
CMU 18-447 Introduction to Computer Architecture, Spring 2013

Lab 1: Instruction-Level MIPS Simulator

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

Assigned: Thu., 1/17, 2013
Due: Fri., 2/1, 2013

Introduction

For this assignment, you will write a C program which is an instruction-level simulator for a limited subset of the
MIPS instruction set. This instruction-level simulator will model the behavior of each instruction, and will allow the
user to run MIPS programs and see their outputs. In later labs, you will use this simulator as a reference to verify
that your later labs execute code correctly.

The simulator will process an input file that contains a MIPS program. Each line of the input file corresponds to a
single MIPS instruction written as a hexadecimal string. For example, 2402000a is the hexadecimal representation
of addiu $v0, $zero, 10. We will provide several input files. But you should also create additional input files in
order to test your simulator more comprehensively.

The simulator will execute the input program one instruction at a time. After each instruction, the simulator will
modify the MIPS architectural state: values stored in registers and memory. The simulator is partitioned into two
main sections: the (1) shell and the (2) simulation routine. Your job is to implement the simulation routine.

The source code for the lab are provided in /afs/ece/class/ece447/labs/lab1. In the src/ directory, we provide
two files (shell.c and shell.h) that already implement the shell. There is a third file (sim.c) where you will
implement the simulator routine – this is the only file that you are allowed to change.

The Shell

The purpose of the shell is to provide the user with commands to control the execution of the simulator. The shell
accepts one or more program files as command line arguments and loads them into the memory image. In order to
extract information from the simulator, a file named dumpsim will be created to hold information requested from the
simulator. The shell supports the following commands:

1. go: simulate the program until it indicates that the simulator should halt. (As we define below, this is when a
SYSCALL instruction is executed when the value in $v0 (register 2) is equal to 0x0A.)

2. run <n>: simulate the execution of the machine for n instructions.

3. mdump <low> <high>: dump the contents of memory, from location low to location high to the screen and
the dump file (dumpsim).

4. rdump: dump the current instruction count, the contents of R0 – R31, and the PC to the screen and the dump
file (dumpsim).

5. input reg num reg val: set general purpose register reg num to value reg val.

6. high value: set the HI register to value.

7. low value: set the LO register to value.

8. ?: print out a list of all shell commands.

9. quit: quit the shell.

1/4

 /afs/ece/class/ece447/labs/lab1

The Simulation Routine

The simulation routine carries out the instruction-level simulation of the input MIPS program. During the execution
of an instruction, the simulator should take the current architectural state and modify it according to the ISA
description of the instruction in the MIPS R4000 User Manual (32-bit mode only) that is provided on the course
website. The architectural state includes the PC, the general purpose registers, and the memory image. The state
is contained in the following global variables:

#define MIPS_REGS 32

typedef struct CPU_State {

uint32_t PC; /* program counter */

uint32_t REGS[MIPS_REGS]; /* register file. */

uint32_t HI, LO; /* multiplier HI and LO regs. */

} CPU_State;

CPU_State STATE_CURRENT, STATE_NEXT;

int RUN_BIT;

Furthermore, the simulator models the simulated system’s memory. You need to use the following two functions,
which we provide, to access the simulated memory:

uint32_t mem_read_32(uint32_t address);

void mem_write_32(uint32_t address, uint32_t value);

Note that in MIPS, memory is byte-addressable. Furthermore, we will implement a little-endian architecture. This
means that machine words (32 bits) are stored with the least-significant byte at the lowest address, and the most-
significant byte at the highest address. To implement loads and stores of 16-bit and 8-bit values, you will need to
use these 32-bit memory access primitives (hint: be sure to modify only the appropriate part of a 32-bit word!).

In particular, you should call mem read 32 and mem write 32 with only 32-bit-aligned addresses (i.e., the bottom
two bits of the address should be zero).

The simulator skeleton that we provide includes an empty function named process instruction() in the file
sim.c. This function is called by the shell to simulate one machine instruction. You have to write the code for
process instruction() to simulate the execution of instructions. You can also write additional functions to make
the simulation modular. (Keep in mind that you will be using the code that you write in later labs in order to validate
your work.) We suggest spending time to make your code easy to read and understand, for your own benefit.

What You Should Do

Your job is to implement the process instruction() function in sim.c. The process instruction() function
should be able to simulate the instruction-level execution of the following MIPS instructions:

J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTI SLTIU ANDI ORI
XORI LUI LB LH LW LBU
LHU SB SH SW BLTZ BGEZ
BLTZAL BGEZAL SLL SRL SRA SLLV
SRLV SRAV JR JALR ADD ADDU
SUB SUBU AND OR XOR NOR
SLT SLTU MULT MFHI MFLO MTHI
MTLO MULTU DIV DIVU SYSCALL

2/4

Note that for the SYSCALL instruction, you only need to implement the following behavior: if the register $v0
(register 2) has value 0x0A (decimal 10) when SYSCALL is executed, then the go command should stop its simulation
loop and return to the simulator shell’s prompt. If $v0 has any other value, the instruction should have no effect.
No registers are modified in either case, except that PC is incremented to the next instruction as usual. The
process instruction() function that you write should cause the main simulation loop to terminate by setting the
global variable RUN BIT to 0.1

The accuracy of your simulator is your main priority. Specifically, make sure the architectural state is correctly
updated after the execution of each instruction. We will test your simulator with many input programs (some
provided with the handout, some not) in order to ensure that each instruction is simulated correctly.

In order to test that your simulator is working correctly, you should run the input programs we provide you with
and also write one or more programs using all of the required MIPS instructions that are listed in the table above,
and execute them one instruction at a time (run 1). You can use the rdump command to verify that the state of the
machine is updated correctly after the execution of each instruction.

While the table appears to have many instructions, there are actually only a few unique instruction behaviors with a
number of minor variations. You should tackle the instructions in groups: R-type ALU, I-type ALU, LW, SW, Jump,
Branch, and so on. The MIPS R4000 User Manual (provided on the course website) contains the official definition
for each instruction in this table (except for SYSCALL, for which we provide a restricted definition above). Please
implement only the 32-bit behavior of the instructions (the R4000 also has a 64-bit mode, which we can ignore for
the purpose of this and subsequent labs.)

However, unlike the manual, we will implement our architecture without “branch delay slots.” We will talk more
about branch delay slots in class. For the purposes of Lab 1, this means that branch instructions can update
NEXT STATE.PC directly to the branch target when the branch is taken. Furthermore, “jump-and-link” instructions
(JAL, JALR, BLTZAL, BGEZAL) store PC + 4 in R31, rather than PC + 8 as specified in the manual in these
instructions’ descriptions.

Finally, note that your simulator does not have to handle instructions that we do not include in the table above,
or any other invalid instructions. We will only test your simulator with valid code that uses the instructions listed
above.

Lab Files

In /afs/ece/class/ece447/labs/lab1, you will find a source code distribution with two subdirectories src/ and
inputs/. In src/, we are providing you with the simulator skeleton as described above. You can compile the
simulator with the provided Makefile. In inputs/, we have written some input files for you. You should write
more input files in order to be confident that your simulator is correct. Also in inputs/, you can find a script that
will assemble MIPS code into the hexadecimal format that the simulator requires. The README file describes how to
assemble a MIPS program with this script and load it into the simulator.

Resources

If you have not done so already, we recommend that you work through Homework 1 to become familiar with the
MIPS ISA and the SPIM assembler/simulator. The MIPS R4000 instruction set architecture is defined in the manual
that we have provided on the course website. We may post additional resources (clarifications, etc.) as required
on the course website. Finally, please don’t hesitate to ask the TAs for help if you become stuck or if something is
unclear! Take advantage of the online Q&A forum (link posted on the course website), office hours, and lab sections.

Handin

You should electronically hand in your code (all files in the src/ directory) into /afs/ece/class/ece447/handin/

andrew_id/lab1. We should have this directory set up in the next few days. Please contact the TAs if your handin

1This SYSCALL behavior is consistent with SPIM, which defines a set of syscalls which you can find on the lab resources page. In a
later lab we will re-consider the SYSCALL instruction and implement a “real” trap.

3/4

/afs/ece/class/ece447/labs/lab1
/afs/ece/class/ece447/handin/andrew_id/lab1
/afs/ece/class/ece447/handin/andrew_id/lab1

directory does not exist but others’ do exist. Your code should be readable and well-documented. In addition, please
turn in additional test cases that you used in a inputs/ subdirectory. If you feel the need to describe any additional
aspects of your design in detail, please include these in a separate README. During the demo, we will ask you
questions about your instruction simulator and test it with a number of input programs. Please be sure to allow
plenty of time to get checked off (i.e., don’t come in the last 15 minutes of lab). Following the lab check-off, we will
test your simulator extensively with a suite of test cases so that we are confident that you have implemented all
instructions correctly. This is for your benefit in later labs!

4/4

