VLSI Testing

Lecture 25 18-322 Fall 2003

Announcement

Homework 9 is due next Thursday (11/20)

Exam II is on Tuesday (11/18) in class

Review Session:
 When: Next Monday (11/17) afternoon, 4pm – 6pm
 Where: B131, HH

Outline

Defects and Faults

■ Reasons for IC malfunctioning

Fault Modeling

△Automatic Test Pattern Generation

Path Delay Fault

Design for Testability

Why Testing?

Manufacturing is imperfect

 \land Y = $\frac{\text{No. of good chips on wafer}}{\text{Total no. of chips}}$

Yield (Y) depends on technology, chip area and layout
 Y decreases as the area of chip is increased
 Defect density (D)

Modern technologies yield a value of 1-5 defects/cm²

 \square Yield starts out low (~10%) moves up (95%)

High quality expectation The earlier you detect a fault, the cheaper it is to fix

Reasons for IC Malfunction - Contamination, Defects and Faults

Contamination / Instabilities - Process induced impurities and random fluctuations of process conditions

Defects - Permanent deformation in IC layer which may but does not have to result in fault

Faults - Functional misbehaviors i.e. IC malfunctions

~

C_{out}

A	р	С	Defect		
	В		no	yes	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

N1 - N13 short

Outline

Defects and Faults

■Reasons for IC malfunctioning

Fault Modeling

△Automatic Test Pattern Generation

Path Delay Fault

Design for Testability

Test Complexity

"m"

Exhaustive test 2^{n+m}

Circuit with n = 25 and m = 50 1µsec/test Exhaustive test time is over 1 billion years! (Registers make life harder!)

Testing Strategies

Functional Test: (go/no go) Does the part work?

Do this fast & cheap

Diagnostic Test:

☑ What in the chip is broken?

Parametric Test:

- ➡ What is:
 - max clock frequencymin supply voltagemax operating temp

Test Implementation

 Runs Test Vectors/Programs on Device Under Test (DUT)

Goal: Find a SMALL set of test vectors that has a BIG fault coverage

Testers

Clock rate in the range of GHz
 Resolutions measured in psec
 Large very fast memory
 Cost 1 - 5 million dollars

- Modeling physical faults is complex
- Need models that simplify the behavior of faults

Stuck-At Fault

Stuck-at-0

Stuck-at-1

Bridge & Stuck Open

Automatic Test Pattern Generation (ATPG)

Given a logic circuit:

Generate test program to cover all SA faults

The D-Algorithm
 The D-Calculus
 Problem: Reconvergent Fanouts

Step 1: Choose a fault to "insert"
 Select from a fault dictionary

Step 2: Activate (excite) the fault
 Drive the faulty node to the opposite value of the fault
 Example: for SA-1, drive the node to 0

Step 3: Sensitize a path to an output
Propagate the fault so that it can be observed at the output pin

Path Sensitization

Goals: Determine input pattern that makes a fault controllable (triggers the fault, and makes its impact visible at the output nodes)

Techniques Used: D-algorithm, Podem

Five value logic simulation

X = NOT(A)

А	X	
0	1	
1	0	
Х	Х	
D	D	
D	D	

$$X = AB$$

	В					
A	0	1	Х	D	D	
0	0	0	0	0	0	
1	0	1	Х	D	D	
X	0	Х	Х	Х	Х	
D	0	D	Х	D	0	
D	0	D	X	0	D	

Five value logic simulation

 $\mathbf{X} = \mathbf{A} + \mathbf{B}$

	В					
A	0	1	Х	D	Đ	
0	0	1	Х	D	D	
1	1	1	1	1	1	
X	Х	1	Х	Х	Х	
D	D	1	Х	D	1	
D	D	1	Х	1	D	

Need backtracks

Reconvergent Fanout

Fault Simulation

Path Delay Fault

• A defect can affect the speed of a path in the circuit

Let's see a Path Delay Fault example

Path Delay Fault

Path 1c-g2-g4-g5-x

Outline

Defects and Faults

■ Reasons for IC malfunctioning

Fault Modeling

Path Delay Fault

Design for Testability

Scan-based Test

Scan Based Methods

Test Mode: OFF

Test Mode: ON

Boundary Scan (JTAG: IEEE 1149.1b)

Printed-circuit board

Board testing becomes as problematic as chip testing

Built-In Self-Testing (BIST)

Rapidly becoming more important with increasing chip-complexity and larger modules

Linear-Feedback Shift Register (LFSR)

Pseudo-Random Pattern Generator