
18-447: Computer Architecture

Lecture 10: Data and Control Dependence

Handling in Pipelined Microarchitectures

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2012, 2/20/2012

Reminder: Homeworks

 Homework 3

 Due Feb 27

 Out

 3 questions

 LC-3b microcode

 Adding REP MOVS to LC-3b

 Pipelining

2

Reminder: Lab Assignments

 Lab Assignment 2

 Was due Friday, Feb 17

 How did it go?

 Lab Assignment 3

 Due March 2 – Start early.

 Individual assignment

 No collaboration; please respect the honor code

 Extra credit

 Early check off: 5%

 Fastest three designs: 5% + prizes

3

Readings for Today

 Pipelining

 P&H Chapter 4.5-4.8

 Pipelined LC-3b Microarchitecture Handout

 Optional

 Hamacher et al. book, Chapter 6, “Pipelining”

4

Readings for Next Lecture

 Go over the “pipelining” lecture notes carefully

 We will augment them with supplementary readings

 Start your Lab Assignment 3!

5

CALCM Seminar Wednesday 4-5pm

 Feb 22, 2012, Wednesday

 Hamerschlag Hall D-210

 Stochastic Computing: Embracing Errors in Architecture and
Design of Hardware and Software

 Prof. Rakesh Kumar, University of Illinois

 http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minar_12_02_22

 Hardware is allowed to produce errors that are exposed to the
highest layers of software

 Hardware and software are optimized to maximize power savings
afforded by relaxed correctness

6

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_12_02_22
http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminar_12_02_22

Review of Last Lecture

 Basics of pipelining
 Overheads of pipelining (ideal vs. non-ideal pipelines)

 Pipeline registers

 Pipelined control

 Issues in pipeline design
 Balancing work

 Keeping the pipeline correct, moving, and full

 What is a “stall”? How do you implement “stalling”?

 What are the advantages/disadvantages of detecting
dependences using scoreboarding as opposed to combinational
logic?

 What are the advantages/disadvantages of having the compiler
reorder code so that hardware does not need to detect data
dependences?

7

Review: Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

 Handling dependences

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls, minimizing CPI, minimizing cycle time

8

Review: Causes of Pipeline Stalls

 Resource contention

 Dependences (between instructions)

 Data

 Control

 Long-latency (multi-cycle) operations

9

Review: Dependences and Their Types

 Also called “dependency”

 Dependencies dictate ordering requirements between
instructions

 Two types

 Data dependence

 Control dependence

 Resource contention is sometimes called resource
dependence

 However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

10

Review: Handling Resource Contention

 Happens when instructions in two pipeline stages need the
same resource

 Solution 1: Eliminate the cause of contention

 Duplicate the resource or increase its throughput

 E.g., use separate instruction and data memories (caches)

 E.g., use multiple ports for memory structures

 Solution 2: Detect the resource contention and stall one of
the contending stages

 Which stage do you stall?

 Example: What if you had a single read and write port for the
register file?

11

Review: Data Dependences

 Types of data dependences

 Flow dependence (true data dependence – read after write)

 Output dependence (write after write)

 Anti dependence (write after read)

 Which ones cause stalls in a pipelined machine?

 For all of them, we need to ensure semantics of the program
are correct

 Flow dependences always need to be obeyed because they
constitute true dependence on a value

 Anti and output dependences exist due to limited number of
architectural registers

 They are dependence on a name, not a value

 We will later see what we can do about them

12

Review: Data Dependence Types

13

Flow dependence
r3 « r1 op r2 Read-after-Write
r5 « r3 op r4 (RAW)

Anti dependence
r3 « r1 op r2 Write-after-Read
r1 « r4 op r5 (WAR)

Output-dependence
r3 « r1 op r2 Write-after-Write
r5 « r3 op r4 (WAW)
r3 « r6 op r7

Review: How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and stall

 Detect and forward/bypass data to dependent instruction

 Eliminate the need for detecting dependence at the software level

 Software-based interlocking: No need to detect

 Do something else (fine-grained multithreading)

 No need to detect

 Predict the needed values and execute “speculatively”

14

Review: Interlocking

 Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

 Software based interlocking

 vs.

 Hardware based interlocking

 MIPS acronym?

15

Review: Approaches to Dependence Detection (I)

 Scoreboarding

 Each register in register file has a Valid bit associated with it

 An instruction that is writing to the register resets the Valid bit

 An instruction in Decode stage checks if all its source and
destination registers are Valid

 Yes: No need to stall… No dependence

 No: Stall the instruction

 Advantage:

 Simple. 1 bit per register

 Disadvantage:

 Need to stall for all types of dependences, not only flow dep.

16

Review: Approaches to Dependence Detection (II)

 Combinational dependence check logic

 Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

 Yes: stall the instruction/pipeline

 No: no need to stall… no flow dependence

 Advantage:

 No need to stall on anti and output dependences

 Disadvantage:

 Logic is more complex than a scoreboard

 Logic becomes more complex as we make the pipeline deeper
and wider (superscalar)

17

A Special Case of Data Dependence

 Control dependence

 Data dependence on the Instruction Pointer / Program Counter

18

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

 19

Data Dependence Handling

in More Depth

20

Data Dependence Types

21

Flow dependence
r3 « r1 op r2 Read-after-Write
r5 « r3 op r4 (RAW)

Anti dependence
r3 « r1 op r2 Write-after-Read
r1 « r4 op r5 (WAR)

Output-dependence
r3 « r1 op r2 Write-after-Write
r5 « r3 op r4 (WAW)
r3 « r6 op r7

Remember: How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and stall

 Detect and forward/bypass data to dependent instruction

 Eliminate the need for detecting dependence at the software level

 Software-based interlocking: No need to detect

 Do something else (fine-grained multithreading)

 No need to detect

 Predict the needed values and execute “speculatively”

22

RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage
pipeline

23

MEM

WB IF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEM IF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?

24

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Safe and Unsafe Movement of Pipeline

25

i:rk«_

j:_«rk Reg Read

Reg Write

iOj

stage X

stage Y

dist(i,j) ¢ dist(X,Y) Ý ??

dist(i,j) > dist(X,Y) Ý ??

RAW Dependence

i:_«rk

j:rk«_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk«_

j:rk«_ Reg Write

Reg Write

iDj

WAW Dependence

dist(i,j) ¢ dist(X,Y) Ý Unsafe to keep j moving

dist(i,j) > dist(X,Y) Ý Safe

RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) ¢ dist(ID, WB) = 3

 What about WAW and WAR dependence?

 What about memory data dependence?

26

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Pipeline Stall: Resolving Data Dependence

27

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx « _
j: _ « rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx « _
bubble
j: _ « rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx « _
bubble
bubble
j: _ « rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

ID

IF

i: rx « _
bubble
bubble
bubble
j: _ « rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

ID

IF

ID

IF

Stall==make the dependent instruction
 wait until its source data value is available
 1. stop all up-stream stages
 2. drain all down-stream stages

How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert άinvalidέ instructions/nops into the stage following the stalled one

 28

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20ï16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15ï0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15ï11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) ¢ dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a
register to be written by IA in EX, MEM or WB stage

29

Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

 30

Impact of Stall on Performance

 Each stall cycle corresponds to 1 lost ALU cycle

 For a program with N instructions and S stall cycles,
 Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

 suppose i1,i2 and i3 all depend on i0, once i1 s dependence is
resolved, i2 and i3 must be okay too

31

Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

32

 addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0
 bne $t0, $zero, exit2
 sll $t1, $s1, 2
 add $t2, $a0, $t1
 lw $t3, 0($t2)
 lw $t4, 4($t2)
 slt $t0, $t4, $t3
 beq $t0, $zero, exit2

 addi $s1, $s1, -1
 j for2tst
exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 add rx ry rz literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a computing abstraction

 add rx ry rz means 1. get the results of the last instructions to
define the values of RF[ry] and RF[rz], respectively, and 2. until
another instruction redefines RF[rx], younger instructions that
refers to RF[rx] should use this instruction s result

 What matters is to maintain the correct dataflow between
operations, thus

33

ID ID ID IF ID

WB IF ID EX MEM add ra r- r-

addi r- ra r- MEM IF EX WB

Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) ¢ dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in
EX, MEM or WB stage, then the operand required by IB is not yet
in RF

 Ý retrieve operand from datapath instead of the RF

 Ý retrieve operand from the youngest definition if multiple
definitions are outstanding

34

Data Forwarding Paths (v1)

35

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

dist(i,j)=3

internal
forward?

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Paths (v2)

36

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

Assumes RF forwards internally [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

 forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

 forward operand from WB stage // dist=2

else

 use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn t use_rs() appear in the forwarding logic?

37

Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

38

R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB

Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

39

 addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0
 bne $t0, $zero, exit2
 sll $t1, $s1, 2
 add $t2, $a0, $t1
 lw $t3, 0($t2)
 lw $t4, 4($t2)
 nop
 slt $t0, $t4, $t3
 beq $t0, $zero, exit2

 addi $s1, $s1, -1
 j for2tst
exit2:

Pipelining the LC-3b

40

Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence

41

An Example LC-3b Pipeline

43

44

45

46

47

48

Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be
used in pipelined datapath (can be propagated to later stages
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of
dependencies

49

50

Control Store in a Pipelined Machine

51

 Pipeline stall: Pipeline does not move because an operation
in a stage cannot finish

 Stall Signals: Ensure the pipeline operates correctly in the
presence

 Why could an operation in a stage not finish?

Stall Signals

52

Control Dependence Handling

53

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

 54

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

55

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions. Potential solutions:

 If the instruction is a control-flow instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address. How?

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

56

