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Reminder: Homework 3 

Â Homework 3 

Ç Due Feb 25 

Ç REP MOVS in Microprogrammed LC-3b, Pipelining, Delay Slots, 
Interlocking, Branch Prediction 
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Lab Assignment 3 Due March 1 

Â Lab Assignment 3 

Ç Due Friday, March 1 

Ç Pipelined MIPS implementation in Verilog 

Ç All labs are individual assignments 

Ç No collaboration; please respect the honor code 

 

Ç Extra credit: Optimize for execution time!  

Â Top assignments with lowest execution times will get extra credit.  

Â And, it will be fun to optimizeé 
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Course Feedback Sheet 

Â Was due Feb 15, in class 

 

Â But, please still turn it in  

 

Â We would like your honest feedback on the course 
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Readings for Today 

Â Lindholm et al., " NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

Â Fatahalian and Houston, ñA Closer Look at GPUs,ò CACM 
2008. 

 

Â Stay tuned for more readingsé 
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Readings for Next Week 

Â Virtual Memory 

 

Â Section 5.4 in Patterson & Hennessy 

Â Section 8.8 in Hamacher et al. 
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Last Lecture 

Â Out-of-order execution 

Ç Tomasuloôs algorithm 

Ç Example 

Ç OoO as restricted dataflow execution 
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Today 

Â Wrap up out-of-order execution 

Ç Memory dependence handling 

Ç Alternative designs 
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Out-of-Order Execution 

(Dynamic Instruction Scheduling) 

 

 

 

 

 



Review: Out-of-Order Execution with Precise Exceptions 

 

 

 

 

 

 

 

 

 

Â Hump 1: Reservation stations (scheduling window) 

Â Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)  
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Review: Enabling OoO Execution, Revisited 

1. Link the consumer of a value to the producer  

Ç Register renaming: Associate a tag  with each data value  
 

2. Buffer instructions until they are ready  

Ç Insert instruction into reservation stations after renaming  
 

3. Keep track of readiness of source values of an instruction 

Ç Broadcast the tag  when the value is produced 

Ç Instructions compare their source tags   to the broadcast tag 
Ą if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)  

Ç Wakeup and select/schedule the instruction 
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Review: Summary of OOO Execution Concepts 

Â Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

Â Buffering enables the pipeline to move for independent ops 

 

Â Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

Â Wakeup and select enables out-of-order dispatch 
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Review: Registers versus Memory, Revisited 

Â So far, we considered register based value communication 
between instructions 

 

Â What about memory? 

 

Â What are the fundamental differences between registers 
and memory? 

Ç Register dependences known statically ï memory 
dependences determined dynamically 

Ç Register state is small ï memory state is large 

Ç Register state is not visible to other threads/processors ï 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 

 
13 



Review: Memory Dependence Handling (I) 

Â Need to obey memory dependences in an out-of-order 
machine  

Ç and need to do so while providing high performance  

 

Â Observation and Problem: Memory address is not known 
until a load/store executes 

 

Â Corollary 1: Renaming memory addresses is difficult 

Â Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution  

Â Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine 
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Review: Memory Dependence Handling (II) 

Â When do you schedule a load instruction in an OOO engine? 

Ç Problem: A younger load can have its address ready before an 
older storeôs address is known 

Ç Known as the memory disambiguation problem or the unknown 
address problem 

 

Â Approaches 

Ç Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)  

Ç Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away 

Ç Intelligent:  Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store 
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Handling of Store-Load Dependencies 

Â A load s dependence status is not known until all previous store 
addresses are available.  

 

Â How does the OOO engine detect dependence of a load instruction on a 
previous store? 

Ç Option 1: Wait until all previous stores committed (no need to 
check)  

Ç Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

Â How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

Ç Option 1: Assume load dependent on all previous stores 

Ç Option 2: Assume load independent of all previous stores 

Ç Option 3: Predict the dependence of a load on an outstanding store  
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Memory Disambiguation (I) 

Â Option 1: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

Â Option 2: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

Â Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

Ç Alpha 21264 : Initially assume load independent, delay loads found to be dependent   

Ç Moshovos et al., Dynamic speculation and synchronization of data dependences,  
ISCA 1997. 

Ç Chrysos and Emer, Memory Dependence Prediction Using Store Sets,  ISCA 1998. 
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Memory Disambiguation (II) 

Â Chrysos and Emer, Memory Dependence Prediction Using Store 
Sets,  ISCA 1998. 

 

 

 

 

 

 

 

 

Â Predicting store-load dependencies important for performance 

Â Simple predictors (based on past history) can achieve most of 
the potential performance  
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Food for Thought for You 

Â Many other design choices 

 

Â Should reservation stations be centralized or distributed? 

Ç What are the tradeoffs? 

 

Â Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 

Ç What are the tradeoffs? 

 

Â Exactly when does an instruction broadcast its tag? 

 

Â é 
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More Food for Thought for You 

Â How can you implement branch prediction in an out -of-
order execution machine? 

Ç Think about branch history register and PHT updates 

Ç Think about recovery from mispredictions 

Â How to do this fast? 
 

Â How can you combine superscalar execution with out-of-
order execution? 

Ç These are different concepts 

Ç Concurrent renaming of instructions 

Ç Concurrent broadcast of tags 

 

Â How can you combine superscalar + out-of-order + branch 
prediction? 
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Recommended Readings 

Â Kessler, The Alpha 21264 Microprocessor,  IEEE Micro, 
March-April 1999. 

 

Â Boggs et al., ñThe Microarchitecture of the Pentium 4 
Processor,ò Intel Technology Journal, 2001. 

 

Â Yeager, ñThe MIPS R10000 Superscalar Microprocessor,ò 
IEEE Micro, April 1996 

 

Â Tendler et al., ñPOWER4 system microarchitecture,ò IBM 
Journal of Research and Development, January 2002. 
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Other Approaches to Concurrency 

(or Instruction Level Parallelism) 

 

 

 

 

 



Approaches to (Instruction-Level) Concurrency 

Â Out-of-order execution 

Â Dataflow (at the ISA level)  

Â SIMD Processing 

Â VLIW 

 

Â Systolic Arrays 

Â Decoupled Access Execute 
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Data Flow: 

Exploiting Irregular Parallelism 

 
 

 

 

 

 



Remember: State of RAT and RS in Cycle 7 
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Remember: Dataflow Graph 
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Review: More on Data Flow 

Â In a data flow machine, a program consists of data flow 
nodes 

Ç A data flow node fires (fetched and executed) when all it 
inputs are ready 

Â i.e. when all inputs have tokens 

 

Â Data flow node and its ISA representation 
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Data Flow Nodes 
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Dataflow Nodes (II) 

Â A small set of dataflow operators can be used to 
define a general programming language  

Fork  Primitive Ops  

+  

Switch  Merge  

T F 
T F 

T T 

+  T F 
T F 

T T 

Ý
 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 
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Â Values in dataflow graphs are 
represented as tokens 

 

 

 

Â An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination   operators  

token  < ip , p , v >  

instruction ptr  port  data  

no separate control flow 



Example Data Flow Program 

31 

OUT 



Control Flow vs. Data Flow 
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Data Flow Characteristics 

Â Data-driven execution of instruction -level graphical code 

Ç Nodes are operators 

Ç Arcs are data (I/O)  

Ç As opposed to control-driven execution 

Â Only real dependencies constrain processing 

Â No sequential I-stream  

Ç No program counter 

Â Operations execute asynchronously 

Â Execution triggered by the presence of data 
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A Dataflow Processor 
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MIT Tagged Token Data Flow Architecture 

Â WaitīMatch Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address  

Ç Success: Both 
tokens forwarded 

Ç Fail: Incoming 
token īī> 
Waiting Token 
Mem, bubble (no-
op forwarded) 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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Manchester Data Flow Machine 

Â Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

Â Large data set Ą 

overflow in overflow 
unit 

Â Paired tokens fetch the 
appropriate instruction 
from the node store  
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Data Flow Advantages/Disadvantages 

Â Advantages 

Ç Very good at exploiting irregular parallelism 

Ç Only real dependencies constrain processing 

 

Â Disadvantages 

Ç No precise state 

Â Interrupt/exception handling is difficult  

Â Debugging very difficult  

Ç Bookkeeping overhead (tag matching) 

Ç Too much parallelism? (Parallelism control needed) 

Â Overflow of tag matching tables  

Ç Implementing dynamic data structures difficult  
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Data Flow Summary 

Â Availability of data determines order of execution  

Â A data flow node fires when its sources are ready 

Â Programs represented as data flow graphs (of nodes) 

 

Â Data Flow at the ISA level has not been (as) successful 

 

Â Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful 

Ç Out of order execution 

Ç Hwu and Patt, ñHPSm, a high performance restricted data flow 
architecture having minimal functionality ,ò ISCA 1986. 
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Further Reading on Data Flow 

Â ISA level dataflow 

Â Gurd et al., ñThe Manchester prototype dataflow 
computer,ò CACM 1985. 

 

Â Microarchitecture-level dataflow:  

Â Hwu and Patt, ñHPSm, a high performance restricted 
data flow architecture having minimal functionality ,ò 
ISCA 1986. 
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Vector Processing: 

Exploiting Regular (Data) Parallelism 

 
 

 

 

 

 



Flynnõs Taxonomy of Computers 

Â Mike Flynn, Very High-Speed Computing Systems,  Proc. 
of IEEE, 1966 

 

Â SISD: Single instruction operates on single data element 

Â SIMD: Single instruction operates on multiple data elements  

Ç Array processor 

Ç Vector processor 

Â MISD: Multiple instructions operate on single data element  

Ç Closest form: systolic array processor, streaming processor 

Â MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)  

Ç Multiprocessor 

Ç Multithreaded processor 
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Data Parallelism 

Â Concurrency arises from performing the same operations 
on different pieces of data  

Ç Single instruction multiple data (SIMD) 

Ç E.g., dot product of two vectors  
 

Â Contrast with data flow  

Ç Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

Â Contrast with thread ( control ) parallelism 

Ç Concurrency arises from executing different threads of control in 
parallel 

 

Â SIMD exploits instruction-level parallelism 

Ç Multiple instructions concurrent: instructions happen to be the same  
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SIMD Processing 

Â Single instruction operates on multiple data elements 

Ç In time or in space  

Â Multiple processing elements  

 

Â Time-space duality 

Ç Array processor: Instruction operates on multiple data 
elements at the same time 

Ç Vector processor: Instruction operates on multiple data 
elements in consecutive time steps 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR ă A[3:0] 

ADD  VR ă VR, 1  

MUL  VR ă VR, 2 

ST     A[3:0] ă VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

Â VLIW 
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SIMD Array Processing vs. VLIW 

Â Array processor 
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Vector Processors 

Â A vector is a one-dimensional array of numbers 

Â Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++)  

 C[i] = (A[i] + B[i]) / 2  

 

Â A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

Â Basic requirements 

Ç Need to load/store vectors Ą vector registers (contain vectors) 

Ç Need to operate on vectors of different lengths Ą vector length 

register (VLEN) 

Ç Elements of a vector might be stored apart from each other in 
memory Ą vector stride register (VSTR) 

Â Stride: distance between two elements of a vector  
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Vector Processors (II) 

Â A vector instruction performs an operation on each element 
in consecutive cycles 

Ç Vector functional units are pipelined 

Ç Each pipeline stage operates on a different data element 

 

Â Vector instructions allow deeper pipelines 

Ç No intra-vector dependencies Ą no hardware interlocking 

within a vector  

Ç No control flow within a vector  

Ç Known stride allows prefetching of vectors into cache/memory  
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Vector Processor Advantages 

+ No dependencies within a vector  

Ç Pipelining, parallelization work well 

Ç Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

Ç Reduces instruction fetch bandwidth 

 

+ Highly regular memory access pattern  

Ç Interleaving multiple banks for higher memory bandwidth  

Ç Prefetching 

 

+ No need to explicitly code loops  

Ç Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism)  

 ++ Vector operations  

    -- Very inefficient if parallelism is irregular  

     -- How about searching for a key in a linked list? 

 

 

 

 

53 Fisher, Very Long Instruction Word architectures and the ELI-512,  ISCA 1983. 



Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained  

 2. data is not mapped appropriately to memory banks  
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Vector Registers 

Â Each vector data register holds N M-bit values 

Â Vector control registers: VLEN, VSTR, VMASK 

Â Vector Mask Register (VMASK) 

Ç Indicates which elements of vector to operate on  

Ç Set by vector test instructions 

Â e.g., VMASK[i] = (V
k
[i] == 0)  

Â Maximum VLEN can be N 

Ç Maximum number of elements stored in a vector register  
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M-bit wide M-bit wide 



Vector Functional Units 

Â Use deep pipeline (=> fast 
clock) to execute element 
operations 

Â Simplifies control of deep 
pipeline because elements in 
vector are independent   
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Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

Â CRAY-1 

Â Russell, The CRAY-1 
computer system,  
CACM 1978. 

 

Â Scalar and vector modes 

Â 8 64-element vector 
registers 

Â 64 bits per element 

Â 16 memory banks 

Â 8 64-bit scalar registers 

Â 8 24-bit address registers 
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Memory Banking 

Â Example: 16 banks; can start one bank access per cycle 

Â Bank latency: 11 cycles 

Â Can sustain 16 parallel accesses if they go to different banks 
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Vector Memory System 
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Scalar Code Example 

Â For I = 0 to 49  

Ç C[i] = (A[i] + B[i]) / 2  

 

Â Scalar code 

     MOVI R0 = 50   1 

     MOVA R1 = A   1 

     MOVA R2 = B   1 

     MOVA R3 = C   1 

X:  LD R4 = MEM[R1++]   11  ;autoincrement addressing 

     LD R5 = MEM[R2++]   11 

     ADD R6 = R4 + R5  4 

     SHFR R7 = R6 >> 1  1 

     ST MEM[R3++] = R7    11 

     DECBNZ --R0, X  2   ;decrement and branch if NZ  
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304 dynamic instructions 



Scalar Code Execution Time 
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Â Scalar execution time on an in-order processor with 1 bank 

Ç First two loads in the loop cannot be pipelined: 2*11 cycles  

Ç 4 + 50*40 = 2004 cycles  

 

Â Scalar execution time on an in-order processor with 16 
banks (word-interleaved) 

Ç First two loads in the loop can be pipelined 

Ç 4 + 50*30 = 1504 cycles  

 

Â Why 16 banks? 

Ç 11 cycle memory access latency 

Ç Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency 

 



Vectorizable Loops 

Â A loop is vectorizable if each iteration is independent of any 
other 

Â For I = 0 to 49  

Ç C[i] = (A[i] + B[i]) / 2  

Â Vectorized loop: 

  MOVI VLEN = 50   1 

  MOVI VSTR = 1   1 

  VLD V0 = A    11 + VLN - 1 

  VLD V1 = B    11 + VLN ï 1 

  VADD V2 = V0 + V1   4 + VLN - 1 

  VSHFR V3 = V2 >> 1   1 + VLN - 1 

  VST C = V3    11 + VLN ï 1 
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7 dynamic instructions 



Vector Code Performance 

Â No chaining  

Ç i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding)  

Â One memory port (one address generator) 

Â 16 memory banks (word-interleaved) 

 

 

 

 

 

 

 

Â 285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 

Â Vector chaining: Data forwarding from one vector 
functional unit to another  
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Vector Code Performance - Chaining 

Â Vector chaining: Data forwarding from one vector 
functional unit to another  

 

 

 

 

 

 

 

 

 

Â 182 cycles 
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  

pipelined. WHY? 

VLD and VST cannot be  

pipelined. WHY? 

Strict assumption: 

Each memory bank  

has a single port  

(memory bandwidth 

bottleneck) 



Vector Code Performance ð Multiple Memory Ports 

Â Chaining and 2 load ports, 1 store port in each bank 

 

 

 

 

 

 

 

 

 

 

Â 79 cycles 
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