18-447: Computer Architecture

I.ecture 24

: Runahead and Multiprocessing

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2012, 4/23/2012

Reminder: Lab Assignment 6

Due Today

Implementing a more realistic memory hierarchy
o L2 cache model

o DRAM, memory controller models

o MSHRs, multiple outstanding misses

Extra credit: Prefetching

Reminder: LLab Assignment 7

= Cache coherence in multi-core systems
o MESI cache coherence protocol

= Due May 4

= Extra credit: Improve the protocol (open-ended)

Midterm 11

Midterms will be distributed today

Please give me a 15-minute warning!

Final Exam

May 10

Comprehensive (over all topics in course)
Three cheat sheets allowed

We will have a review session (stay tuned)

Remember this is 30% of your grade
o I will take into account your improvement over the course
o Know the previous midterm concepts by heart

A Belated Note on Course Feedback

We have taken into account your feedback

Some feedback was contradictory

o Pace of course
Fast or slow?
Videos help

o Homeworks
Love or hate?

o Workload
Too little/easy
Too heavy

o Many of you indicated you are learning a whole lot

Readings for Today
Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Recommended

o Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

Readings for Wednesday

Required cache coherence readings:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

l.ast Lecture

Wrap up prefetching
o Markov prefetching
o Content-directed prefetching
o Execution-based prefetching

Runahead execution

Today

Wrap-up runahead execution
Multiprocessing fundamentals

The cache coherence problem

10

Memory Latency Tolerance
and Runahead Execution

How Do We Tolerate Stalls Due to Memory?

Two major approaches
o Reduce/eliminate stalls
o Tolerate the effect of a stall when it happens

Four fundamental techniques to achieve these
o Caching

o Prefetching

o Multithreading

o Out-of-order execution

Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

12

Review: Execution-based Prefetchers

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)

13

Review: Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction o Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

14

Review: Runahead Execution
Perfect Caches:
Load-1-Hit Load 2 Hit

= \JCAA

g

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

>
Saved Cycles

Miss 1

Miss 2

Review: Runahead Execution Pros and Cons

Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms:

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

Implemented in IBM POWERS6, Sun “Rock”

16

Execution-based Prefetchers Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- €an occupy a separate thread context

17

Performance of Runahead Execution

Micro-operations Per Cycle

1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5

04 ;
0.3 |
0.2 ;
0.1 ;
0.0 -

12%

Bl No prefetcher, norunahead
Bl Only prefetcher (baseline)
Hl Only runahead

M Prefetcher + runahead

22%

12%

S95

FPOO

INTOO

WEB

16% 52%

PROD SERV WS AVG

18

Runahead Execution vs. Large Windows

15

W 128-entry window (baseline)

W 128-entry window with Runahead
13 [256-entry window

12 | [0 384-entry window

Hl 512-entry window

14

1.1 1

1.0 A

0.9 -

0.8

0.7 A

0.6 -

0.5 |

Micro-operations Per Cycle

0.4 A

0.3 -

0.2 -

0.1 -

0.0 -
S95 FPOO INTOO WEB MM PROD SERV WS AVG

Runahead on In-order vs. Out-of-order

1.3

15% 10% W in-order basdline

M in-order + runahead

M out-of-or der baseline

M out-of-order + runahead

12

14% 12%

o
©

20% 22%

o
©

17% 13%

©
\l

39% 20%

73% 23%

o
o

28% 1506 50% 47%

o
o

o
~

Micro-operations Per Cycle

73% 16%

(@)
w
1

o
N
1

o
[
]

o
o
1

S95 FPOO INTOO WEB MM PROD SERV WS AVG

20

Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.

3.00
i / Scout
%J 200 |Buys 12 MB
@ | ——
N 450 _ Buys 7 MB //
= e — —>
o /m/
< 1.00 40% Better

‘,..-—*‘w Performance
0.50

256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

21

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency

o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

= Ineffectiveness for pointer-intensive applications

o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’05]

= Irresolvable branch mispredictions in runahead mode

o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO’04]

The Etticiency Problem

A

110%

100%

90%

80%

70%

60%

50%

400

309

209

109

0%

A

B % Increase in IPC

B % Increase in Executed Instructions

I 235%
V

\

bzip2

cr

eon
gap
gcc
gzip
mcf

parser

perlbmk

twolf

ammp

applu

apsi

art

equ

facerec

fma3d

galgel

lucas

mesa

mgrid

sixtrack

swim

wupwj

AVG

%
2T1%

Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

Overall Impact on Executed Instructions

232%

110%
O -
100% M baseline runahead
90% M all techniques
2 80% -
IS
13
= 70% -
73]
f=
560% ®
>
D
0]
ﬁ50ﬂ) ® ®
£
© 40%
©
o
2 30% -
A
20% - !
10% -
v I
0% -
89285838 S8 3£t ieg2zsLeIggggesELQ
N © () o O o 5 2 E S c o «© g o @© < g 8 o £ c% = =
Q2 O 2 5 > g © S S £ o = E X =
o = o =

26.5%

6.2%

The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Addr@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome

Parallelizing Dependent Cache Misses

Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Parallelizing Dependent Cache Misses

@not Compute Its Addr@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

@e Predi@ Can Compute Its Address> .

Load I'Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative
: Instructions

Saved Cycles
Miss 1

Miss 2

Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., “Wrong Path Events,” MICRO 2004.

29

Multiprocessors and
Issues 1n Multiprocessing

Readings for Today

Required

o Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Recommended

o Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

31

Readings for Wednesday

Required cache coherence readings:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

32

Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
33

Why Parallel Computers?

= Parallelism: Doing multiple things at a time
= Things: instructions, operations, tasks

= Main Goal

o Improve performance (Execution time or task throughput)
= Execution time of a program governed by Amdahl's Law

= Other Goals

o Reduce power consumption

= (4N units at freq F/4) consume less power than (N units at freq F)

= Why?
a Improve cost efficiency and scalability, reduce complexity

= Harder to design a single unit that performs as well as N simpler units
o Improve dependability: Redundant execution in space

34

I'ypes of Parallelism and How to -

.
1he . .
lllns%luctlon Level Parallelism

“xploit

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW

o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel

o SIMD: Vector processing, array processing
o Systolic arrays, streaming processors

Task Level Parallelism

o Different “tasks/threads” can be executed in parallel

o Multithreading
o Multiprocessing (multi-core)

35

Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
36

MIMD Processing Overview

MIMD Processing

Loosely coupled multiprocessors
a No shared global memory address space

o Multicomputer network
Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
o Existing multi-core processors, multithreaded processors
Q

Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
38

Main Issues in Tightly-Coupled MP

Shared memory synchronization
o Locks, atomic operations

Cache consistency
o More commonly called cache coherence

Ordering of memory operations
o What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

39

Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading)

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

40

Parallel Speedup Example

adx? + a3x® + a2x? + alx + a0

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?

How fast is this with 3 processors?

41

R“‘“ a.x* + ax® + Gx* + a,X + Go

\c__.'.,,...sh__, preesse o "I‘I—WE l{_dﬂgﬂ?%)

42

R. = a,x" + aXx?¥F 0,X™r ax + 0

———

Thee Ionu-s&c;-*& & 'E-l (-&unc-.-lmwﬂ'h 3 Fu—m..)

B

: K 2" | Og X alx : T
() =
Qq.\ = - | . QU_ ==
(%) =+ z
Oz G [Oa%* a¥voe
o _ :
e .

43

Speedup with 3 Processors

s ™is a for— comperricen?

44

Revisiting the Single-Processor Algorithm
Rewsit Tt

EW .51*"‘[5\-&—'.-:}:'1“551:-‘" ﬂl&ﬁ/’ﬂhm:

28

I

QNS >+ G %X> L a.X* + a % + g,

F?\.. :(((a,“){+ ﬂa)x + D.L)}{ -+ ﬂ,)){ ¥ Qo

(Peorne's merhod)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

45

Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel

Speedup
'

Cache effects |
Working set effects | Superlinear

_ Typical
. Success
Happens in two ways:
o Unfair comparisons

o Memory effects

— # Processors

47

Utilization, Redundancy, Efficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
48

Utilization ot Multiprocessor

Mulbvpreaasc— rnediC s
L}*‘a‘wh 2 Prav mudh preessmg Copoblifhy we vse
—pP 2>
x| x| x _
L X | XX U= 10 epedtens (m Fﬂfﬁﬁrm)
X X 3 pruusses 30 S oo unidks
X £
= 10
i 15

49

REdmdﬁas.fE ' l-—]'m.) udh e wr'k., due d¢ mdwwb

besk
F"_ = OPE w i o prTl. — 10
Opi vive 4 pre " }

R is alwroyg '.\,__2. 4-

Efﬁro{ﬁﬂ(/\-j Hanw mveh nesource Wt uSe Ccovpred dv how
Cravth BSIVTC Wit Con G Gurg i

Tbgi*- f-lymb ve 1 profer I—f "}'M.thh)
T!*'""‘" (rywg o P P for Tp *""‘“’“_‘)

] | —
: E = . _
th "r%.w N

YV

I\

&

i,

Caveats of Parallelism (I)

Specdwp
aks o e Joneor spedup
5ol
s A g d_"mu"ﬂ
i.ql
= —
s P4 of prucsses)

Why +re cealo? (afmnﬁkmé W&)

Z::,:' s = (1—4::1-)‘2:
P

*T’_J (I T
A TR [T el il ackinimicise ol

of- Tre Smye-pricessc
Pr&W\-.

Amdahl’s Law

\SIOE-E-JUF — fi — /{ -
i'rh ol
P prec. Lp ? -+ (1“:"“)
S pecdvp = 1
ool i) i 1 @‘“"‘* ek [podled

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

52

Amdah!l’s Law Implication 1

. | Armndah)'s
Speedup P L_onnJ
ot = 9% i Nueated
<= .aAs |
o= 9

Add'mg, e pnd more-
processss grres less@less
4 : bowe fil if o< 1L

53

Amdahl’s Law Implication 2

The bercfA (spedvp)
i5 sreoll uriil gLl

54

Caveats of Parallelism (II)

Amdahl’s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
55

Midterm II Results

Midterm II Scores

= N w N (S} ()] ~

= Average: 148 / 315
= Minimum: 58/ 315
= Maximum: 258 / 315
= Std. Dev.: 52

Midterm 2 Distribution

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310

57

Midterm II Per-Question Statistics (I)

18
16
14
12
10

(o]

oON D~

I. Potpourri

0 10 20 30 40 50 60

II. Vector Processing

14
12

10

8.

6.

4.

z-I

0 e

0 10 20 30 40 50

25

20 -

II1I. DRAM Refresh

15

10

5.
0.

0 10 20

B Em
60

30 40 50

30

IV. Dataflow

14

V. Memory Scheduling

55 12

20 10

15 |

10 |

3N

0 ‘- ‘ |
0 10 20 30

o N b~ OO @

30

40 50 60

58

Midterm II Per-Question Statistics (11)

VI. Caches and VII. Memory Hierarchy
Virtual Memory (Bonus)

14 16
12 14 -

—

O N b~ OO O O
i

O N D OYOOWON

0 10 20 30 40 50 0 10 20 30 40

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

—N=10
N=100
1000

—N

/)

- 960
- 260
- 880
- 480
- 80
- 940
S JA)
- 89°0
- ¥9°0
- 90
- 950
- TS0
- 840
- bb0
-0

9¢'0
(450
8¢C°0

- $T0
Al

- 9T°0
-1
- 80°0
- 00

Sequential Bottleneck

00000000
<TONAN— OO0

60

01

f (parallel fraction)

Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

= Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

3

A[i] = (A[i] + A[i-1]) / 2

= Single thread prepares data
and spawns parallel tasks
(usually sequential)

AVAY

62

Another Example ot Sequential Bottleneck

LEGEND
s AE: Amdahl’s serial part
InitPriorityQueue(PQ); C B: Parallel Portion

. C1,C2: Critical Sections
SpawnThreads(); D: Outside critical sectign

ForEach Thread:

while (problem not solved)

| e

Solve(SubProblem);

f(problem solved) break;

NewSubProblems = Partition(SubProblem);
Lock(X)

PQ.insert(NewSubProble '
Unlock(X)

PrintSqution()@

J

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
64

Ditticulty 1in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
o Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
65

Cache Coherence

66

Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[Interconnection Network]

1000

X ——

Main Memory

67

The Cache Coherence Problem

|

1000

[Interconnection Network]

1000
X —

Main Memory

The Cache Coherence Problem

Id r2, X

1000 1000
Interconnection Network]
1000
X |

Main Memory

69

The Cache Coherence Problem

Id r2, X
addrl, r2, r4d
stx, rl

Id r2, x
|

2000 1000
Interconnection Network]
1000
X |

Main Memory

70

The Cache Coherence Problem

Id r2, X
addrl, r2, r4d
stx, rl

2000

Id r2, x
|

1000

Interconnection Network

1000
X ——

Main Memory

Should NOT
load 1000

Id r5, X

71

Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?

o What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache

When does the programmer need to FLUSH-LOCAL an address?

o What if the ISA provided the following instruction?

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches

When does the programmer need to FLUSH-GLOBAL an address?

Hardware
o Simplifies software’s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
72

Snoopy Cache Coherence

Caches “snoop” (observe) each other’s write/read

operations
A simple protocol:

PrRd/-- PrWr / BusWr

Q PrwWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
PrWr, BusRd,
BusWr

73

