
Target Prediction for Indirect Jumps

Po-Yung Chang Eric Hao Yale N. Pa t t

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122
email: {pychang,ehao,patt}@eecs.umich.edu

Abstract

As the issue rate and pipeline depth of high perfor-
mance superscalar processors increase, the amount of spec-
ulative work issued also increases. Because speculative work
must be thrown away in the event of a branch mispredic-
tion, wide-issue, deeply pipelined processors must employ
accurate branch predictors to effectively exploit their perfor-
mance potential. Many existing branch prediction schemes
are capable of accurately predicting the direction of condi-
tional branches. However, these schemes are ineffective in
predicting the targets of indirect jumps achieving, on aver-
age, a prediction accuracy rate of 51.8% for the SPECint95
benchmarks. In this paper, we propose a new prediction
mechanism, the target cache, for predicting indirect jump
targets. For the perl and gcc benchmarks, this mechanism
reduces the indirect jump misprediction rate by 93.4% and
63.3% and the overall execution time by 14% and 5%.

1 Introduction

As the issue rate and pipeline depth of high perfor-
mance superscalar processors increase, the amount of spec-
ulative work issued also increases. Because speculative work
must be thrown away in the event of a branch mispredic-
tion, wide-issue, deeply pipelined processors must employ
accurate branch predictors to effectively exploit their per-
formance potential.

A program's branches can be categorized as conditional
or unconditional and direct or indirect, resulting in four
classes. A conditional branch conditionally redirects the
instruction stream to its target whereas an unconditional
branch always redirects the instruction stream to its tar-
get. A direct branch has a statically specified target which
points to a single location in the program whereas an indirect
branch has a dynamically specified target which may point
to any number of locations in the program. Although these
branch attributes can combine into four classes, only three

Permission t o make digitallhard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission andlor a fee.
ISCA '97 Denver, CO, USA
0 1997 ACM 0-89791-901-7/97/0006 ... $3.50

of the classes - conditional direct, unconditional direct, and
unconditional indirect - occur with significant frequency.

In the past, branch prediction research has focused on
accurately predicting conditional and unconditional direct
branches [ll, 7, 15, 6, 2 , 81. To predict such branches, the
prediction mechanism predicts the branch direction (for un-
conditional branches, this part is trivial) and then gener-
ates the target associated with that direction. To gener-
ate target addresses, a branch target buffer (BTB) is used.
The BTB stores the fall-through and taken address for each
branch. For indirect jumps, the taken address is the last
computed target for the indirect jump. (For a jump-to-
subroutine, the fall-through address is needed so that it can
be pushed onto the return address stack, even though the
jump-to-subroutine will never jump to the fall-through ad-
dress.) Unfortunately, BTB-based prediction schemes per-
form poorly for indirect branches. Because the target of an
indirect branch can change with every dynamic instance of
that branch, predicting the target of an indirect branch as
the last computed target for that branch will lead to poor
prediction accuracy. Figures 1 through 8 show the number
of different dynamic targets seen for each indirect branch
in the SPECint95 benchmarks. Table 1 lists the indirect
branch target misprediction counts achieved by a 1K-entry
4-way set-associative BTB for the SPECint95 benchmarks.
For gcc and perl, the two benchmarks with significant num-
bers of indirect branches, the misprediction rates for indirect
branches were 66.0% and 76.4%.

In this paper, we propose a new prediction mechanism,
the target cache, for predicting the targets of indirect jumps'.
The target cache uses a concept central to the 2-level branch
predictor: branch history is used to distinguish different dy-
namic occurrences of each indirect branch. When fetching
an indirect jump, the fetch address and the branch history
are used to form an index (A) into the target cache. The
target cache is then accessed for the indirect jump. Later,
when the indirect branch retires, the target cache is accessed
again using index A , and the computed target for the indi-
rect jump is written into the target cache. As the program
executes, the target cache records the target for each indirect
jump target encountered. When fetching an indirect jump,

~~~~ ~ 

'Although return instructions technically are indirect jumps, they 
are not handled with the target cache because they are effectively 
handled with the return address stack [13, 41. 

2 74 

mailto:pychang,ehao,patt}@eecs.umich.edu


................................... .................................................................................................................................................... 

80% 
8 3 60% 
8 
k 

40% 

20% 

0% 

Figure 1: Number of Targets per Indirect Jump (compress) Figure 5: Number of Targets per Indirect Jump (m88ksim) 

....................... 

1 
100% 

i 

............................................................................................................................................. . I 20% -. 
0% hl.,lLL-L- 1 5  10 15 20 25 >=30 

Figure 2: Number of Targets per Indirect Jump (gcc) 

.................................... -- ............ .... .I____.__ ________I" I loo% 
,.- 

80% __ l______._. ~ 

al 
......................................................................................................................................................................... 

...................................................................................................................................................................................... 

20% ............................................... ................................................................ 

0% 1 5  10 15 20 ---I 25 >=30 

Figure 3: Number of Targets per Indirect Jump (go )  

.................. 
I 

100% 

1 " _ 1 _ - - - ~  __.--- 80% 

a# 
20% 

1 5  10 15 20 25 >=30 

Figure 4: Number of Targets per Indirect Jump (ijpeg) 

8 !g 60% 
8 
k 

40% 

u)96 

0% 
25 >=30 10 15 20 1 5  

Figure 6: Number of Targets per Indirect Jump (perl) 

I 80% I__ 

loo% I 
3 W% _"_" ~ .. 

a# 1 4 0 %  20% b-1 -. -. .... .. .... .... .. 

0% l l - I  
15 20 25 >=30 1 5 10 

Figure 7: Number of Targets per Indirect Jump (vortex) 

loo% I 

) 

Figure 8: Number of Targets per Indirect Jump (xlisp) 

275 



I Ind. Jump I 
Benchmark Input #Instructions #Branches #Indirect Jumps Mispred. Rate 
compress 

the target cache is accessed with the fetch address and the 
branch history to produce the predicted target address. The 
target cache improves on the prediction accuracy achieved 
by BTB-based schemes for indirect jumps by choosing its 
prediction from (usually) all the targets of the indirect jump 
that have already been encountered rather than just the tar- 
get that was most recently encountered. We will show that 
for the per1 and gcc benchmarks, a target cache can reduce 
the indirect jump misprediction rate by 93.4% and 63.3% 
and the overall execution time by 14% and 5%. 

This paper is organized into five sections. Section 2 dis- 
cusses related work. Section 3 introduces the concept of a 
target cache. Section 4 shows the performance benefits of 
target caches. Section 5 provides some concluding remarks. 

test .in’ 125,162,687 17,460,753 590 61.7% 

2 Related Work 

gcc 
go 

ijpeg 
m88ksim 

perl 
vortex 
xlisp 

To address the problem of target prediction for indirect 
jumps in C++ programs, Calder and Grunwald proposed a 
new strategy, the 2-bit strategy, for updating BTB target 
addresses [1]. The default strategy is to update the BTB on 
every indirect jump misprediction, Calder and Grunwald’s 
2-bit strategy does not update a BTB entry’s target address 
until two consecutive predictions with that target address 
are incorrect. This strategy was shown to achieve a higher 
target prediction accuracy than that achieved by the default 
strategy. 

The 2-bit strategy is not very successful in predicting 
the targets of indirect branches in C programs such as the 
SPECint95 benchmarks. Table 2 compares the indirect 
branch target misprediction rate achieved by a 1K entry, 
4-way set-associative BTB that uses the 2-bit strategy to 
that achieved by an identically configured BTB that uses 
the default target update strategy. The 2-bit strategy re- 
duced the misprediction rates for the compress, gcc, ijpeg, 
and perl benchmarks, but increased the misprediction rates 
for the m88ksim, vortex, and xlisp benchmarks. The tar- 

jump.i 172,328,834 35,979,748 939,417 66.0% 
2stone9.in3 125,637,006 23,378,150 173,719 37.6% 

specmun.ppm4 206,802,135 23,449,572 103,876 14.3% 

scrabbl.p15 106,140,733 16,727,047 588,136 76.4% 
11.3% vortex.in6 236,081,621 44,635,060 

dcrand.train.big 131,732,141 23,840,021 186,285 37.3% 

243,706 
train.lsp 192,569,022 40,909,525 114,789 80.7% I 

’Abbreviated version of the SPECint reference input set bigtestin. 

3Abbreviated version of the SPECint training input set Zstone9.in 

4Abbreviated version of the SPECint test input set specmun.ppm 

‘Abbreviated version of the SPECint reference input set. 
‘Abbreviated 

The initial list consists of 30000 elements. 

using 19 levels instead of 50 levels. 

where the compression quality is 50 instead of 90. 

version of the SPECint test input set. 
LOOKUPS = DELETES = STUFF-PARTS = 10 

PART-COUNT = 100 and 

Benchmark 

get prediction scheme proposed by this paper, the target 
cache, has significantly lower indirect jump mispredictiou 
rates than those achieved by the 2-bit strategy. For exam- 
ple, a 512-entry target cache achieve the misprediction rates 
of 30.4% and 30.9% for gcc and perl respectively. 

BTB 1 2-bit BTB 
I 1 1  Mismediction Rate 

gcc 
go 

ijpeg 
m88ksim 

perl 
vortex 
xlisp 

66.0% 64.1% 
37.6% 36.4% 
14.3% 9.36% 
37.3% 38.1% 
76.4% 67.5% 
11.3% 14.6% 
80.7% 85.4% 

Table 2: Performance of %bit BTB 

Kaeli et al. proposed a hardware mechanism, the case 
block table (CBT), to speed up the execution of 
SWITCH/CASE statements [5]. Figure 9 gives an exam- 
ple of a SWITCH/CASE statement and the correspond- 
ing assembly code for that statement. The assembly code 
consists of a series of conditional branches that determine 
which case of the SWITCH/CASE statement is to be ex- 
ecuted. Because a single variable, the case block variable, 
specifies the case to be executed, this series of conditional 
branches can be avoided if the instruction stream could be 
directly redirected to the appropriate case. The CBT en- 
ables this redirection by recording, for each value of the 
case block variable, the corresponding case address. This 
mapping of case block variable values to case addresses is 
dynamically created. When a SWITCH/CASE statement 
is encountered, the value of the case block variable is used 
to search the CBT for the next fetch address. In effect, the 
CBT is dynamically generating a jump table to  replace the 
SWITCH/CASE statements. 

showed that an ora- 
cle CBT, that is, a CBT which always selects the correct 
case to execute, can reduce significantly the number of con- 
ditional branches in the instruction stream. However, the 
CBT’s usefulness is limited by two factors. First, modern 
day compilers are capable of directly generating jump tables 
for SWITCH/CASE statements at compile-time, eliminat- 
ing the need for the CBT to generate the tables dynamically. 

The study done by Kaeli et al. 

2 76 



3.1 Accessing Target Cache 

In our study, we consider using branch history along 
with the branch address to index into the target cache. Two 
types of branch history information are used to decide which 
target of the indirect jump will be predicted - pattern his- 
tory and path history. 

High-Level 
Construct 
----__---- 

s a i t c h ( v )  { 
case 1:  

char = ’ a ’ ;  
break ; 

char = ’b’; 
break ; 

char = ’ c ’ ;  
break ; 

defaul t  : 
char = ’ d ’ ;  

case 2:  

case 3: 

1 

Assembly Code 
------------- 

r l  <- compare v ,  I 
beq rl, L l  

rl <- compare v ,  2 
beq rl, L2 
rl <- compare v ,  3 
beq r l ,  L 3  

; beq == branch if equal 

goto L4 

goto L5 

goto L5 

goto L5 

LI: char <- ’a’ 

L2: char <- ’b’ 

L3: char <- ’ c ’  

L4: char <- ’d’ 
L5: 

Figure 9: An Example of a SWITCH/CASE Construct 

Second, for processors with out-of-order execution, the value 
of the case block variable is often not yet known when the in- 
struction corresponding to the SWITCH/CASE statement 
is fetclhed. As a result, the CBT cannot redirect the in- 
struction stream to the appropriate case until that value is 
computed. 

The target cache proposed in this paper has some simi- 
larities to the CBT. Like the CBT, the target cache dynami- 
cally records the case addresses for a program’s 
SWITCH/CASE statements. However, the target cache dif- 
fers from the CBT in two significant ways. First, the pur- 
pose of the target cache is to accurately predict the target 
of the indirect jumps used to implement the jump tables, 
not to dynamically construct jump tables. The target cache 
assumes that the compiler has generated jump tables for the 
SWITCH/CASE statements. Second, the target cache was 
designed for highly speculative machines, where the value 
of the case block variable is likely to be unknown when the 
predicbion is made; therefore, a branch history is used to 
make the prediction instead. 

3 Tairget Cache 

The target cache improves on the prediction accuracy 
achieved by BTB-based schemes for indirect jumps by choos- 
ing its prediction from (usually) all the targets of the indi- 
rect jump that have already been encountered rather than 
just the target that was most recently encountered. When 
fetching an indirect jump, the target cache is accessed with 
the fetch address and other pieces of the machine state to 
produce the predicted target address. As the program exe- 
cutes, the target cache records the target for each indirect 
jump target encountered. 

0 Branch History 

It is now well known that the 2-level branch predictor 
improves prediction accuracy over previous single-level 
branch predictors [14]. The 2-level predictors attain 
high prediction accuracies by using pattern history to 
distinguish different dynamic occurrences of a condi- 
tional branch. To predict indirect jumps, the target 
cache is indexed using branch address and global pat- 
tern history. Global pattern history is a recording of 
the last n conditional branches. No extra hardware is 
required to maintain the branch history for the target 
cache if the branch prediction mechanism already con- 
tains this information. The target cache can use the 
branch predictor’s branch history register. 

0 Path History 

Previous research [16, 81 has shown that path history 
can also provide useful correlation information to im- 
prove branch prediction accuracy. Path history con- 
sists of the target addresses of branches that lead to 
the current branch. This information is also useful in 
predicting indirect branch targets. 

In this study, two different types of path history can 
be associated with each indirect jump - global or per- 
address. In the per-address scheme, one path history 
register is associated with each distinct static indirect 
branch. Each n-bit path history register records the 
last k target addresses for the associated indirect jump. 
That is, when an indirect branch is resolved, n/k bits 
from its target address are shifted into the path history 
register. 

In the global scheme, one path history register is used 
for all indirect branches. Because the history register 
has a fixed length, it can record a limited number of 
branches in the past history. Thus, the history register 
may be better utilized by only recording a particular 
type of branch instruction. For example, if a sequence 
of conditional branches is sufficient to distinguish the 
different paths of each indirect jump, then there is no 
need to include other types of branches in the path 
history. Four variations of the global scheme were 
considered - Control,  Branch, Cal l / re t  , Ind jmp. 
The Control scheme records the target address of all 
instructions that can redirect the instruction stream. 
The Branch scheme only records the targets of condi- 
tional branches. The C a W r e t  scheme records only 
the targets of procedure calls and returns. The Ind 
jmp scheme records only the targets of indirect jumps. 

2 77 



Target Cache Target Cache - Target AWress 

Figure 10: Structure of a Tagless Target Cache 

3.2 Target Cache Structure 

In addition to varying the type of information used to 
access the target cache, we also studied tagged and tagless 
target caches. 

0 Tagless Target Cache 

Figure 10 shows the structure of a tagless cache. The 
target cache is similar to the pattern history table of 
the 2-level branch predictor; the only difference is that 
a target cache’s storage structure records branch tar- 
gets while a 2-level branch predictor’s pattern history 
table records branch directions. 

The target cache works as follows: during instruction 
fetch, the BTB and the target cache are examined con- 
currently. If the BTB detects an indirect branch, then 
the selected target cache entry is used for target predic- 
tion. When the indirect branch is resolved, the target 
cache entry is updated with its target address. 

Several variations of the tagless target cache can be 
implemented. They differ in the ways that branch 
address and history information are hashed into the 
target cache. For example, the branch address can be 
XORed with the history information for selecting the 
appropriate entry. Section 4 will describe the different 
hashing schemes considered. 

0 Tagged Target Cache 

Like the previous 2-level branch predictors, interfer- 
ence occurs in the target cache when a branch uses 
an entry that was last accessed by another branch. 
Interferehce is particularly detrimental to the target 
cache because each entry in the target cache stores the 
branch target address. Since the targets of two differ- 
ent indirect branches are usually different, interference 
will most likely cause a misprediction. 

To avoid predicting targets of indirect jumps based on 
the outcomes of other branches, we propose the tagged 
target cache where a tag is added to each target cache 
entry (see Figure 11). The branch address and/or the 
branch history are used for tag matching. When an 
indirect branch is fetched, its instruction address and 
the associated branch history are used to select the 
appropriate target cache entry. If an entry is found, 
the instruction stream is redirected to the associated 
target address. 

Branch Taw1 

Figure 11: Structure of a Tagged Target Cache 

4 Results 

4.1 Experimental Methodology 

The experimental results presented in this paper were 
measured by trace-driven simulations using an instruction 
level simulator. The benchmarks simulated were the 
SPECint95 benchmarks and they were all simulated to com- 
pletion. Table 1 (see Section 1) lists the input data set used 
for each benchmark and the dynamic instruction counts. We 
will concentrate on the gcc and per1 benchmarks, the two 
benchmarks with the largest number of indirect jumps. 

The machine model simulated is the HPS microarchi- 
tecture [9] [IO]. HPS is a wide-issue out-of-order execution 
machine, using Tomasulo algorithm for dynamic schedul- 
ing [12]. Checkpointing [3] is used to maintain precise ex- 
ceptions. Checkpoints are established for each branch; thus, 
once a branch misprediction is determined, instructions from 
the correct path are fetched in the next cycle. 

The HPS processor simulated in this paper supports 8 
wide issue with a perfect instruction cache and a 16KB data 
cache. Latency for fetching data from memory is 10 cycles. 
Table 3 shows the instruction classes and their simulated 
execution latencies, along with a description of the instruc- 
tions that belong to that class. In the processor simulated, 
each functional unit can execute instructions from any of 
the instruction classes. The maximum number of instruc- 
tions that can exist in the machine at one time is 128. An 
instruction is considered in the machine from the time it is 
issued until it is retired. 

Instruction 
Class 
Integer 
F P  Add 
FP/INT Mu1 
FP/INT Div 
Load 
Store 
Bit Field 
Branch 

Exec. 
Lat. 

1 
3 
3 
8 
2 

1 
1 

~~ ~ ~ 

Description 
INT add, sub and logic OPs 
F P  add, sub, and convert 
F P  mu1 and INT mu1 
FP div and INT div 
Memory loads 
Memory stores 
Shift, and bit testing 
Control instructions 

Table 3: Instruction classes and latencies 

278 



4.2 Tagless Target Cache 

This section examines the performance of tagless target 
caches. The size of every target cache considered in this 
section is 512 entries. Since the BTB has 256 sets and is 4- 
way set-associative, the target cache increases the predictor 
hardware budget by 10 percent. The cost of the predictor is 
estimated using the following equations: 

77 x 2048 b i t s  - BTB+ - 
target cache(n) = 32 x n b i t s  
predictor budget = BTB + target cache(n) b i t s  

where n is the number of target cache entries. 

addr 
bit 

4.2.1 Hashing Function 

With the tagless schemes, branch history information 
and address bits are hashed together to  select the appropri- 
ate target cache entry. An effective hashing scheme must 
distribute the cache indexes as widely as possible to avoid 
interference between different branches. 

Table 4 shows the performance benefit of tagless target 
caches using different history information for indexing into 
the storage structure. The GAg(9) scheme uses 9 bits of 
branch pattern history to select the appropriate target cache 
entry. In the GAS schemes, the target cache is conceptually 
partitioned into several tables. The address bits are used to 
select the appropriate table and the history bits are used to 
select the entry within the table. The GAs(8,l)  scheme uses 
8 history bits and 1 address bit while the GAs(7,2) scheme 
uses 7 history bits and 2 address bits. For the perl bench- 
mark, GAg(9) outperforms GAs(8,1), showing that branch 
patteirn history provides marginally more useful information 
than branch address. This is because the perl benchmark 
executes only 22 static indirect jumps. On the other hand, 
GAs(8,l)  is competitive with GAg(9) for the gcc benchmark, 
a benchmark which executes a large number of static indi- 
rect jumps. In the gshare scheme, the branch address is 

Reduction in Execution Time 
Per-addr I Global 

+each BTB entry consists of 1 valid bit, 2 least-recently-used bits, 
23 tag bits, 32 target address bits, 2 branch type bits, 4 fall-thru 
address bits, and 13 branch history bits. 

no. 
2 
3 
4 
5 
7 
10 
15 
20 

Perl 

31.2% 8.87% 
33.4% 8.36% 

Gee 

35.8% 3.61% 
GAs(8, l )  35.7% 3.62% 
GAsf7.2) 36.7% 3.48% 

branch 
7.64% 7.41% 

10.09% 6.85% 
5.52% 5.97% 
7.34% 9.13% 
6.17% 6.89% 
6.19% 6.60% 
1.87% 2.98% 
0.00% 0.00% 

Table 4: Performance of Pattern History Tagless Target 
Caches 

addr 
bit 
2 
3 
4 
5 
7 
10 
15 

XORed with the branch history to form the target cache in- 
dex. Like the previous 2-level branch predictors, the gshare 
scheme outperforms the GAS scheme because it effectively 
utilizes more of the entries in the target cache. In the fol- 
lowing sections, we will use the gshare scheme for tagless 
target caches. 

Per-addr G 
branch control 

2.57% 3.82% 3.75% 
2.46% 3.71% 3.81% 
2.67% 3.88% 3.63% 
2.02% 3.75% 3.82% 
2.60% 3.57% 3.76% 
1.34% 3.24% 3.14% 
0.01% 1.05% 0.78% 

4.2.2 Branch Path History: TradeofFs 

Path history consists of the target addresses of branches 
that lead to the current branch. Ideally, each path leading 
to a branch should have a unique representation in the path 
history register. However, since only a few bits from each 
target are recorded in the path history register, different tar- 
gets may have the same representation in the path history. 
When this occurs, the path history may not be able to dis- 
tinquish between different paths leading to a branch. Thus, 
the performance of a path based target cache depends on 
the address bits from each target used to form the path his- 
tory. Table 5 shows that the lower address bits provide more 
information than the higher address bits. In the following 
experiments, the least significant bits from each target are 
recorded in the path history register; the 2 least significant 
bits from each address are ignored because instructions are 
aligned on word boundaries. 

Because the length of the history register is fixed, there 
is also a tradeoff between identifying more branches in the 
past history and better identifying each branch in the past 
history. Increasing the number of bits recorded per address 
results in fewer branch targets being recorded in the history 
register. Table 6 shows the performance of target caches 

3.41% 
4.88% 
4.31% 
4.22% 
3.94% 
2.30% 
0.00% 

:cc 

11.00% 
10.50% 

9.24% 
11.34% 
12.82% 
10.97% 

0.00% 

call/ret 
8.45% 
9.75% 
9.97% 

10.82% 
11.16% 
10.42% 

9.92% 
0.00% 

Reduction in Execution Time 

I .. . )bal 

2.63% 
2.69% 
2.37% 
2.72% 
1.83% 
1.06% 

2.24% 
2.80% 
2.63% 
2.98% 
2.60% 
1.56% 

20 11 -0.02% I 0.26% I 0.14% I 0.24% I 0.78% 

Table 5: Path History: Address Bit Selection 

2 79 



bits 
Der 

Reduction in Execution Time 
Per-addr I Global 

addr I branch I control I ind jmp I call/ret 

2 2.96% 2.60% 2.21% 3.35% 2.66% I 3 /I 3.57% 1 2.02% I 1.66% 1 3.83% 1 2.63% 1 

2 
3 

Table 6: Path History: Address Bits per Branch 

9.17% 3.12% 0.88% 11.81% 8.40% 
7.19% 0.30% 0.74% 10.99% 6.24% 

using different numbers of bits from each target in the path 
history. In general, with nine history bits, the performance 
benefit of the target cache decreases as the number of ad- 
dress bits recorded per target increases. This is especially 
true for the Control and Branchschemes. With the Control 
scheme, we record the target of all instructions that can redi- 
rect the instruction stream, which may include branches that 
provide little or no useful information, e.g. unconditional 
branches. Each of these uncorrelated branches takes up his- 
tory bits, possibly displacing useful history. As a result, 
the performance benefit of the Control scheme drops even 
more significantly when the number of bits to be recorded 
for each target increases from 1 to 2; for perl, the reduction 
in execution time dropped from 4.7% to 0.9%. 

per 
addr 

1 

4.2.3 Pattern History vs. Path History 

Table 4 and Table 6 show that using pattern history 
results in better performance for gcc and using global path 
history results in better performance for perl. Using the 
I n d i r e c t  Jmp scheme, the execution time for perl was re- 
duced by 12.34%, as compared to 8.92% for the best pattern 
history scheme. The branch path history was able to per- 
form extremely well for the perl benchmark because it is 
an interpreter. The main loop of the interpreter parses the 
the perl script to be executed. This parser consists of a set 
of indirect jumps whose targets are decided by the tokens 
(i.e. components) which make up the current line of the 
perl script. The perl script used for our simulations con- 
tains a loop that executes for many iterations. As a result, 
when the interpreter executes this loop, the interpreter will 
process the same sequence of tokens for many iterations. By 
capturing the path history in this situation, the target cache 
is able to  accurately predict the targets of the indirect jumps 
which process these tokens. 

Per-addr Global 
branch I control I ind jmp I call/ret 

2.57% 3.82% I 3.75% I 2.68% 1 2.52% 

4.3 Tagged Target Caches 

This section examines the performance of tagged target 
caches. While the degree of associativity was varied, the 
total size of each target cache simulated was kept constant at 
256 entries. The tagged target caches have half the number 

set-assoc. 
I, 
2! 
4 
ti 
16 
32 
64 
128 
256 

of entries as that of tagless target caches to compensate for 
the hardware used to store tags. 

Reduction in Exec Time 
Addr History 

Conc Xor 
0.00% 8.31% 7.42% 
0.21% 8.30% 7.24% 
2.76% 8.71% 7.76% 
6.82% 9.11% Tj73% 
8.67% 9.14% 8.17% 
8.67% 9.14% 8.20% 
9.10% 9.14% 8.10% 
9.06% 9.14% 8.10% 
8.10% 9.14% 8.10% 

4.3.1 Indexing Function 

Since there can be several targets for each indirect branch 
and each target may be reached with a different history, a 
large number of target cache entries may be needed to store 
all the possible combinations. Thus, the indexing scheme 
into a target cache must be carefully selected to avoid un- 
necessary trashing of useful information. 

Three different indexing schemes were studied - Address, 
History Concatenate, and History Xor. The Address 
scheme uses the lower address bits for set selection. The 
higher address bits and the global branch pattern history 
are XORED to form the tag. The History Concatenate 
scheme uses the lower bits of the history register for set selec- 
tion. The higher bits of the history register are concatenated 
with the address bits to form the tag. The History Xor 
scheme XORs the branch address with the branch history; 
it uses the lower bits from the result of the XOR for set selec- 
tion and the higher bits for tag comparison. Table 7 shows 
the performance of the different indexing schemes. Global 
pattern history is used in these experiments. The Address 
selection scheme results in a significant number of conflict 
misses in target caches with a low degree of set-associativity 
because all targets of an indirect jump are mapped to the 

set-assoc. Conc I Xor 

0.30% 
1.27% 
2.54% 
3.48% 
4.22% 
4.16% 
4.26% 
4.31% 

2 
4 
13 
16 
32 
64 

128 
2!56 -- 

3.85% 3.92% 
4.01% 4.13% 
4.19% 4.24% 
4.30% 4.28% 
4.32% 4.30% 
4.38% 4.31% 
4.52% 4.31% 
4.59% 4.31% 

Table 7: Performance of Tagged Target Cache using 9 pat- 
tern history bits 

280 



same set. Since there are several targets for each indirect 
jump for gcc and perl as shown in Section 1, a high degree of 
set-associativity is required to avoid trashing of useful infor- 
mation due to conflict misses. The History Concatenate 
and History Xor schemes suffer a much smaller number of 
conflict misses because they can map the targets of an in- 
direct jump into any set in the target cache, removing the 
need for a high degree of associativity in the target cache. 

In the following sections, we will use the History Xor 
scheme for tagged target caches. 

2 
4 
8 

16 
32 
64 

128 
256 

4.3.2 Pattern History vs. Path History 

Table 8 shows the performance of tagged target caches 
that use branch path histories. The path history schemes 
reported in this section record one bit from each target ad- 
dress into the 9-bit path history register. This design choice 
resulted in the best performance for most of the path history 
schemes. As in the tagless schemes, using pattern history 
results in better performance for gcc and using global path 
history results in better performance for perl. 

7.24% 8.39% 
7.76% 10.02% 
7.73% 10.27% 
8.17% 12.66% 
8.20% 12.71% 
8.10% 12.83% 
8.10% 12.84% 
8.10% 12.85% 

- I 

Reduction in Execution Time 1 

set-assoc. 
1 
2 
4 
8 
16 
32 
64 
128 
256 

set 11 Per-addr I Global I 

Reduction in Exec Time 
9 bits 16 bits 
3.56% 2.35% 
3.92% 2.99% 
4.13% 3.62% 
4.24% 4.31% 
4.28% 4.74% 
4.30% 4.87% 
4.31% 5.11% 
4.31% 5.19% 
4.31% 5.24% 

assoc branch 
1 
2 
4 
8 

16 
32 
64 

128 
256 -- -_ 

8.20% 6.34% 
9.15% 7.21% 
9.46% 7.21% 
9.69% 7.21% 
9.77% 7.21% 
9.77% 7.21% 
9.77% 7.21% L 9.77% 7.21% 

set IW 

16 
32 
64 

128 
256 

2.45% 
2.72% 
2.90% 
3.01% 
3.05% 
3.11% 
3.12% 
3.14% 
3.14% 

3.35% 
3.59% 
3.73% 
3.76% 
3.76% 
3.77% 
3.79% 

control 
2.98% 
4.15% 
4.30% 
4.70% 
4.70% 
4.70% 
4.70% 
4.70% 
4.70% 

:C 

ind jmp call/ret GaGG 

in Execution Time 
Global 

control 
2.88% 
3.28% 
3.58% 
3.55% 
3.58% 
3.59% 
3.59% 
3.57% 
3.57% 

ind jmp 
2.15% 
2.46% 
2.65% 
2.76% 
2.86% 
2.90% 
2.92% 
2.92% 
2.94% 

call/ret 
2.07% 
2.25% 
2.42% 
2.56% 
2.58% 
2.63% 
2.64% 
2.65% 
2.65% 

Table 8: Performance of Tagged Target Caches using 9 path 
history bits 

4.3.3 Branch History Length 

For tagged target caches, the number of branch history 
bits used is not limited to the size of the target cache because 
additional history bits can be stored in the tag fields. Using 
more history bits may enable the target cache to better iden- 

tify each occurrence of an indirect jump in the instruction 
stream. 

Table 9 compares the performance of 256-entry tagged 
target caches using different numbers of global pattern his- 
tory bits. For caches with a high degree of set-associativity, 
using more history bits results in a significant performance 
improvement. For example, when using 16 history bits, an 
8-way tagged target cache reduces the execution time of perl 
and gcc by 10.27% and 4.31% respectively, as compared to 
7.73% and 4.28% when using 9 history bits. Greater im- 
provements are seen for caches with higher set associativity. 
For a 16-way tagged target cache, using 16 history bits re- 
sults in 12.66% and 4.74% reduction in execution time for 
perl and gcc while using 9 history bits results in 8.17% and 
4.28% reduction in execution time. 

For target caches with a small degree of set-associativity, 
using more history bits degrades performance. Using more 
history bits enables the target cache to better identify each 
Occurrence of an indirect jump in the instruction stream; 
however, more entries are required to record the different 
occurrences of each indirect jump. The additional pressure 
on the target cache results in a significant number of con- 
flict misses. The performance loss due to conflict misses 
outweighs the performance gain due to better identification 
of each indirect jump. 

Per1 
11 Reduction in Exec Time 

set-assoc. I( 9 bits I 16 bits 
1 11 7.42% I 7.07% 

Table 9: Tagged Target Cache: 9 vs 16 pattern history bits 

4.4 Tagless Target Cache vs Tagged Target Cache 

A tagged target cache requires tags in its storage struc- 
ture for tag comparisons while a tagless target cache does 

281 



15% 

d a 
c 5% 

.s 

.- 
C 
.L.l 

- wlo tags (512-entry) 
- +- w/ tags (256-entry) 

*----*----4 *----*---- __--  
*/--- _-- 

- -e- -  .--- - wlo tags (512-entry) 
- wl tags (256-entry) 

0% ' I 
1 2 4 8 16 32 64 128 256 

Set-associativity 

Figure 12: Tagged vs. tagless target cache - perl 

10% 

4 I 
5 . 1  I 

0% 1 I 
1 2 4 8 16 32 64 128 256 

Set-associativity 

Figure 13: Tagged vs. tagless target cache - gcc 

not. Thus, for a given implementation cost, a tagless tar- 
get cache can have more entries than a tagged target cache. 
On the other hand, interference in the storage structure can 
degrade the performance of a tagless target cache. 

Figures 12 and 13 compare the performance of a 512- 
entry tagless target cache to that of several 256-entry target 
caches, with various degrees of set-associativity. The tagless 
target cache outperforms tagged target caches with a small 
degree of set-associativity. On the other hand, a tagged 
target cache with 8 or more entries per set outperforms the 
t agless target cache. 

5 Conclusions 

Current BTB-based branch prediction schemes are not 
effective in predicting the targets of indirect jumps. These 
schemes have a 48% misprediction rate for the indirect jumps 
in the SPEC95 integer benchmarks. To address this prob- 
lem, this paper proposes the target cache, a prediction mech- 
anism that significantly improves the accuracy of predicting 
indirect jump targets. The target cache uses concepts em- 
bodied in the 2-level branch predictor. 

By using branch history to distinguish different dynamic 
occurrences of indirect branches, the target cache was able 
to reduce the total execution time of perl and gcc by 8.92% 
and 4.27% respectively. 

Like the pattern history tables of the 2-level branch pre- 
dictors, interference can significantly degrade the perfor- 
mance of a target cache. To avoid predicting targets of indi- 

rect jumps based on the outcomes of uncorrelated branches, 
tags are added to the target cache. However, with the tagged 
target cache, useful information can be displaced if different 
branches are mapped to the same set. Thus, set-associative 
caches may be required to avoid mispredictions due to con- 
flict misses. 

Our experiments showed that a tagless target cache out- 
performs a tagged target cache with a small degree of set- 
associativity. On the other hand, a tagged target cache 
with 8 or more entries per set outperforms a tagless tar- 
get cache. For example, a 512-entry tagless target cache 
can reduce the execution time of perl and gcc by 8.92% and 
4.27% respectively, as compared to 7.42% and 3.56% for a 
direct mapped 256-entry tagged target cache. A 16-way set- 
associative tagged target cache can reduce the execution of 
gcc and perl by 12.66% and 4.74% respectively. 

We examined the SPEC95 integer benchmarks where 
only a small fraction of instructions are indirect branches; 
e.g. 0.5% in gcc and 0.6% in ped. For object oriented pro- 
gram where more indirect branches may be executed, tagged 
caches should provide even greater performance benefits. In 
the future, we will evaluate the performance benefit of target 
caches for C++ benchmarks. 

6 Acknowledgments 

We gratefully acknowledge the support of our industrial 
partners, without which it would not have been possible 
to undertake this work, in particular Intel Corporation. In 
addition, we wish to gratefully acknowledge the other mem- 
bers of our HPS research group for the stimulating environ- 
ment they provide, in particular, Marius Evers, Sanjay Pate1 
and Jared Stark for their comments and suggestions on this 
work. 

References 

Brad Calder and Dirk Grunwald. Reducing indirect 
function call overhead in c++ programs. In Proceed- 
ings of the 6th International Conference on Architec- 
tural Support for Programming Languages and Operat- 
ing Systems, 1994. 

Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale N. 
Patt. Branch classification: A new mechanism for im- 
proving branch predictor performance. In Proceedings 
of the 27th Annual ACM/IEEE International Sympo- 
sium on Microarchitecture, pages 22-31, 1994. 

W. W. Hwu and Yale N. Patt. Checkpoint repair 
for out-of-order execution machines. In Proceedings of 
the 14th Annual International Symposium on Computer 
Architecture, pages 18-26, 1987. 

David R. Kaeli and Philip G. Emma. Branch history ta- 
ble prediction of moving target branches due to subrou- 
tine returns. In Proceedings of the 18th Annual Inter- 
national Symposium on Computer Architecture, pages 
34-41, 1991. 

282 



[5] David R. Kaeli and Philip G. Emma. Improving the 
accuracy of history-based branch prediction. Submitted 
to IEEE Transactions on Computers, 1994. 

[6] Scott McFarling. Combining branch predictors. Tech- 
nical Report TN-36, Digital Western Research Labora- 
tory, June 1993. 

[7] Scott McFarling and John Hennessy. Reducing the cost 
of branches. In Proceedings of the 13th Annual Inter- 
national Symposium on Computer Architecture, pages 
396-403, 1986. 

[8] Ravi Nair. Dynamic path-based branch correlation. In 
Proceedings of the 28th Annual ACM/IEEE Interna- 
tional Symposium on Microarchitecture, pages 15-23, 
1995. 

[9] Yale Patt, W. Hwu, and Michael Shebanow. HPS, a 
new microarchitecture: Rationale and introduction. In 
Proceedings of the 18th Annual ACM/IEEE Interna- 
tional Symposium on Microarchitecture, pages 103-107, 
1985. 

[lo] Yale N. Patt, Steven W. Melvin, W. Hwu, and 
Michael C. Shebanow. Critical issues regarding HPS, a 
high performance microarchitecture. In Proceedings of 
the 18th Annual ACM/IEEE International Symposium 
on Microarchitecture, pages 109-116, 1985. 

[I l l  James E. Smith. A study of branch prediction strate- 
gies. In Proceedings of the 8th Annual International 
Symposium on Computer Architecture, pages 135-148, 
1981. 

[la] R. M. Tomasulo. An efficient algorithm for exploiting 
multiple arithmetic units. IBM Journal of Research and 
Development, 11:25-33, January 1967. 

[13] C. F. Webb. Subroutine call/return stack. IBM Tech- 
nical Disclosure Bulletin, 30( ll),  April 1988. 

[14] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive 
branch prediction. In Proceedings of the 24th Annual 
ACM/IEEE International Symposium on Microarchi- 
tecture, pages 51-61, 1991. 

[15] Tse-Yu Yeh and Yale N. Patt. A comparison of dy- 
namic branch predictors that use two levels of branch 
history. In Proceedings of the 20th Annual International 
Symposium on Computer Architecture, pages 257-266, 
1993. 

[16] Cliff Young and Michael D. Smith. Improving the ac- 
curacy of static branch prediction using branch correla- 
tion. In proceedings of the 6th International Conference 
on Architectural Support for Programming Languages 
and Operating Systems, pages 232-241, 1994. 

283 


