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Reminder: Lab Assignment 6

� Due Today

� Implementing a more realistic memory hierarchy

� L2 cache model

� DRAM, memory controller models

� MSHRs, multiple outstanding misses� MSHRs, multiple outstanding misses

� Extra credit: Prefetching
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Reminder: Lab Assignment 7

� Cache coherence in multi-core systems

� MESI cache coherence protocol

� Due May 4

� Extra credit: Improve the protocol (open-ended)� Extra credit: Improve the protocol (open-ended)
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Midterm II

� Midterms will be distributed today

� Please give me a 15-minute warning!
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Final Exam

� May 10

� Comprehensive (over all topics in course)

� Three cheat sheets allowed

� We will have a review session (stay tuned)

� Remember this is 30% of your grade

� I will take into account your improvement over the course

� Know the previous midterm concepts by heart
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A Belated Note on Course Feedback

� We have taken into account your feedback

� Some feedback was contradictory

� Pace of course 

� Fast or slow?

� Videos help

� Homeworks

� Love or hate?

� Workload

� Too little/easy

� Too heavy

� Many of you indicated you are learning a whole lot
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Readings for Today

� Required

� Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967. 

� Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560 
in Readings in Computer Architecture.

� Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.

� Recommended

� Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966
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Readings for Wednesday 

� Required cache coherence readings:

� Culler and Singh, Parallel Computer Architecture

� Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

� P&H, Computer Organization and Design

� Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

Recommended:� Recommended:

� Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979

� Papamarcos and Patel, “A low-overhead coherence solution 
for multiprocessors with private cache memories,” ISCA 1984.
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Last Lecture 

� Wrap up prefetching

� Markov prefetching

� Content-directed prefetching

� Execution-based prefetching

� Runahead execution� Runahead execution
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Today

� Wrap-up runahead execution

� Multiprocessing fundamentals

� The cache coherence problem
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Memory Latency Tolerance

and Runahead Execution



How Do We Tolerate Stalls Due to Memory?

� Two major approaches

� Reduce/eliminate stalls

� Tolerate the effect of a stall when it happens

� Four fundamental techniques to achieve these

� Caching� Caching

� Prefetching

� Multithreading

� Out-of-order execution

� Many techniques have been developed to make these four 
fundamental techniques more effective in tolerating 
memory latency
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Review: Execution-based Prefetchers

� Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data 

� Only need to distill pieces that lead to cache misses

� Speculative thread: Pre-executed program piece can be 
considered a “thread”

� Speculative thread can be executed 

� On a separate processor/core

� On a separate hardware thread context (think fine-grained 
multithreading)

� On the same thread context in idle cycles (during cache misses)
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Review: Thread-Based Pre-Execution

� Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998.

� Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”Microthreading (SSMT),”
ISCA 1999.

� Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Review: Runahead Execution
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Review: Runahead Execution Pros and Cons 

� Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)

+ Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms:

+ Uses the same thread context as main thread, no waste of context

+ No need to construct a pre-execution thread

� Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance limited by memory latency

� Implemented in IBM POWER6, Sun “Rock”
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Execution-based Prefetchers Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy

- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context
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Runahead Execution vs. Large Windows
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Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK

� Shailender Chaudhry talk, Aug 2008.
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Limitations of the Baseline Runahead Mechanism

� Energy Inefficiency

� A large number of instructions are speculatively executed

� Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

� Ineffectiveness for pointer-intensive applications

� Runahead cannot parallelize dependent L2 cache misses� Runahead cannot parallelize dependent L2 cache misses

� Address-Value Delta (AVD) Prediction [MICRO’05]

� Irresolvable branch mispredictions in runahead mode

� Cannot recover from a mispredicted L2-miss dependent branch

� Wrong Path Events [MICRO’04]



The Efficiency Problem
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Causes of Inefficiency

� Short runahead periods

� Overlapping runahead periods

� Useless runahead periods

� Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.
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The Problem: Dependent Cache Misses

Compute

Load 1 Miss Load 2 MissLoad 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

� Runahead execution cannot parallelize dependent misses

� wasted opportunity to improve performance

� wasted energy (useless pre-execution)

� Runahead performance would improve by 25% if this 
limitation were ideally overcome

Miss 1 Miss 2



Parallelizing Dependent Cache Misses

� Idea: Enable the parallelization of dependent L2 cache 
misses in runahead mode with a low-cost mechanism

� How: Predict the values of L2-miss address (pointer) 
loadsloads

� Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

� as opposed to data load

� Read:

� Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.



Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit
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Cannot Compute Its Address!

Compute

Load 1 Miss

Miss 1
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Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Saved Speculative 
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Readings

� Required

� Mutlu et al., “Runahead Execution”, HPCA 2003.

� Recommended

� Mutlu et al., “Efficient Runahead Execution: Power-Efficient � Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

� Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

� Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Multiprocessors and

Issues in Multiprocessing



Readings for Today

� Required

� Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560 
in Readings in Computer Architecture.

� Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967. 

� Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.Readings in Computer Architecture.

� Recommended

� Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966
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Readings for Wednesday 

� Required cache coherence readings:

� Culler and Singh, Parallel Computer Architecture

� Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

� P&H, Computer Organization and Design

� Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

Recommended:� Recommended:

� Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979

� Papamarcos and Patel, “A low-overhead coherence solution 
for multiprocessors with private cache memories,” ISCA 1984.
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Remember: Flynn’s Taxonomy of Computers

� Mike Flynn, “Very High-Speed Computing Systems,” Proc. of 
IEEE, 1966

� SISD: Single instruction operates on single data element

� SIMD: Single instruction operates on multiple data elements

� Array processor� Array processor

� Vector processor

� MISD: Multiple instructions operate on single data element

� Closest form: systolic array processor, streaming processor

� MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

� Multiprocessor

� Multithreaded processor
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Why Parallel Computers?

� Parallelism: Doing multiple things at a time

� Things: instructions, operations, tasks

� Main Goal

� Improve performance (Execution time or task throughput)
� Execution time of a program governed by Amdahl’s Law

� Other Goals

� Reduce power consumption

� (4N units at freq F/4) consume less power than (N units at freq F)

� Why? 

� Improve cost efficiency and scalability, reduce complexity

� Harder to design a single unit that performs as well as N simpler units 

� Improve dependability: Redundant execution in space
34



Types of Parallelism and How to Exploit 

Them
� Instruction Level Parallelism

� Different instructions within a stream can be executed in parallel

� Pipelining, out-of-order execution, speculative execution, VLIW

� Dataflow

� Data Parallelism

� Different pieces of data can be operated on in parallel

� SIMD: Vector processing, array processing

� Systolic arrays, streaming processors

� Task Level Parallelism

� Different “tasks/threads” can be executed in parallel

� Multithreading

� Multiprocessing (multi-core)
35



Task-Level Parallelism: Creating Tasks

� Partition a single problem into multiple related tasks 
(threads)

� Explicitly: Parallel programming

� Easy when tasks are natural in the problem

� Web/database queries

� Difficult when natural task boundaries are unclear

� Transparently/implicitly: Thread level speculation

� Partition a single thread speculatively

� Run many independent tasks (processes) together

� Easy when there are many processes

� Batch simulations, different users, cloud computing workloads

� Does not improve the performance of a single task
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MIMD Processing Overview
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MIMD Processing

� Loosely coupled multiprocessors

� No shared global memory address space

� Multicomputer network

� Network-based multiprocessors

� Usually programmed via message passing

� Explicit calls (send, receive) for communication

� Tightly coupled multiprocessors

� Shared global memory address space

� Traditional multiprocessing: symmetric multiprocessing (SMP)

� Existing multi-core processors, multithreaded processors

� Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except

� Operations on shared data require synchronization
38



Main Issues in Tightly-Coupled MP 

� Shared memory synchronization

� Locks, atomic operations

� Cache consistency

� More commonly called cache coherence

� Ordering of memory operations 

� What should the programmer expect the hardware to provide?

� Resource sharing, contention, partitioning

� Communication: Interconnection networks

� Load imbalance
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Aside: Hardware-based Multithreading

� Coarse grained

� Quantum based

� Event based (switch-on-event multithreading)

� Fine grained

� Cycle by cycle

� Thornton, “CDC 6600: Design of a Computer,” 1970.
� Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978.

� Simultaneous

� Can dispatch instructions from multiple threads at the same time

� Good for improving execution unit utilization
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Parallel Speedup Example

� a4x4 + a3x3 + a2x2 + a1x + a0

� Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor

� How fast is this with a single processor?� How fast is this with a single processor?

� How fast is this with 3 processors? 
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Speedup with 3 Processors
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Revisiting the Single-Processor Algorithm

45

Horner, “A new method of solving numerical equations of all orders, by continuous 
approximation,” Philosophical Transactions of the Royal Society, 1819.
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Superlinear Speedup

� Can speedup be greater than P with P processing 
elements?

� Cache effects

� Working set effects

� Happens in two ways:

� Unfair comparisons

� Memory effects
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Utilization, Redundancy, Efficiency

� Traditional metrics

� Assume all P processors are tied up for parallel computation

� Utilization: How much processing capability is used 

� U = (# Operations in parallel version) / (processors x Time)

� Redundancy: how much extra work is done with parallel 
processing

� R = (# of operations in parallel version) / (# operations in best 
single processor algorithm version)

� Efficiency 

� E = (Time with 1 processor) / (processors x Time with P processors)

� E = U/R
48



Utilization of Multiprocessor
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Caveats of Parallelism (I)
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Amdahl’s Law

52

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 



Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Caveats of Parallelism (II)

� Amdahl’s Law
� f: Parallelizable fraction of a program

� N: Number of processors

Speedup =
1

+1 - f f

N

� Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

� Maximum speedup limited by serial portion: Serial bottleneck

� Parallel portion is usually not perfectly parallel

� Synchronization overhead (e.g., updates to shared data)

� Load imbalance overhead (imperfect parallelization)

� Resource sharing overhead (contention among N processors)
55
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Midterm II Results
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Midterm II Scores

� Average: 148 / 315

� Minimum: 58 / 315

� Maximum: 258 / 315

� Std. Dev.: 52

7

Midterm 2 Distribution
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Midterm II Per-Question Statistics (I)
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Midterm II Per-Question Statistics (II)
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



Sequential Bottleneck
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Why the Sequential Bottleneck?

� Parallel machines have the 
sequential bottleneck

� Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops)

for ( i = 0 ; i < N; i++)for ( i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

� Single thread prepares data 
and spawns parallel tasks 
(usually sequential)
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Another Example of Sequential Bottleneck

63



Bottlenecks in Parallel Portion

� Synchronization: Operations manipulating shared data 
cannot be parallelized

� Locks, mutual exclusion, barrier synchronization

� Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths� Load Imbalance: Parallel tasks may have different lengths

� Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

� Resource Contention: Parallel tasks can share hardware 
resources, delaying each other

� Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
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Difficulty in Parallel Programming

� Little difficulty if parallelism is natural

� “Embarrassingly parallel” applications

� Multimedia, physical simulation, graphics

� Large web servers, databases?

� Difficulty is in 

Getting parallel programs to work correctly� Getting parallel programs to work correctly

� Optimizing performance in the presence of bottlenecks

� Much of parallel computer architecture is about

� Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency

� Making programmer’s job easier in writing correct and high-
performance parallel programs
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Cache Coherence
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Cache Coherence 

� Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?

P1 P2
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The Cache Coherence Problem

P1 P2 ld r2, x

1000
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The Cache Coherence Problem

P1 P2

ld r2, x

ld r2, x

1000 1000
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The Cache Coherence Problem

P1 P2

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

10002000
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The Cache Coherence Problem

P1 P2

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

10002000

ld r5, x

Should NOT 
load 1000
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Cache Coherence: Whose Responsibility?

� Software

� Can the programmer ensure coherence if caches are invisible to 
software?

� What if the ISA provided the following instruction?
� FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a 

processor’s local cache

� When does the programmer need to FLUSH-LOCAL an address?

� What if the ISA provided the following instruction?
� FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all 

other processors’ caches

� When does the programmer need to FLUSH-GLOBAL an address?

� Hardware

� Simplifies software’s job

� One idea: Invalidate all other copies of block A when a processor writes 
to it
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Snoopy Cache Coherence

� Caches “snoop” (observe) each other’s write/read 
operations

� A simple protocol:

� Write-through, no-
write-allocate 
cache

PrWr / BusWrPrRd/--

73

cache

� Actions: PrRd, 
PrWr, BusRd, 
BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd


