18-322 Lecture 18

Arithmetic Blocks
Low-Power Design

Textbook: Chapter 7, Section 4.4

Digital Integrated Circuits

Outline

e Arithmetic building blocks
» Adders
» Multipliers

e Low-power design

» Reducing power consumption
» Data-path/Control circuitry
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A Generic Digital Processor

MEMORY [¢

INPUT-OUTPUT
r
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CONTROL

The Binary Adder

A B
v

Cin—u

Full
adder

——Cout

Sum

= ABC; +ABC; +ABC; +ABC

CO = AB+BCI +AC|
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Complementary Static CMOS
Full Adder

ABHAB)C ABC, + C,(A+B+C))

28 Transistors
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The Ripple-Carry Adder

Ao By
oo

Cio [

Worst case delay linear with the number of bits
tg = O(N)

tadder =(N— 1)tcarry *loum

Goal: Make the fastest possible carry @

Digital Integrated Circuits




Inversion Property

§$(4,B,C;) = 8(4,B,C))

C,{4,B,C;) = C(4,B,C))
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Minimize Critical Path by
Reducing Inverting Stages

Even Cell Odd Cell
Ay By B A2 By AN
bl 3 & b
c:i 0 Co,O Co,l C0,2 CO,S
—{ FA’ b—0| FA’ » FA' j0—0| FA' —
! ] : |
S S, = S

Exploit Inversion Property

Note: need 2 different types of cells
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A better structure: the Mirror Adder

b-A
b-8
po.
|—Ci

Fe

0
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Express Sum and Carry as a
function of P, G, D

Define 3 new variable which ONLY depend on A, B
Generate (G) = AB
Propagate (P)=A ®B
Delete=A B
CO(G, P)=G+ PCi

S(G,P) = P®C;

Can also derive expressions for S and C, based on D and P
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Carry-Bypass Adder

Po Gy Po Gy P, Gp Py Gg
[ 2R y 3 y 3 y 3
Cio Coo Cos Co2 Cos
— FA — FA | — FA |— FA |—
Po Gy Po G1 P, Gp Py Gg _
T R S S | 4 4 BPPPPPs
Cio Cop Co1 Co2
Lo FA [ FA || FA
Co,3

Multiplexer

Idea: If (PO and P1 and P2 and P3 = 1)
then Cy3 = Cg, else “kill” or “generate”.
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Carry-Bypass Adder (cont.)

N bits

Bit12-15

Bit 0-3 Bit 8-11

Note: the topological path worst-case delay is much higher than the

true critical path!
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Carry Ripple vs. Carry Bypass

tp e

/ ripple adder

bypass adder

4.8 N
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LookAhead - Basic Idea

Ao.Bo A1,B1 An-1,Bn

Cok =Gk + Py Coia
Cok = Gy + P (G  + Py (... + P (Gg + PoCip))
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The Binary Multiplication

101010

x 10 i

AND oper ation

101010

Partial Products

000000

+ 101010

111001110
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The Array Multiplier

(] (W] (o] ?
Zo
xg xa x$ xa 21
HA FA FA HA
x$ xg x$ x$ Y, Iz,
FA FA FA HA
X X3 X3! Xal v, 12
al al y] ql 3
FA FA FA HA

I: T2, Tz, Iz, Iz,
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The MxN Array Multiplier
— Critical Path

I N Y|

HA | FA i FA l¢&—|HA
I 2 I O A |
FA |& FA | FA | HA «— Critical Path 1
<4 Critical Path 2
1 ! l 1 \ l <«4— Criticdl Pah1& 2
FA FA |&¢ FA |¢ HA

/Optimize this!
tmult~[(M1)+(N2)(N(N L

Optimization is very difficult (several critical paths)!
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Carry-Save Multiplier

Vector Merging Adder

V-1t +N-1)f

Lot~ and+tmetge]

Optimization easier (unique critical path)!
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Wallace-Tree Multiplier

Ya ys?

U]

Digital Integrated Circuits

Multipliers —Summary

» Optimization Goals Different vs. Binary Adder
* Once Again: Identify the Critical Path

» Other possible techniques
- Logarithmic versus Linear (Wallace Tree Mult)

- Data encoding (Booth)
- Pipelining
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Design as a Trade-Off

80.0

mirror

stati look-ahea
manchester select
60.0 bypass
_ 04
- E static
D 40.0 1 =
= select g ypash
& < mirroy
20.0 MS 02
. manchestpr
0.0 L s 0.0 :
0 10 N 20 0 10 20
N
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Outline

v Arithmetic building blocks
» Adders
» Multipliers

e Low-power design

» Reducing power consumption
» Data-path/Control circuitry
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How about POWER?
Reducing power consumption

e Load capacitance (C,) eVoltage supply (Vpp)
— Roughly proportional to the — Biggest impact: 50% reduction
chip area in Vpp, 75% reduction in power
e Switching activity (avg. T : -
number of 0 20um el

. dock gener ator
6.50

transitions/cycle) ow
— Very data dependent o
— A big portion due to glitches

5.00
450

NORMALIZED DELAY

(real-delay) o
e Clock frequency (f) s _ringosc
— Lowering only f decreases 200  microcoded DSPchip
average power, but total 150 adder

1.00

energy is the same and
throughput is worse

200 4.00 0.00
Vdd (volts)
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Using parallelism (1)

A—»

A>B—
B —m

COMPARATOR

Area = 636 x 833 2
1

T

- 2
I:)ref - CrerDD fref

Assume: t, = 25ns (worst-case, all modules) at Vpp =5V
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Using parallelism (2)

COMPARATOR
4
o

|I||'|[|-

A T

COMPARATOR

Area = 1476 x 1219 pn?

e C,, =2.15C (extra-routing needed)
o foar =2 (1, hew = 50NS =>V, ~ 2.9V V0 = 0.58 Vip)

_ 2 —
P, = Cpa,rVDD fpar = 0.36 P
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Using pipelining

A o
1>
o _ . %ms*
T -
e C,pe =1.15C
e Delay decreases 2 times (Vpp pipe = 0.58 V)
® Pyipe =0.39P
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Low energy gates - gate sizing

e Use the smallest transistors that satisfy the delay
constraints

» Slack time - difference between required time and arrival
time of a signal at a gate output

» Positive slack - size down
» Negative slack - size up

e Make gates that toggle more frequently smaller
e Slope engineering to reduce short circuit currents
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Low energy gate netlists - pin ordering

(1-0.5x0.2)x(0.5x0.2)=0.09 02 (1-0.2x0.1)x(0.2x0.1)=0.0196
0.5 | o \
A X X
Oy, e
0.2 [ 0.5

e Better to postpone the introduction of signals with
a high transition rate (signals with signal
probability close to 0.5)
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Chain vs. balanced design

( ©
gm pOo

o

054 Y
B _ ;
» ) 05 _
: 0.5
C |= c
0.5 0L 0.5D Z

e Question for you (5 min):

» Which of the two designs is more energy efficient?
— Assume:
e Zero-delay model
e All inputs have a signal probability of 0.5
— Hint: Calculate p,_,, for W, X and F
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Chain vs. balanced design

( ©
gm pOo

o

3/16
3/16 0.5 3%
7/64 - 0.5B 15/256
15/256 0.5 F
(0] 5C F g Z
0.5 0.5 3/16

e For zero-delay model

» Chain design is better

» But ignores glitching
— Depending on the gate delays, the chain design may be worse
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Control circuits

n! different possible
Inputs Combinational encodings (n states)
Logic

e State encoding has a big impact on the power efficiency
e Energy driven -> try to minimize number of bit transitions in

the state register
» Fewer transitions in state register

» Fewer transitions propagated to combinational logic
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Dual supply voltage

e Use two Vpps (e.9., 2.5V and 1.5V)
» Use the higher supply for gates on the critical path

» Use the lower supply for gates off the critical path

e Pro
» Reduces energy without a performance loss

e Cons
» Slight area penalty

» Increased design time
» Need level converters to interconnect gates on different

supplies (to avoid static currents)
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Clock gating

Ghabis gated CLK Downstream logic

GCLK ] ,\ H&
Clock generator  high capacitance

0 Clock gating logic gates off the clock so that
there’s no switching power in the downstream
logic
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Bus encoding

e Reduces number of bit toggles on the bus

e Different flavors

» Bus-invert coding
—Uses an extra bus line invert:

o if the number of transitions is < K/2, invert = 0 and the
symbol is transmitted as is

e if the number of transitions is > K/2, invert = 1 and the
symbol is transmitted in a complemented form

» Low-weight coding
—Uses transition signaling instead of level signaling

Decoder

Digital Integrated Circuits
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Bus invert coding

Invert/pass ooloo

Invert/pass
Source P
data D
0000
f A
1110

Data bus
000 L D— 10
. ¥ Received
0001 data

L O A
Polarity | Bus
decision 'register

logic
r‘

Hamming distance
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Polarity signal |
.
Under uniform random signal
conditions (non-correlated data),
25% upper bound on toggle

reduction
Source: M.Stan et al., 1994
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