aggressiveness up/down based on past
performance

o Change the location prefetches are inserted in cache based on
past performance

\

Decrease

Increase | Decrease

Decrease Increase No Change
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Feedback-Directed Prefetcher Throttling (II)
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Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.
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How to Prefetch More Irregular Access Patterns?

Regular patterns: Stride, stream prefetchers do well

More irregular access patterns

o Indirect array accesses

Linked data structures

Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
Random patterns?

Generalized prefetcher for all patterns?

Correlation based prefetchers

Content-directed prefetchers
Precomputation or execution-based prefetchers
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Markov Prefetching (I)

Consider the following history of cache block addresses
A B CDCEACFFEAABCD,E A B,CD,C

After referencing a particular address (say A or E), are

some addresses more likely to be referenced next
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Markov Prefetching (1I)

Cache
Block™
Addr

-~

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o Ais said to be correlated with B, C, D

Prefetch accuracy is generally low so prefetch up to N next addresses to
increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) = (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
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Markov Prefetching (I11)

Advantages:

o Can cover arbitrary access patterns
Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

o Consumes a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
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Content Directed Pretetching (I)

A specialized prefetcher for pointer values

Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches a// pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’ s address = if most-significant few bits match, pointer
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Content Directed Prefetching (II)

Virtual Address Predictor

vGenerate Prefetch

[31:20]

X80022220

L2

DRAM
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Making Content Directed Prefetching Etficient

= Hardware does not have enough information on pointers
= Software does (and can profile to get more information)

= Idea:

o Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

= Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.
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Etticient CDP — An Example

Struct node{
HashLookup(int Key) { int Key;
int* D1_ptr;

for (node = head ; node -> Key != Key; node = node -> Next; ) int* D2_ptr;
if (node) return node->D1; node * Next;
} }
i \
i " D2 Key » D1
" D2
Key » D1 v
> D2 Key » D1
" D2
" D2

Example from mst
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Efficient CDP — An |

“xample

Cache Line Addr

[oz:T€E]

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

| [31:20]

—(

1[31:201

[31:20]

[31:20] l [31:20] l [31:20]

[31:20]
—>

Virtual Address Predictor

l [31:20]

e

£ \
> D2 Key » D1
v > D2
Key » D1 v
* D2 Key » D1
" D2
Key » D1
> D2




Efficient CDP — An |

HashLookup(int Key) {

for (node = head ; node -> Key != Key; node = node -> Next; )

if (node) return node -> D1;

}

“xample

£ \
> D2 Key » D1
v | > D2
Key » D1 v
> D2 Key » D1
* D2
Key » D1
> D2
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Efficient CDP — An |

“xample

Cache Line Addr

[oz:T€E]

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

[31:20]
—»

1[31:201 [31:20] l [31:20] l [31:20] [31:20]

—»

l [31:20]

Virtual Address Predictor

l [31:20]

e

< \
Key » D1
" D2 Key » D1
v | > D2
Key » D1 v
> D2 Key » D1
> D2
Key » D1
"| D2
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Execution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)
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Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.
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Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback
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Thread-Based Pre-Execution Issues

Read

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

o Many issues in software-based pre-execution discussed

(a) Multiple Pointer Chains {b) Non-Affine Array Accesses

> Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths
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An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; i< trips; ){
I loap over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
! the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tips; )|
I/l loop over ‘trips™ lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[/l inveke a pre-execution starting
/ at END_FOR
PreExecute StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktajlkmark,

/f traverse the list starting with
I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
}
/f terminate this pre-execution after
I/l prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
!l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 1", starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i's value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop. the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.
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Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{ ) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{ ). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)
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Results on an SM'T Processor

(a) Execution Time Normalized to the Original Case

o 100 I 100 mum 100 100 100 100 100
E 92
: ™
=
2 l /3 load L2-miss stall
3 64 :
® load L2-hit stall
W S0 other stall
ﬁ busy
1]
E
S
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0 0  PX O PX 0 PX O  PX O PX 0 PX O PX

Compress Em3d Equake Mcf Mst Raytrace Twolf
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Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_ tail; misprediction
int ito = ifrom/2; .
heap_tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itec]->cost))
struct s heap *temp ptr = heap[itc];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 &8 & 8 &

= &
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Fork Point for Prefetching Thread

Figure 3. The node teo heap function, which serves as
the fork point for the slice that covers add _to heap.

void node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+———— fork point

hptr = alloc heap data();
hptr->cost = cost;

add to heap (hptr);
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Pre-execution Slice Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe

un-opfimized slice. Figure 5. Slice consiructed for example problem instructions.
node_to_iiiap:k . 20 instructs Ny Much smaller than the original code, the slice contains a loop
- = J_PE- - INSTruCTtions - - - -
. Bt a1, 252(gp) # &heap tail that mimics the loop in the original code.
2 1d1 t2, 0(sl) # ifrom = heap tail ,
1 1ldg t5, -76(sl) # &heap[0] slice:
3 cmplt +t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl  t2, 0xl, t6 # heap tail +4| 2 1d1 $3, 252(gp) # ito = heap tail
1 sBaddg t2, t5, t3 # &heapl[heap tail] slice loop:
4 stl t6, 0(sl) # store heap tail 3 11 sra §3, 0x1, $3 # ito /= 2
1 stqg s0, 0(t3) # heaplheap tail] Er 8add 53' 56 r$lﬁ # gh Lt
3 addl t2, t4, t4 # see note soadaq >-. r eaplito]
3 sra t4, 0x1, t4 # ito = ifrom/2 6 1dgq $18, 0(516) # heap[ito]
5 ble td, return # (ito < 1) G lds 5f1, a(518) ¢ heap[ito]->cost
loop: [ cmptle $f1,5f17,5f31 & (heap[ito]=->cost
6 sBaddg t2, t5, al # &heap[ifrom] # < cost) PRED
6 sBaddg t4, t5, t7 # &heap[ito] ,
11 cmplt +t4, 0, t9 # see note br slice loop
10 move t4, t2 # ifrom = ito .
6 ldg a2z, 0(a0) # heap[ifrom] ## Annotations
& ldg a4, 0(t7) # heap[ito] fork: on first instruction of node to heap
11 addl t‘!r th- ta # see note live_in: $£1?{cﬂst}r gP
11 sra t9, 0x1l, t4 # ito = ifrom/2 max loop iteratioms: 4
6 1ld= sfo, 4(az) # heap[ifrom]->cost
[i] 1ds 5f1, 4(a4q) ¥ heap[ito]=>cost
6 cmptlt S$f0,5f1,5f0 # (heap[ifrom]->cost
6 fheq 5f0, returm ¥ < heap[ito]->cost)
B stg a2, 0(t7) # heap[ito]
9 stg ad, 0(ald) # heap[ifrom]
5 bgt td4, loop #F (ito = 1)
return:
/* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 42




Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 -

Runahead: :
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles
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