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Reminder: Lab Assignment 6

Due Today

Implementing a more realistic memory hierarchy
o L2 cache model

o DRAM, memory controller models

o MSHRs, multiple outstanding misses

Extra credit: Prefetching



Reminder: LLab Assignment 7

= Cache coherence in multi-core systems
o MESI cache coherence protocol

= Due May 4

= Extra credit: Improve the protocol (open-ended)




Midterm 11

Midterms will be distributed today

Please give me a 15-minute warning!



Final Exam

May 10

Comprehensive (over all topics in course)
Three cheat sheets allowed

We will have a review session (stay tuned)

Remember this is 30% of your grade
o I will take into account your improvement over the course
o Know the previous midterm concepts by heart



A Belated Note on Course Feedback

We have taken into account your feedback

Some feedback was contradictory

o Pace of course
Fast or slow?
Videos help

o Homeworks
Love or hate?

o Workload
Too little/easy
Too heavy

o Many of you indicated you are learning a whole lot



Readings for Today
Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Recommended

o Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966



Readings for Wednesday

Required cache coherence readings:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.



l.ast Lecture

Wrap up prefetching
o Markov prefetching
o Content-directed prefetching
o Execution-based prefetching

Runahead execution



Today

Wrap-up runahead execution
Multiprocessing fundamentals

The cache coherence problem
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Memory Latency Tolerance
and Runahead Execution




How Do We Tolerate Stalls Due to Memory?

Two major approaches
o Reduce/eliminate stalls
o Tolerate the effect of a stall when it happens

Four fundamental techniques to achieve these
o Caching

o Prefetching

o Multithreading

o Out-of-order execution

Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency
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Review: Execution-based Prefetchers

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)
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Review: Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction o Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.
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Review: Runahead Execution
Perfect Caches:
Load-1-Hit Load 2 Hit

= \JCAA

g

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

>
Saved Cycles

Miss 1

Miss 2




Review: Runahead Execution Pros and Cons

Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms:

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

Implemented in IBM POWERS6, Sun “Rock”
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Execution-based Prefetchers Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- €an occupy a separate thread context
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Performance of Runahead Execution

Micro-operations Per Cycle
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Runahead Execution vs. Large Windows

15

W 128-entry window (baseline)
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Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.

3.00
i / Scout
%J 200 |Buys 12 MB
@ | ——
N 450 _ Buys 7 MB //
= e — —>
o /m/
< 1.00 40% Better

_‘_,..-—*‘w Performance
0.50

256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

21



Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency

o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

= Ineffectiveness for pointer-intensive applications

o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO’05]

= Irresolvable branch mispredictions in runahead mode

o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO’04]




The Etticiency Problem
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Overall Impact on Executed Instructions
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The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Addr@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its Addr@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

@e Predi@ Can Compute Its Address> .

Load I'Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative
: Instructions

Saved Cycles
Miss 1

Miss 2




Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Multiprocessors and
Issues 1n Multiprocessing




Readings for Today

Required

o Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-560
in Readings in Computer Architecture.

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Recommended

o Historical: Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966
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Readings for Wednesday

Required cache coherence readings:
o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.
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Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
33



Why Parallel Computers?

= Parallelism: Doing multiple things at a time
= Things: instructions, operations, tasks

= Main Goal

o Improve performance (Execution time or task throughput)
= Execution time of a program governed by Amdahl's Law

= Other Goals

o Reduce power consumption

= (4N units at freq F/4) consume less power than (N units at freq F)

= Why?
a Improve cost efficiency and scalability, reduce complexity

= Harder to design a single unit that performs as well as N simpler units
o Improve dependability: Redundant execution in space
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I'ypes of Parallelism and How to -

.
1he . .
lllns%luctlon Level Parallelism

“xploit

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW

o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel

o SIMD: Vector processing, array processing
o Systolic arrays, streaming processors

Task Level Parallelism

o Different “tasks/threads” can be executed in parallel

o Multithreading
o Multiprocessing (multi-core)
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Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
36



MIMD Processing Overview




MIMD Processing

Loosely coupled multiprocessors
a No shared global memory address space

o Multicomputer network
Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
o Existing multi-core processors, multithreaded processors
Q

Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
38



Main Issues in Tightly-Coupled MP

Shared memory synchronization
o Locks, atomic operations

Cache consistency
o More commonly called cache coherence

Ordering of memory operations
o What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

39



Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading)

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

40



Parallel Speedup Example

adx? + a3x® + a2x? + alx + a0

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?

How fast is this with 3 processors?

41
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Speedup with 3 Processors

s ™is a for— comperricen?
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Revisiting the Single-Processor Algorithm
Rewsit Tt
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Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.
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Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel

Speedup
'

Cache effects |
Working set effects | Superlinear

_ Typical
. Success
Happens in two ways:
o Unfair comparisons

o Memory effects

— # Processors
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Utilization, Redundancy, Efficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
48



Utilization ot Multiprocessor
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Caveats of Parallelism (I)
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Amdahl’s Law
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Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.
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Amdah!l’s Law Implication 1
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Amdahl’s Law Implication 2
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Caveats of Parallelism (II)

Amdahl’s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
55



Midterm II Results




Midterm II Scores

= N w N (S} ()] ~

= Average: 148 / 315
= Minimum: 58/ 315
= Maximum: 258 / 315
= Std. Dev.: 52

Midterm 2 Distribution
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Midterm II Per-Question Statistics (I)
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Midterm II Per-Question Statistics (11)

VI. Caches and VII. Memory Hierarchy
Virtual Memory (Bonus)
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture.
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Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

= Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

3

A[i] = (A[i] + A[i-1]) / 2

= Single thread prepares data
and spawns parallel tasks
(usually sequential)

AVAY
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Another Example ot Sequential Bottleneck

LEGEND
s AE: Amdahl’s serial part
InitPriorityQueue(PQ); C B: Parallel Portion

. C1,C2: Critical Sections
SpawnThreads(); D: Outside critical sectign

ForEach Thread:

while (problem not solved)

| e

Solve(SubProblem);

f(problem solved) break;

NewSubProblems = Partition(SubProblem);
Lock(X)

PQ.insert(NewSubProble '
Unlock(X)

PrintSqution()@

J




Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
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Ditticulty 1in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
o Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
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Cache Coherence
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Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[ Interconnection Network ]

1000

X ——

Main Memory
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The Cache Coherence Problem
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The Cache Coherence Problem

Id r2, X

1000 1000
Interconnection Network ]
1000
X |

Main Memory
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The Cache Coherence Problem

Id r2, X
addrl, r2, r4d
stx, rl

Id r2, x
|

2000 1000
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1000
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Main Memory
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The Cache Coherence Problem

Id r2, X
addrl, r2, r4d
stx, rl

2000

Id r2, x
|

1000

Interconnection Network

1000
X ——

Main Memory

Should NOT
load 1000
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Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?

o What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache

When does the programmer need to FLUSH-LOCAL an address?

o What if the ISA provided the following instruction?

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches

When does the programmer need to FLUSH-GLOBAL an address?

Hardware
o Simplifies software’s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
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Snoopy Cache Coherence

Caches “snoop” (observe) each other’s write/read

operations
A simple protocol:

PrRd/-- PrWr / BusWr

Q PrwWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
PrWr, BusRd,
BusWr
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