
18-447: Computer Architecture

Lecture 30A: Advanced Prefetching

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 4/22/2013

Homework 6

 Due Today

 Topics: Virtual memory and cache interaction, main
memory, memory scheduling

2

Lab 6: Memory Hierarchy

 Due Wednesday (April 24)

 Cycle-level modeling of L2 cache and DRAM-based main
memory

 Extra credit: Prefetching

 Design your own hardware prefetcher to improve system
performance

3

Feedback

 Many of you wanted more lectures

 Plan for the rest of the semester

 3 lectures this week and 1 next Monday

 2 wrap–up and recitation sessions next Wednesday and Friday

4

Office Change

 I am no longer in Hamerschlag Hall A305

 New office: CIC 4105

 Office hours are still the same:

 Wed 2:30-3:30pm, or by appointment

5

Pictorially, …

6

Last Lecture

 Prefetching

 Software prefetchers

 Hardware prefetchers

 Next-line

 Stride

 Stream

7

Today

 More Prefetching

 Prefetcher performance metrics

 Prefetching for more irregular access patterns

 Multiprocessing Fundamentals

 Why parallel processing?

 Tightly vs. loosely coupled multiprocessing

 Parallel speedup

 Amdahl’s Law

8

Advanced Prefetching

Review: Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

 Idea:

 Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

 Next time the same load instruction is fetched,
prefetch last address + stride

10

Review: Instruction Based Stride Prefetching

 What is the problem with this?

 Hint: how far can this get ahead? How much of the miss latency can
the prefetch cover?

 Initiating the prefetch when the load is fetched the next time can be
too late

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

11

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Review: Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address
based stride prefetching where N = 1

 Read the Jouppi paper

 Stream buffer also has data storage in that paper (no prefetching
into cache)

12

Address tag Stride Control/Confidence

……. ……

Block

address

Review: Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of
sequentially prefetched cache lines

 On a load miss check the head of all
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache

with data

 if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

 Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

13

FIFO

FIFO

FIFO

FIFO

DCache

M
e
m

o
ry

 i
n
te

rf
a
c
e

Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance

14

Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream

 Prefetch degree: how many prefetches per demand access

15

Predicted Stream Predicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive

 Well ahead of the load access stream

 Hides memory access latency better

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

 16

Prefetcher Performance (IV)

17

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 I
P

C
 c

h
a
n
g

e
 o

v
e
r

N
o

 P
re

fe
tc

h
in

g

Prefetcher Accuracy

Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 18

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip
2

ga
p

m
cf

pa
rs

er

vo
rte

x
vp

r

am
m

p

ap
pl
u ar

t

eq
ua

ke

fa
ce

re
c

ga
lg
el

m
es

a

m
gr

id

si
xt
ra

ck

sw
im

w
up

w
is
e

gm
ea

n

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

No Prefetching

Very Conservative

Middle-of-the-Road

Very Aggressive

48%
 29%

Feedback-Directed Prefetcher Throttling (I)

 Idea:

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past
performance

 Change the location prefetches are inserted in cache based on
past performance

19

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 20

11% 13%

How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers

21

Markov Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

22

A B C

D E F
1.0

.33 .5

.2

1.0 .6
.2

.67

.6

.5

.2

Markov

Model

Markov Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch accuracy is generally low so prefetch up to N next addresses to
increase coverage

 Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B)  (C)

 (A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

23

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Markov Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses
is infeasible

 Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

 Consumes a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
24

Content Directed Prefetching (I)

 A specialized prefetcher for pointer values

 Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

 Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache
block’s address  if most-significant few bits match, pointer

 25

Content Directed Prefetching (II)

26

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220 X800

11100 x800

Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

27

28

Efficient CDP – An Example

HashLookup(int Key) {

 …

 for (node = head ; node -> Key != Key;

Struct node{

 int Key;

 int * D1_ptr;

 int * D2_ptr;

 node * Next;

}

node = node -> Next;

 if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

29

Efficient CDP – An Example

= = = = = = = =

[3
1

:2
0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

30

Efficient CDP – An Example

HashLookup(int Key) {

 …

 for (node = head ; node = node -> Next;

 if (node)

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key

31

Efficient CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]

Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context (think fine-grained
multithreading)

 On the same thread context in idle cycles (during cache misses)

32

Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

33

Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

34

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

 35

Thread-Based Pre-Execution Issues

 Read

 Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed

36

An Example

37

Example ISA Extensions

38

Results on an SMT Processor

39

Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

40

Fork Point for Prefetching Thread

41

Pre-execution Slice Construction

42

Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 43

Review: Runahead Execution (Mutlu et al., HPCA 2003)

44

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

