
18-447: Computer Architecture

Lecture 24: Runahead and Multiprocessing

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2012, 4/23/2012

Reminder: Lab Assignment 6

� Due Today

� Implementing a more realistic memory hierarchy

� L2 cache model

� DRAM, memory controller models

� MSHRs, multiple outstanding misses� MSHRs, multiple outstanding misses

� Extra credit: Prefetching

2

Reminder: Lab Assignment 7

� Cache coherence in multi-core systems

� MESI cache coherence protocol

� Due May 4

� Extra credit: Improve the protocol (open-ended)� Extra credit: Improve the protocol (open-ended)

3

Midterm II

� Midterms will be distributed today

� Please give me a 15-minute warning!

4

Final Exam

� May 10

� Comprehensive (over all topics in course)

� Three cheat sheets allowed

� We will have a review session (stay tuned)

� Remember this is 30% of your grade

� I will take into account your improvement over the course

� Know the previous midterm concepts by heart

5

A Belated Note on Course Feedback

� We have taken into account your feedback

� Some feedback was contradictory

� Pace of course

� Fast or slow?

� Videos help

� Homeworks

� Love or hate?

� Workload

� Too little/easy

� Too heavy

� Many of you indicated you are learning a whole lot

6

Readings for Today

� Required

� Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

� Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

� Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

� Recommended

� Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

7

Readings for Wednesday

� Required cache coherence readings:

� Culler and Singh, Parallel Computer Architecture

� Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

� P&H, Computer Organization and Design

� Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

Recommended:� Recommended:

� Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

� Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

8

Last Lecture

� Wrap up prefetching

� Markov prefetching

� Content-directed prefetching

� Execution-based prefetching

� Runahead execution� Runahead execution

9

Today

� Wrap-up runahead execution

� Multiprocessing fundamentals

� The cache coherence problem

10

Memory Latency Tolerance

and Runahead Execution

How Do We Tolerate Stalls Due to Memory?

� Two major approaches

� Reduce/eliminate stalls

� Tolerate the effect of a stall when it happens

� Four fundamental techniques to achieve these

� Caching� Caching

� Prefetching

� Multithreading

� Out-of-order execution

� Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

12

Review: Execution-based Prefetchers

� Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

� Only need to distill pieces that lead to cache misses

� Speculative thread: Pre-executed program piece can be
considered a “thread”

� Speculative thread can be executed

� On a separate processor/core

� On a separate hardware thread context (think fine-grained
multithreading)

� On the same thread context in idle cycles (during cache misses)

13

Review: Thread-Based Pre-Execution

� Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

� Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”Microthreading (SSMT),”
ISCA 1999.

� Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

14

Compute

Compute

Load 1 Miss

Stall Compute

Load 2 Miss

Stall

Load 1 Hit Load 2 Hit

Compute

Perfect Caches:

Small Window:

Review: Runahead Execution

Compute

Compute

Miss 1

Stall Compute

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Runahead:

Review: Runahead Execution Pros and Cons

� Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)

+ Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms:

+ Uses the same thread context as main thread, no waste of context

+ No need to construct a pre-execution thread

� Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance limited by memory latency

� Implemented in IBM POWER6, Sun “Rock”

16

Execution-based Prefetchers Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context

17

12%

35%

15%

22% 12%

22%0.7

0.8

0.9

1.0

1.1

1.2

1.3
ns

 P
er

 C
yc

le

No prefetcher, no runahead
Only prefetcher (baseline)
Only runahead
Prefetcher + runahead

Performance of Runahead Execution

18

13%

16% 52%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

ti
on

Runahead Execution vs. Large Windows

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
on

s
P

er
 C

yc
le

128-entry window (baseline)
128-entry window with Runahead
256-entry window
384-entry window
512-entry window

19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

ti
on

Runahead on In-order vs. Out-of-order

39%

14%
20%

17%

15%

20%

12%
22%

13%

10%

0.7

0.8

0.9

1.0

1.1

1.2

1.3
on

s
P

er
 C

yc
le

in-order baseline
in-order + runahead
out-of-order baseline
out-of-order + runahead

20

39%

50%28%

73%

73%
20%

47%15%

16%

23%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

ti
o

Effect of Runahead in Sun ROCK

� Shailender Chaudhry talk, Aug 2008.

21

Limitations of the Baseline Runahead Mechanism

� Energy Inefficiency

� A large number of instructions are speculatively executed

� Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

� Ineffectiveness for pointer-intensive applications

� Runahead cannot parallelize dependent L2 cache misses� Runahead cannot parallelize dependent L2 cache misses

� Address-Value Delta (AVD) Prediction [MICRO’05]

� Irresolvable branch mispredictions in runahead mode

� Cannot recover from a mispredicted L2-miss dependent branch

� Wrong Path Events [MICRO’04]

The Efficiency Problem

50%

60%

70%

80%

90%

100%

110%

% Increase in IPC

% Increase in Executed Instructions

235%

0%

10%

20%

30%

40%

50%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G

22%
27%

Causes of Inefficiency

� Short runahead periods

� Overlapping runahead periods

� Useless runahead periods

� Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

60%

70%

80%

90%

100%

110%

In
cr

ea
se

 in
 E

xe
cu

te
d

 In
st

ru
ct

io
n

s

baseline runahead

all techniques

235%

Overall Impact on Executed Instructions

0%

10%

20%

30%

40%

50%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G

In
cr

ea
se

 in
 E

xe
cu

te
d

 In
st

ru
ct

io
n

s

26.5%

6.2%

The Problem: Dependent Cache Misses

Compute

Load 1 Miss Load 2 MissLoad 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

� Runahead execution cannot parallelize dependent misses

� wasted opportunity to improve performance

� wasted energy (useless pre-execution)

� Runahead performance would improve by 25% if this
limitation were ideally overcome

Miss 1 Miss 2

Parallelizing Dependent Cache Misses

� Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

� How: Predict the values of L2-miss address (pointer)
loadsloads

� Address load: loads an address into its destination register,
which is later used to calculate the address of another load

� as opposed to data load

� Read:

� Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Saved Speculative
Instructions

Miss

Readings

� Required

� Mutlu et al., “Runahead Execution”, HPCA 2003.

� Recommended

� Mutlu et al., “Efficient Runahead Execution: Power-Efficient � Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

� Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

� Armstrong et al., “Wrong Path Events,” MICRO 2004.

29

Multiprocessors and

Issues in Multiprocessing

Readings for Today

� Required

� Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

� Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

� Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.Readings in Computer Architecture.

� Recommended

� Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

31

Readings for Wednesday

� Required cache coherence readings:

� Culler and Singh, Parallel Computer Architecture

� Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

� P&H, Computer Organization and Design

� Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

Recommended:� Recommended:

� Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

� Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

32

Remember: Flynn’s Taxonomy of Computers

� Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

� SISD: Single instruction operates on single data element

� SIMD: Single instruction operates on multiple data elements

� Array processor� Array processor

� Vector processor

� MISD: Multiple instructions operate on single data element

� Closest form: systolic array processor, streaming processor

� MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

� Multiprocessor

� Multithreaded processor

33

Why Parallel Computers?

� Parallelism: Doing multiple things at a time

� Things: instructions, operations, tasks

� Main Goal

� Improve performance (Execution time or task throughput)
� Execution time of a program governed by Amdahl’s Law

� Other Goals

� Reduce power consumption

� (4N units at freq F/4) consume less power than (N units at freq F)

� Why?

� Improve cost efficiency and scalability, reduce complexity

� Harder to design a single unit that performs as well as N simpler units

� Improve dependability: Redundant execution in space
34

Types of Parallelism and How to Exploit

Them
� Instruction Level Parallelism

� Different instructions within a stream can be executed in parallel

� Pipelining, out-of-order execution, speculative execution, VLIW

� Dataflow

� Data Parallelism

� Different pieces of data can be operated on in parallel

� SIMD: Vector processing, array processing

� Systolic arrays, streaming processors

� Task Level Parallelism

� Different “tasks/threads” can be executed in parallel

� Multithreading

� Multiprocessing (multi-core)
35

Task-Level Parallelism: Creating Tasks

� Partition a single problem into multiple related tasks
(threads)

� Explicitly: Parallel programming

� Easy when tasks are natural in the problem

� Web/database queries

� Difficult when natural task boundaries are unclear

� Transparently/implicitly: Thread level speculation

� Partition a single thread speculatively

� Run many independent tasks (processes) together

� Easy when there are many processes

� Batch simulations, different users, cloud computing workloads

� Does not improve the performance of a single task

36

MIMD Processing Overview

37

MIMD Processing

� Loosely coupled multiprocessors

� No shared global memory address space

� Multicomputer network

� Network-based multiprocessors

� Usually programmed via message passing

� Explicit calls (send, receive) for communication

� Tightly coupled multiprocessors

� Shared global memory address space

� Traditional multiprocessing: symmetric multiprocessing (SMP)

� Existing multi-core processors, multithreaded processors

� Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

� Operations on shared data require synchronization
38

Main Issues in Tightly-Coupled MP

� Shared memory synchronization

� Locks, atomic operations

� Cache consistency

� More commonly called cache coherence

� Ordering of memory operations

� What should the programmer expect the hardware to provide?

� Resource sharing, contention, partitioning

� Communication: Interconnection networks

� Load imbalance

39

Aside: Hardware-based Multithreading

� Coarse grained

� Quantum based

� Event based (switch-on-event multithreading)

� Fine grained

� Cycle by cycle

� Thornton, “CDC 6600: Design of a Computer,” 1970.
� Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978.

� Simultaneous

� Can dispatch instructions from multiple threads at the same time

� Good for improving execution unit utilization

40

Parallel Speedup Example

� a4x4 + a3x3 + a2x2 + a1x + a0

� Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

� How fast is this with a single processor?� How fast is this with a single processor?

� How fast is this with 3 processors?

41

42

43

Speedup with 3 Processors

44

Revisiting the Single-Processor Algorithm

45

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

46

Superlinear Speedup

� Can speedup be greater than P with P processing
elements?

� Cache effects

� Working set effects

� Happens in two ways:

� Unfair comparisons

� Memory effects

47

Utilization, Redundancy, Efficiency

� Traditional metrics

� Assume all P processors are tied up for parallel computation

� Utilization: How much processing capability is used

� U = (# Operations in parallel version) / (processors x Time)

� Redundancy: how much extra work is done with parallel
processing

� R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

� Efficiency

� E = (Time with 1 processor) / (processors x Time with P processors)

� E = U/R
48

Utilization of Multiprocessor

49

50

Caveats of Parallelism (I)

51

Amdahl’s Law

52

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

53

Amdahl’s Law Implication 2

54

Caveats of Parallelism (II)

� Amdahl’s Law
� f: Parallelizable fraction of a program

� N: Number of processors

Speedup =
1

+1 - f f

N

� Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

� Maximum speedup limited by serial portion: Serial bottleneck

� Parallel portion is usually not perfectly parallel

� Synchronization overhead (e.g., updates to shared data)

� Load imbalance overhead (imperfect parallelization)

� Resource sharing overhead (contention among N processors)
55

+
N

Midterm II Results

56

Midterm II Scores

� Average: 148 / 315

� Minimum: 58 / 315

� Maximum: 258 / 315

� Std. Dev.: 52

7

Midterm 2 Distribution

57

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310

Midterm II Per-Question Statistics (I)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

I. Potpourri

0

2

4

6

8

10

12

14

0 10 20 30 40 50

II. Vector Processing

0

5

10

15

20

25

0 10 20 30 40 50 60

III. DRAM Refresh

58

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

V. Memory Scheduling

0

5

10

15

20

25

30

0 10 20 30

IV. Dataflow

Midterm II Per-Question Statistics (II)

0

2

4

6

8

10

12

14

VI. Caches and
Virtual Memory

0

2

4

6

8

10

12

14

16

VII. Memory Hierarchy
(Bonus)

59

0

0 10 20 30 40 50

0

0 10 20 30 40

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Sequential Bottleneck

110
120
130
140
150
160
170
180
190
200

61

0
10
20
30
40
50
60
70
80
90
100
110

0

0
.0
4

0
.0
8

0
.1
2

0
.1
6

0
.2

0
.2
4

0
.2
8

0
.3
2

0
.3
6

0
.4

0
.4
4

0
.4
8

0
.5
2

0
.5
6

0
.6

0
.6
4

0
.6
8

0
.7
2

0
.7
6

0
.8

0
.8
4

0
.8
8

0
.9
2

0
.9
6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

� Parallel machines have the
sequential bottleneck

� Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

� Single thread prepares data
and spawns parallel tasks
(usually sequential)

62

Another Example of Sequential Bottleneck

63

Bottlenecks in Parallel Portion

� Synchronization: Operations manipulating shared data
cannot be parallelized

� Locks, mutual exclusion, barrier synchronization

� Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths� Load Imbalance: Parallel tasks may have different lengths

� Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

� Resource Contention: Parallel tasks can share hardware
resources, delaying each other

� Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

64

Difficulty in Parallel Programming

� Little difficulty if parallelism is natural

� “Embarrassingly parallel” applications

� Multimedia, physical simulation, graphics

� Large web servers, databases?

� Difficulty is in

Getting parallel programs to work correctly� Getting parallel programs to work correctly

� Optimizing performance in the presence of bottlenecks

� Much of parallel computer architecture is about

� Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

� Making programmer’s job easier in writing correct and high-
performance parallel programs

65

Cache Coherence

66

Cache Coherence

� Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

P1 P2

67

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2 ld r2, x

1000

68

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

ld r2, x

ld r2, x

1000 1000

69

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

10002000

70

x

Interconnection Network

Main Memory

st x, r1

1000

The Cache Coherence Problem

P1 P2

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

10002000

ld r5, x

Should NOT
load 1000

71

x

Interconnection Network

Main Memory

st x, r1

1000

ld r5, x

Cache Coherence: Whose Responsibility?

� Software

� Can the programmer ensure coherence if caches are invisible to
software?

� What if the ISA provided the following instruction?
� FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a

processor’s local cache

� When does the programmer need to FLUSH-LOCAL an address?

� What if the ISA provided the following instruction?
� FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all

other processors’ caches

� When does the programmer need to FLUSH-GLOBAL an address?

� Hardware

� Simplifies software’s job

� One idea: Invalidate all other copies of block A when a processor writes
to it

72

Snoopy Cache Coherence

� Caches “snoop” (observe) each other’s write/read
operations

� A simple protocol:

� Write-through, no-
write-allocate
cache

PrWr / BusWrPrRd/--

73

cache

� Actions: PrRd,
PrWr, BusRd,
BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

