
MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

MCD: A GALS Processor Microarchitecture

Dave Albonesi

in collaboration with

Greg Semeraro

Grigoris Magklis

Rajeev Balasubramonian

Steve Dropsho

Sandhya Dwarkadas

Michael Scott

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Outline

! Motivation for MCD

! MCD microarchitecture

! Hiding synchronization delays

! Fine-grain dynamic voltage and frequency scaling
" Off line algorithm
" Online algorithm
" Profiling

! Potential performance gains with MCD

! Future research

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Motivation for MCD

! Increasing challenges of fully synchronous processors

! Companies have a large investment in synchronous design

! Designers know how to handle synchronizing signals between
clock domains

! Gradual elimination of global signals creating more
autonomous units
" Example: Replay Traps instead of pipeline holds

! Single microprocessor-wide frequency constrains the
IPC/frequency tradeoffs that can be made in different units
" E.g., floating point design decisions linked to front-end decisions

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Motivation for MCD

! Multiple on-chip voltages today, progress in on-chip voltage
conversion

! Global Dynamic Voltage Scaling (DVS) has limited
applicability

! Application phases may be bottlenecked by a subset of the
major functions (fetch/dispatch, integer, floating point,
load/store) of a general-purpose processor, but still all run at
full speed in a synchronous processor

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

MCD at a high level

Issue Queue

ALUs & RF

L1 I-Cache

Dispatch, Rename, ROB

Fetch Unit

Issue Queue

ALUs & RF

Main
Memory

L2 Cache

Ld/St Unit

L1 D-Cache

Integer Domain FP Domain

Memory Domain

Front-end Domain External Domain

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

MCD microarchitecture details
! Front-end, integer, floating point, memory clock domains

" Major queues (issue queues, load/store queue, ROB) already in place
as buffers that can be used as synchronization points

" Synchronization can mostly be hidden if queues are partially full
" Much autonomy between these major functions

! L1 Dcache separated from integer and floating point
" Allows memory to be separately optimized
" Performance not adversely effected

! L2 cache placed in the memory domain
" No L1-L2 synchronization penalty for loads/stores
" Applications with large L1 Icache miss rates may be impacted

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Synchronization via queues

FIFO queue structure

! Two types: FIFO and issue queue

! Key insight: synchronization cost
can be hidden if instruction would
have waited in the queue anyways

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Hiding the synchronization delay

! Instructions that end up waiting in queues after
synchronization

! Group of instructions crossing a domain incur a single delay

! Out-of-order execution

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Synchronization points

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Distribution of synchronization overhead

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Alpha 21264-like synchronization penalties

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

SA-1110-like synchronization sensitivity

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Fine-grain dynamic voltage scaling

! Exploit imbalance of applications in their domain usage
" Scale individual domain frequencies to match the demand

! Effective over a variety of applications

! Hardware approach: feedback and control system
" Appropriate for legacy apps
" Hardware overhead

! Software approach: profiling, insert special domain control
instructions
" Appropriate for embedded and other applications which behave

consistently among different runs
" Recompilation or binary rewriting

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Voltage scaling hardware models

! Voltage range of 1.2-0.65V, frequency range of 250MHz-
1GHz in each domain (same as baseline processor)

! Independent jitter for each domain
" Calculate next clock edge based on frequency, last clock edge and

jitter
" Synchronization penalties assessed based on clock edge relationships

! �Transmeta-like� model
" Models having to pause operation while increasing frequency and

voltage
" 32 voltage steps, 28.6mV intervals
" 20us per change

! �Xscale-like� model
" Models being able to operate through changes
" 320 steps, 2.86mV intervals
" 0.1718us to transition, but continue to execute

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Offline analysis

! Provides target against which to compare more realistic
control algorithms

! Can drive energy profiling tool, to help programmers
understand applications and hardware

! Can drive re-writing tools for embedded applications

! Summary of operation
" Run application once at maximum speed
" Every interval, collect dependences among primitive events
" Stretch events off the critical path, distribute slack as evenly as

possible
" Quantize to respect domain boundaries and reconfiguration overhead;

annotate application (simulator)
" Re-run application with chosen reconfiguration points, to measure real

energy savings and performance cost

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

�Shaker� Algorithm
! Construct a dependence DAG from

simulator whose nodes are events, e.g.,
" Enter instruction fetch queue
" Enter an issue queue
" Start execution of an operation

! Timestamp from simulator assigned to
each event

! Arcs denote delay between events

! Distribute any slack in the graph among
the arcs as evenly as possible
" Goal: minimize the variance among

events in the same domain
" Alternately traverse the graph up and

down, gradually scaling events each time
" Continue until all slack is removed or all

events adjacent to slack edges are at
minimum frequency

! O(cN), for N nodes and c frequency
steps

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Dilation thresholding

! Creates schedule of domain frequencies based on previous
step and performance degradation threshold

! For each domain do
" For each interval do

Construct a histogram of event frequencies from the DAG
Identify threshold of acceptable performance degradation

" Repeatedly merge neighboring intervals when profitable to do so
Merge histograms, calculate new frequency and energy savings, merge

intervals if improvement
Amortizes the cost of a voltage/frequency change over the time spent at

that voltage frequency for the �Transmeta� model

! Output list of reconfiguration points

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Simulation Parameters
! Resources similar to Alpha 21264
! Voltage range: 0.65 � 1.2 V
! Frequency range: 0.25 � 1 GHz

! Representative benchmarks from:
" Mediabench
" Olden
" SPEC 2000 (int and fp)

! Three configurations:
" MCD at maximum frequency (baseline MCD)
" MCD with dynamic voltage scaling (dynamic MCD)
" Single-clock with dynamic but global voltage scaling

! No attempt to scale front-end domain

! Transmeta-style model (freeze through change)
" 32 voltage steps: 20µs per step, 10-20µs for frequency change

! XScale-style model (execute through change)
" 320 voltage steps: 0.1718µs per step

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

�Transmeta� versus �Xscale� models

! �Xscale� ability to operate through voltage/frequency
changes permits more frequent reconfigurations

! Remaining data for �Xscale� model only

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Performance Degradation

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ad
pc

m
ep

ic
g7

21
mes

a
em

3d
he

alt
h

mst

po
wer

tre
ea

dd tsp bz
ip2 gc

c
mcf

pa
rse

r art
sw

im

av
era

ge

Baseline MCD Dynamic MCD

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Energy Savings

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m
ep

ic
g7

21
mes

a
em

3d
he

alt
h

mst

po
wer

tre
ea

dd tsp
bz

ip2 gc
c

mcf

pa
rse

r art
sw

im

av
era

ge

Baseline MCD Dynamic MCD Global Voltage Scaling

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Energy-Delay Product

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m
ep

ic
g7

21
mes

a
em

3d
he

alt
h

mst

po
wer

tre
ea

dd tsp
bz

ip2 gc
c

mcf

pa
rse

r art
sw

im

av
era

ge

Baseline MCD Dynamic MCD Global Voltage Scaling

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Epic-decode � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Ghostscript � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Bisort � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Power � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Vortex � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Art � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Offline Result Summary

! Dynamic MCD
" Less than 10% performance degradation
" About 27% energy savings
" 20% energy-delay product

! Global voltage scaling
" About 12% energy savings
" 3% energy-delay product

! Appreciable variability among application phases

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Hardware control: the attack/decay algorithm

! Exploits correlation between changes in input queue
utilization and domain frequency

! Each domain operates independently

! Can be implemented in ~10K transistors for a four-domain
processor

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay design space
! Deviation Threshold

" Difference in utilization needed to trigger an attack

! Reaction Change
" Amount of frequency change on an attack

! Decay
" Amount of frequency decrease on a decay

! Performance degradation threshold
" Amount of performance degradation during the last interval below

which a frequency decrease is allowed in the next interval

! Endstop count
" Consecutive intervals at max or mix frequency after which we force

an attack

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Hardware control: the attack/decay algorithm

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay algorithm example #1
! Changes in floating point queue utilization for epic decode

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay algorithm example #1
! Changes in floating point frequency for epic decode

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay algorithm example #2
! Differences in load/store queue utilization for epic decode

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay algorithm example #2
! Changes in load/store frequency for epic decode

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Performance degradation

! Same overall performance degradation as offline with 1%
performance degradation target (Dynamic-1%)

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

ad
pc

m
ep

ic
jpe

g
g7

21 gs
m

gh
os

tsc
rip

t
mes

a

mpe
g2

pe
gw

it bh
bis

or
t
em

3d
he

alt
h

mst

pe
rim

ete
r
po

wer

tre
ea

dd tsp

vo
ron

oi art
bz

ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a
pa

rse
r

sw
im

vo
rte

x
vp

r

av
era

ge

Baseline MCD Dynamic-1% Dynamic-2% Dynamic-5% Attack/Decay

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Energy savings

! Achieves 86% of the energy savings as offline with 1%
performance degradation target (Dynamic-1%)

-10%

0%

10%

20%

30%

40%

50%

ad
pc

m

ep
ic

jp
eg

g7
21

gs
m

gh
os

ts
cr

ip
t

m
es

a

m
pe

g2

pe
gw

it bh

bi
so

rt

em
3d

he
al

th

m
st

pe
rim

et
er

po
w

er

tr
ee

ad
d

ts
p

vo
ro

no
i

ar
t

bz
ip

2

eq
ua

ke gc
c

gz
ip

m
cf

m
es

a

pa
rs

er

sw
im

vo
rt

ex vp
r

av
er

ag
e

Baseline MCD Dynamic-1% Dynamic-2% Dynamic-5% Attack/Decay

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Energy-delay improvement

! Achieves 86% of the energy-delay improvement as offline
with 1% performance degradation target (Dynamic-1%)

-10%

0%

10%

20%

30%

40%

50%

ad
pc

m
ep

ic
jpe

g
g7

21 gs
m

gh
os

tsc
rip

t
mes

a

mpe
g2

pe
gw

it bh
bis

or
t

em
3d

he
alt

h
mst

pe
rim

ete
r

po
wer

tre
ea

dd tsp

vo
ron

oi ar
t
bz

ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

pa
rse

r
sw

im
vo

rte
x

vp
r

av
era

ge

Baseline MCD Dynamic-1% Dynamic-2% Dynamic-5% Attack/Decay

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Attack/decay summary

! Correlates input queue utilization changes with frequency
changes

! Independent control for each domain

! Implementable in a reasonable number of transistors
" ~0.1% of a 10M transistor chip

! Achieves 86% of the energy savings of an offline algorithm
with identical performance degradation

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Profile-driven MCD control

! Profile run to identify long-running loops and functions for
which the cost of reconfiguration can be effectively amortized

! Shaker and dilation thresholding algorithms to identify
domain frequencies for each

! Identify functions, loops, and call tree paths at runtime
through table lookups

! Distinguish �important� functions and loops and set
frequencies accordingly

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Distinguishing loop/function instances
! Build a call tree, each node is a

function or loop instance

! Distinguish different paths to a given
function or loop

! Table lookup using path,
loop/function PC, and possible call
PC to identify function

! If marked �important�, change
frequencies/voltages

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Performance comparison with offline

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

de
co

de

ep
ic_

en
co

de

g7
21

_d
ec

ode

g7
21

_e
nc

ode

gs
m_d

ec
od

e

gs
m_e

nc
od

e

jpeg
_c

ompre
ss

jpeg
_d

ec
om

pre
ss

mpe
g2_

de
co

de

mpe
g2_

en
co

de

Ave
rag

e

Offline Loop+PC+path Loop+path Funct+PC+path Funct+Path Loop Funct

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Energy comparison with offline

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

de
co

de

ep
ic_

en
co

de

g7
21

_d
ec

ode

g7
21

_e
nc

ode

gs
m_d

ec
od

e

gs
m_e

nc
od

e

jpeg
_c

ompre
ss

jpeg
_d

ec
om

pre
ss

mpe
g2_

de
co

de

mpe
g2_

en
co

de

Ave
rag

e

Offline Loop+PC+path Loop+path Funct+PC+path Funct+Path Loop Funct

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

MCD performance optimizations

! Each domain can run at its natural frequency

! Global clock skew eliminated
" Saves clock power and metal also

! Dynamically trade off size for speed within each domain
using an adaptive MCD

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Dynamic resizing

! Many dynamic resizing techniques proposed for power

! Speed of an adaptive structure depends on configuration
" Adaptive issue queue 70% faster at ¼ size

! Synchronous system cannot exploit the faster speed of a
downsized structure due to other critical paths

! Structure can be overly upsized for a particular application
but entire system must be slowed down (global clock)

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Adaptive MCD
! Idea: upsize structures within MCD domains so as not to

impact other domain frequencies

! Design each domain to be heavily pipelined for high
frequency (perhaps even overpipelined)

! Make selected structures adaptive to exploit ILP or to match
larger working sets

! Upsize structures and adjust frequency when IPC
improvement would override frequency decrease

! Drawbacks
" Overpipelining for slower frequencies (IPC penalty)
" Configuration overheads degrade clock speed relative to fixed design

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Br PredBr PredBr Pred

L1 I-CacheL1 I-CacheL1 I-Cache

L2 CacheL2 CacheL2 Cache

L1 D-CacheL1 D-CacheL1 D-Cache

Issue QueueIssue Queue

Adaptive MCD organization

ALUs & RF

L1 I-Cache

Dispatch, Rename, ROB

Fetch Unit

ALUs & RF

Main
Memory

L2 Cache

Ld/St Unit

L1 D-Cache

Integer Domain FP Domain

Memory Domain

Front-end Domain
External Domain

Issue Queue Issue QueueIssue Queue

Br Pred

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Resizable structures

! Front end domain
" Icache: 4KB-64KB 2-way
" Branch predictor sized according to Icache

gshare PHT: 4KB-64KB
Local PHT: 1KB-8KB, local BHT: 512 or 1024 entries

! Integer and floating point domains
" Issue queue: 16-64 entries

! Load/store domain
" Dcache: 32KB 1-way � 256KB 8-way
" L2 cache: 256KB 1-way � 2MB 8-way sized according to Dcache

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Methodology

! Baselines
" Fixed MCD: MCD with fixed frequencies with best overall TPI
" Fully synchronous: design with best overall TPI

! Fully synchronous structures sized to balanced delays

! Adaptive MCD additional branch penalty: 2 integer cycles
and 1 front end cycle

! Adaptive MCD frequency penalty as much as 49%

! Per-application adaptation (profiling)

! Benchmarks
" 14 Mediabench
" 3 Olden
" 6 SPEC2000int
" 3 SPEC2000fp

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Fixed MCD versus synchronous

! Best fixed MCD organization
" 32KB Icache
" 32KB gshare PHT, 4KB local PHT, 1KB local BHT
" 128KB Dcache, 1MB L2
" 16 entry queues

! Best synchronous organization
" 64KB Icache
" 64KB gshare PHT, 8KB local PHT, 1KB local BHT
" 64KB Dcache, 512KB L2
" 32 entry queues

! 5% overall performance improvement

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Adaptive MCD versus synchronous

! Adaptive MCD config for each benchmark

! 18% overall performance improvement, min �3%, max 50%

Icache

4KB

8KB

16KB

32KB

64KB

Dcache

32KB 64KB 128KB 256KB

adpcm encode, bzip2,
adpcm encode

mpeg2 encode, swim,
perimeter

jpeg compress, g721 encode,
g721 encode, equake

jpeg compress, vpr

gsm encode, ghostscript,
gsm encode

gzip

epic decode, bh

mesa, vortex

epic encode

parser,
mesa mipmap (IQ=32)

mesa osdemo, gcc

em3d (IQ=32)

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Areas for further research

! Best division into domains

! Circuits for voltage/frequency islands

! Front-end control (currently fixed)

! Dynamic voltage gating for leakage
" Voltage scaling works best when work is �smoothed out� over a long

period of time
" Voltage gating works best when work is �clumped together� to

introduce idle time
" Best combination of the two that optimizes energy-delay

! Combining performance and energy features

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

For More Info�

http://www.ece.rochester.edu/~albonesi/acal

