18-447: Computer Architecture

Lecture 10: Data and Control Dependence
Handling in Pipelined Microarchitectures

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2012, 2/20/2012

Reminder: Homeworks

Homework 3
o Due Feb 27
o Out

o 3 questions
LC-3b microcode
Adding REP MOVS to LC-3b
Pipelining

Reminder: L.ab Assignments

= Lab Assignment 2
o Was due Friday, Feb 17
o How did it go?

= Lab Assignment 3
o Due March 2 — Start early.

a Individual assignment

= No collaboration; please respect the honor code
o Extra credit

= Early check off: 5%

= Fastest three designs: 5% + prizes

Readings for Today

Pipelining
o P&H Chapter 4.5-4.8
o Pipelined LC-3b Microarchitecture Handout

Optional
o Hamacher et al. book, Chapter 6, “Pipelining”

Readings for Next Lecture

Go over the “pipelining” lecture notes carefully
We will augment them with supplementary readings

Start your Lab Assignment 3!

CALCM Seminar Wednesday 4-5pm

Feb 22, 2012, Wednesday
Hamerschlag Hall D-210

Stochastic Computing: Embracing Errors in Architecture and
Design of Hardware and Software

Prof. Rakesh Kumar, University of Illinois

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minar_12 02 22

Hardware is allowed to produce errors that are exposed to the
highest layers of software

Hardware and software are optimized to maximize power savings
afforded by relaxed correctness

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_12_02_22
http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_12_02_22

Review of Last Lecture

Basics of pipelining

o Overheads of pipelining (ideal vs. non-ideal pipelines)
o Pipeline registers

o Pipelined control

Issues in pipeline design

o Balancing work

o Keeping the pipeline correct, moving, and full

What is a “stall”? How do you implement “stalling”?

What are the advantages/disadvantages of detecting
dependences using scoreboarding as opposed to combinational
logic?

What are the advantages/disadvantages of having the compiler
reorder code so that hardware does not need to detect data
dependences?

Review: Issues in Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls, minimizing CPI, minimizing cycle time

Review: Causes of Pipeline Stalls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations

Review: Dependences and Their Types

Also called “dependency”

Dependencies dictate ordering requirements between
iInstructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

10

Review: Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?

11

Review: Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

o For all of them, we need to ensure semantics of the program
are correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them

12

Flow dependence
3 .« L OP T
s« T3 0p 1,

Anti dependence
r « r,opr
3« hhoph
rh « T, 0P T5

Output-dependence

s « 1L Op T
K«

s « Tg OP Iy

Review: Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

13

Review: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and stall
o Detect and forward/bypass data to dependent instruction

o Eliminate the need for detecting dependence at the software level
Software-based interlocking: No need to detect

o Do something else (fine-grained multithreading)
No need to detect

o Predict the needed values and execute “speculatively”

14

Review: Interlocking

Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

Software based interlocking
VS.

Hardware based interlocking

MIPS acronym?

15

Review: Approaches to Dependence Detection (I)

Scoreboarding
o Each register in register file has a Valid bit associated with it
o An instruction that is writing to the register resets the Valid bit

o An instruction in Decode stage checks if all its source and
destination registers are Valid

Yes: No need to stall... No dependence
No: Stall the instruction

Advantage:
o Simple. 1 bit per register

Disadvantage:
o Need to stall for all types of dependences, not only flow dep.

16

Review: Approaches to Dependence Detection (1)

Combinational dependence check logic

o Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

o Yes: stall the instruction/pipeline
o No: no need to stall... no flow dependence

Advantage:
o No need to stall on anti and output dependences

Disadvantage:
o Logic is more complex than a scoreboard

o Logic becomes more complex as we make the pipeline deeper

and wider (superscalar)
17

A Special Case of Data Dependence

Control dependence
o Data dependence on the Instruction Pointer / Program Counter

18

Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
19

Data Dependence Handling
INn More Depth

Flow dependence
3 .« I 0P 1
s« T3 0p 1,

Anti dependence
r « r,opr
3« hhoph
rh « T, 0P T5

Output-dependence

s « 1L Op T
K«

s « Tg OP Iy

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

21

Remember: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and stall
o Detect and forward/bypass data to dependent instruction

o Eliminate the need for detecting dependence at the software level
Software-based interlocking: No need to detect

o Do something else (fine-grained multithreading)
No need to detect

o Predict the needed values and execute “speculatively”

22

RAW Dependence Handling

Following flow dependences lead to conflicts in the 5-stage
pipeline

addi rar- -

addi - ‘E* it
addi r-rg" * F

addi r-ra- *

addi r-ra -

addi r-ra -

Register Data Dependence Analysis

R/I-Type LW SW Br J Jr

IF

EX

MEM

WB write RF | write RF

For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

o dependence type: RAW, WAR, WAW?
o instruction types involved?
o distance between the two instructions?

Safe and Unsate Movement of Pipeline

l

lsta Y
Reg Write

l

RAW Dependence

lsta X
Reg Readgj Jn« _ | Reg Write

l

l

l

I« T, Reg Read

l

WAR Dependence

Jine _

I« _

WAW Dependence

l

Reg Write

l

l

Reg Write

l

dist(i,j) ¢ dist(X,Y) Y Unsafe to keep j moving
dist(i,j) > dist(X,Y) Y Safe

25

RAW Dependence Analysis Example

R/I-Type LW SW Br J Jr

IF

ID

EX
MEM
WB write RF | write RF

Instructions |, and I (where |, comes before I;) have RAW
dependence iff
o g (R/1, LW, SW, Br or JR) reads a register written by |, (R/I or LW)
o dist(l,, Ig) ¢ dist(ID, WB) = 3
What about WAW and WAR dependence?
What about memory data dependence?

26

Pipeline Stall: Resolving Data Dependence

nst,
nst.
nst
nst,
nst,

t, t t ot ot ot | —
IF_J[ID_][ALU |[MEM][WB
i [IF_]ID__][ALU |[MEM][WB p\D
i [IF_|—]—1o—][I ALU 2
IE—E—E—]IF J[ID_<2
F 3

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages

How to Implement Stalling

PCSrc

|

ID/IEX
0
. e EX/MEM
r Control M WB Ll\/lEM/WB
IF/ID X M [wB
Add ’\E
Add
4 o) Add result
= Shift Branch
rc %
< Read[] T
PC—#=»| Address § register 1 Readlh S %
E Readl data 1 B g
Instruction] = ’eQ'S[ekz it g
m -) egisters Readl
memory WriteD) data 2 Address I?jead L |—(1
register Datal ata "
Write memory u
| data (;<
Write
data
InstructionDl
. 6 32
151 0 i
L . \\ Signd] MemRead
extend
Instructiond
[20i 16]
Instruction
[15 11]

o disable PCand IR latching; ensure stalled instruction stays in its stage
o Insert dinvalid€ instructions/nops into the stage following the stalled one

28

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

Instructions |, and | (where 1, comes before |;) have RAW
dependence iff

o g (R/1, LW, SW, Br or JR) reads a register written by |, (R/I or LW)
o dist(l,, I5) ¢ dist(ID, WB) =3

In other words, must stall when I3 in ID stage wants to read a
register to be written by I, in EX, MEM or WB stage

29

Stall Conditions

= Helper functions
o r1s(l) returns the rs field of |
o use rs(!) returns true if | requires RArs] and rs!=r0

= Stall when
0 (rs(IRp)==dest.,) && use_rs(IRy) && Reg\Write,, or
o (rs(IRp)==dest,-,,) && use_rs(IRy) && Reg\Write, -, or
0 (rs(IRp)==dest,;,) && use rs(IRy) && Reg\Write,,, or
0 (rt(IRy)==dest,) && use rt(IRy) && RegWrite,, or
0 (r(IRp)==dest, ;) && use rt(IRy) && RegWrite, -, or
o (rt(IRp)==dest, ;) && use_rt(iry) && Reg\Write,,

= Itiscrucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

30

Impact ot Stall on Performance

Each stall cycle corresponds to 1 lost ALU cycle

For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

S depends on

o frequency of RAW dependences

o exact distance between the dependent instructions
o distance between dependences

suppose iy, and i, all depend on iy, once i; sdependence is
resolved, i, and i; must be okay too

31

Sample Assembly (P&H)

for (j=i-1: j>=0 && V[j] > V[j+11; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$s1,9s0,-1 __— 3 stalls

$t0,$s1,0 ___—3 stalls
$t0, $zero, exit2

$t1,%s1,2 __— 3 stalls

$t2,%a0, $t1l _——3 stalls
$t3, 0($t2)

$t4,4(3t2) —3 stalls
$t0, $t4, $t3_——— 3 stalls
$t0, $zero, exit2

$s1, $s1, -1
for2tst

32

Data Forwarding (or Data Bypassing)

It is intuitive to think of RF as state

0 literally means get values from and
respectively and put result in

But, RF is just a part of a computing abstraction

Q means 1. get the results of the last instructions to
define the values of and , respectively, and 2. until
another instruction redefines , younger instructions that
refers to should use this instruction s result

What matters is to maintain the correct dataflow between
operations, thus

add — rar-r IF 1D EX \E/IEI\/I WB N

IF|ID—][EX |[MEM][WB

33

addi r-rar

Resolving RAW Dependence with Forwarding

= Instructions |, and I; (where |, comes before I;) have RAW
dependence iff

o g (R/1, LW, SW, Br or JR) reads a register written by |, (R/I or LW)
o dist(l,, I5) ¢ dist(ID, WB) =3

= In other words, if I; in ID stage reads a register written by I, in
EX, MEM or WB stage, then the operand required by I; is not yet
In RF
Y retrieve operand from datapath instead of the RF

Y retrieve operand from the youngest definition if multiple
definitions are outstanding

34

Data Forwarding Paths (v1)

__dist(i,j)=3

»
_
»

!

[Bas!

N

Internal
forward?

3

dist(i,j)=3

ed on original figure from P&H CO&D, COPYRIGHT 2004 El

: ML
u
r X
tForwar
|
|i -

>ALU
| dist(i,j)=1

Forwarding[

Datall

dist(i,j)=2

memory

MO
ull
X

! X/IMEM.RegisterRi

VIEM/WB.RegisterRd

unit

sevier.

ALL RIGHTS RESERVED.]

35

Data Forwarding Paths (v2)

EX/IMEM

t ForwardA >ALU

dist(i,j)=1

|
‘)
- »

ID/EX
dist(i,})=3
— > >
M
—) u
q X
.] M
u
X
Rs ForwardB
Rt
Rt M
Rd u
X

b. With forwarding

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Forwarding[
unit

MEM/WB

Datall

dist(i,j)=2

memory

EX/MEM.RegisterRd

MEM/WB.RegisterRd

M
u
X

Assumes RF forwards internally

Data Forwarding LLogic (for v2)

If (rs-,1=0) && (rs.,==) && then
forward operand from MEM stage // dist=1
else if (rs-,1=0) && (rs.,==) && then

forward operand from WB stage // dist=2
else
use A, (operand from register file) // dist >=3

Ordering matters!! Must check youngest match first

Why doesn tuse rs() appear in the forwarding logic?

37

Data Forwarding (Dependence Analysts)

R/I-Type LW SW Br J Jr
IF
ID
EX produce
MEM produce | (use)
WB

Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

38

Sample Assembly, Revisited (P&H)

for (j=i-1: j>=0 && V[j] > V[j+11; j-=1) { }

for2tst:

exit?2:

addi
slti
bne
sl
add
lw
lw

$s1, $s0, -1

$t0, $s1, 0

$t0, $zero, exit2
$t1, $s1, 2

$t2, $a0, $t1
$t3, 0($t2)

$td, 4($t2)

$t0, $t4, $t3
$t0, $zero, exit2

$s1, $s1, -1
for2tst

39

Pipelining the LLC-3b

Pipelining the L.C-3b

Let’s remember the single-bus datapath

We'll divide it into 5 stages
o Fetch

Decode/RF Access

Address Generation/Execute
Memory

Store Result

Conservative handling of data and control dependences
o Stall on branch
o Stall on flow dependence

41

GateMARMUX

4

16 16

ZEXT &
LSHF1

&7:0]

[10:0]

[4:Q

ADDR2MUX

SEXT

oA
-

- SHET

\<—ADDRIMUX

LD.REG—>

3
SR2 —44>|

REG
FILE

SR2 SR1
ouT ouT

I<F—<-DR
3
<F4—SR1

g

g

v

SR2MUX

A

f 4 (00O | |

CONTROL

e TR]

f A A A

R

LD.CC—>(N|Z|P

A

A \ 4

& fST

2 B A
ALU
ALUK

d o
3 GateALU GateSHF
6
GateMDR
El.D . MAR
<—DATA SIZE 04
R.W
LOGIC WE
<—MAR]O0] LoGgic | . w @& 00 - - = — = ——-1nn HEE L=
= ATA MIO.EN | ypuT | OUTPUT
! .]
SIZE | WKBDR] : [DDR |
WEI WEO | STl -
14 ADDR. CTL [DSR_|
- CTL. [KBSR | DSR
3 [
L- | .
Rl 1. D MDR MEM EN <
AR MIO.EN t
6 6
Y,
LOGIC

<F—DATA SIZE
<F—MAR]O]

INMUX

An Example LLC-3b Pipeline

FETCH DECODE AGEX MEM SR
I
! A Y
/ Address
Register = Generation - -
File Logic
Y D—Cache -
- 'II’CI— i Destination Reg.
Value .
Select Logic
Y - A
A
Control Store ALU L _
ROM -
I-CACHE ™ SHF [™
Y ™| Branch
Logic
Dependency
! Check Logic
_I Fetch Control Logic
A%
- -

T

From other stages

From other stages

43

FETCH STAGE

TRAP.PC

TARGET .PC

N Y

INPUTS____

LOGIC

LD.PC

77
1
/i{ﬁ /kﬁ fﬁ /ﬁ "%
Y
+2 T
LD DE
i
16
’ //16
PC
‘16
Y
//"
I-CACHE 16

l

ICACHER ~ INPUTS—

LOGIC

N

7

|

LDDE

DE.NPC

DE.IR

DE.V

YV.DEBRSTALL

AGEX.CS

AGEX.IR

AGEX.5R1

AGEX.SR2Z

AGEX.CC

AGEX.DRID
AGEX.V

45

LD AGEX

DECODE STAGE

R Ty N N i
J.,,“,,,,H.,mUM.H,HHM.H”m,H”M,H../,,,,,,“”,m,H,”;m&mmyk%v%ﬁﬁﬁ RN R
i i . i A [+ m
[on]
. -
. 2 : H
B = m
H A
= = = ™ a -
g = - B H # =
™ B
= &
wl & = =
=1 — —
- — =
= VIVODHE HE 5
le m - e VLVE DO S
I = CHHOTHS A —— = L
o = m = O g H
h Nk Gl v o o 5 m
P ORHOHS S = 55 2
A i [g & g -
o e
=) < =& w
3 = o=
big) ..,_..,_.,1._ ﬂ
b
s - U e T HS A
o o) < = 0" e MANTTWEW A
= = o
E5 L. - N mm — DAATXADVA
S @ £ ~ s - m m ..TM3| CIHTHS
: :
m & » m il|x3rf| CITHCT INHIN
AEHE 5 A AN XEDY
slz |2 2
2 M 5] =
S8 12/ g
74 SN T B 2885
% |2 e m m o
il z & i
Y a |a g &
ot ..nﬂ,. ,..A//.,ﬁ..é, o ﬂﬂ 4 e
NN NN\ 2
j
W e - &
= m a
7 g
i a =
o

AGEX STAGE

5 -
AGEX. NPC | “16 h -
e - 6
e)]
LSHIT LSHF1 [7¢™ 0 15 MEM. ADDRESS
ADDRIMUX ‘5’6

ADDRESSMUX

Annmmx% 2 3

N
DAMMMNN

AGEX. CS ’ -
116 & | MEM. C8
’I{ﬁ 14 7| _ AGEXCS[19:9] ™ .;p’{',
o (& = . 7
Ml % 5 E i
s [+] :H: :-'__z" e
N B g AGEX.NPC T ';% MEM. NPC
= = = P
nl o= = co MEM. CC
AGEX. IR .8 ACEX.CC —l,.fj—h- S
A //,r;:,r”
s
'_':::-' # I - Fa -
AGEX.SR1| T SHF araal] ///?j / MEMALU RESULT
f/f 16 ///".-
- A 777
AGEX. SR2 16 o - r,;:.-.-
RE40 |_SEXT |t 6 |0 ALU e 7
6 = g = ALURESULTMUX 4 MEM. IR
AGEX. CC E = z AGEXIR —7{z—*| M DRI
SRIMUX 7 ‘
o = AGEXDRID _, ol 777
AGEX.DRID | g g g : } ’é
. A, ﬁ E » l_"'::":'.":'."-'.‘ MEM.V
g g Q ALUK
AGEX.Y = T LD MEM
$ J' \l.* INPUTS—* LOGIC
= LOGIC

YV.AGEXLD.CC '=_|

VAGEXLDREG =
AGEX DRID VAGEX BRSTALL =
7
3

MEM STAGE

MEM ADDRESS

MEMCS

MEMNEC

MEMCC

MEMALU.RESULT

MEMIR

MEMDRID
MEM.V

MEM.STALL

- ,Mfﬁ % L TRAPFC
2
. 7 _ Ny
% 16 =y g % 3 % //;
DATASIZE — “ w2 %

é DCACHER/W — IE:E}IC g g % %
Z . =
/// e iy
7 DCACHER WE1 WE0 //{(/,,//
% R ADDR | ?/?
//////; DCAChII-l{E ELJ;:I;: — V.DCACHE EN END—CACI—[E 16| LOGIC //, Z
5/?//5 DATA MEM.CS[10:7] —.F-? /
. i y
yﬁ”/f 416 7 //
/ p o - . ¥ 7
/ o toaie e e
'5/ -)
| 3 .
. 2 M.CC g%é MEM.ALU RESULT #//4
’%/ B 5 | MEMV Ao ? /
/ “IR[11:9] I 777 - /{y////,

% BROP___ | ZEE = MEMIR —7%7
// UNCONOP | BR %%%é 16 ///
\/\&{‘\J TRAP.OP LOGIC MEMDRID g///
] DN

3 2 V.MEM.LD.CE™—
MEM.DRID v:gﬁg:;ﬁiﬂ_ LOGIC INPUTS ™| LOGIC
= MEM PCMUX

SR.ADDRESS

SRDATA

SR.CS

SRNPC

SR.ALURESULT

SRIR
SR.DRID

SR.V

47

SR STAGE

SR.ADDRESS

SR.DATA

SR.CS

SR.INPC

SRALURESULT

SR.IR
SR.DRID

SR.V

e rp——
VARLDEREG
B EEmm—
V.5ELD.CC

N
DN

%

LOGIC

SRV
SRJIC5[3:2]

\

/

3
™ SR.CCDATA

]

o
a
0

16

TA

= SRREGDA

e

T

DA

7

\
N

N

\

_

.

SE.DRID

48

Control of the L.LC-3b Pipeline

Three types of control signals

Datapath Control Signals
o Control signals that control the operation of the datapath

Control Store Signals

o Control signals (microinstructions) stored in control store to be

used in pipelined datapath (can be propagated to later stages
than decode)

Stall Signals

o Ensure the pipeline operates correctly in the presence of
dependencies

49

Slage Sipmal dame Sipnal Values
FETCH MEM.PCMLUIN2: 4 PO+ sselect posl
TARCGET.RC sselect MEM TARGETPC (branch target)
TEAPPC sselect MEM TRAFPC
LD Tt MO0, LA
LIDDEN:$ MO0, LOAINT)
DECODE DEMLUXA: 119 westinstion IR[11:%]
kT wlestimation BT
SR NEEDED: NOND, YES(LY samsserted i instruction needs SR
SRINEEDEDS: MO0, YES(LY sasserted i instruction needs SR2
DE.BRAOFL: MO0y, BR{Dy ;BR Opeode
SE2IDMLUIX:4 20 ssearce TR[Z:0]
118 ssouree [R]11:9]
LD AGEX/:4 MO0, LOAINT)
VAGEX LD MO0, LOAINT)
VIMEM LD MO0, LOAINT)
VERLDUCC:H MO0, LOAINT)
WAGEX LD REG: MO0, LOAINT)
V.MEMLDEREG: 11 MO0, LOAINT)
V.ERLDREG: MO0, LOAINT)
AGEX ADDRIMLUN: NPT sselect valoe from AGEX.NPC
BaseR sselect valoe from AGEX. SR 1(BaseR)
ADDEIMLUNT: ZERQ sselect the value 2em
offsels sselect SEXTIIRISD]
Pl sselect SEXTIRIED]
PCoffwetll sselect SEXTIR] 10:07)
LSHF1s1: MO0, Thit Left shife(1)
ADDRESSMLUNIL: T sselect LIHFZEXTIIR[741110
ADDER sselect outpat of addness sdder
SRIMLIX: SR sselect From AGEX.SE2
4.0 JAR[E:0)
ALURST: ADDHOE, ANIDNDL)
MOR(ID), PASSBEI1L)
ALURESULTMLUNSL: SHIFTER sselect autpal of the shifter
ALU select 1put out the ALL
LD AEN MO0, LOAI 1)
MEM DCACHE BN MO, YES(1) ssserted i the Instruction scoesses memory
DUCACHE BWL: RINO), WRIL)
DATA BIFEN: BYTED, WD L)
BRE O WOy, BR{DY BR
LTNCON 0F L WO, Uncond BRI DY ARPRET, ISR, ISRER
TRAPORL: WOy, Trapi Ly TRAF
SR DR VALUEMUXT: ADDRESS sselect value from SEADDRESS
DATA ssilect value from SR.DATA
NPC ssilect value om SR.NPC
ALL ssilect valee from SRLALLU RESULT
LINREG: MO0, LOAINT)
LDUCCs L MO0, LOAIT)

Tahle 1: Data Path Contral Signals

tz The comtral sipral is penerated by lopic inthat stage
11: The cantrol signal s generated by bogic in another stage

50

Control Store in a Pipelined Machine

Number Signal Name Stages

0 SRI.NEEDED DECODE

1 SR2Z.NEEDED DECODE

2 DEMUX DECODE

3 ADDRIMUX AGEX

4 ADDRZMUXI AGEX

3 ADDRIMUXID AGEX

6 LSHF1 AGEX

7 ADDRESSMUX AGEX

8 SRIMUX AGEX

9 ALUKI AGEX

10 ALUKO AGEX

11 ALURESULTMUX AGEX

12 BR.OP DECODE, MEM
13 UNCON.OP MEM

14 TRAP.OP MEM

15 BR.STALL DECODE, AGEX, MEM
16 DCACHE.EN MEM

17 DCACHE.RW MEM

18 DATA SIZE MEM

19 DR VALUEMUX]1 SR

20 DR.VALUEMUXO SR

21 LD.REG AGEX, MEM, SR
22 LD.CC AGEX, MEM, SR

Table 2: Control Store ROM Signals

Stall Signals

= Pipeline stall: Pipeline does not move because an operation
in a stage cannot finish

= Stall Signals: Ensure the pipeline operates correctly in the
presence

= Why could an operation in a stage not finish?

Signal Name (renerated in
ICACHE.R/1: FETCH NO, READY
DEP.STALL/I: DEC NO, STALL
VIDE.BR.STALL/IL: DEC NO, STALL
V.AGEX.BRE.STALL/L: AGEX NO, STALL
MEM.STALL/I: MEM NO, STALL
V.MEM.BR.STALL/L: MEM NO, STALL

Table 3: STALL Signals

Control Dependence Handling

Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
54

Branch Types

When is next

fetch address

Type Direction at Number of
fetch time possible next
fetch addresses?

Conditional Unknown 2

Unconditional Always taken 1

Call Always taken 1

Return Always taken Many

Indirect Always taken Many

resolved?

Execution (register
dependent)

Decode (PC +
offset)

Decode (PC +
offset)

Execution (register
dependent)

Execution (register
dependent)

Different branch types can be handled differently

55

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions. Potential solutions:

If the instruction is a control-flow instruction:
o Stall the pipeline until we know the next fetch address
o Guess the next fetch address. How?

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

56

