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! Potential performance gains with MCD
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Motivation for MCD

! Increasing challenges of fully synchronous processors

! Companies have a large investment in synchronous design

! Designers know how to handle synchronizing signals between 
clock domains

! Gradual elimination of global signals creating more 
autonomous units
" Example: Replay Traps instead of pipeline holds

! Single microprocessor-wide frequency constrains the 
IPC/frequency tradeoffs that can be made in different units
" E.g., floating point design decisions linked to front-end decisions
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Motivation for MCD

! Multiple on-chip voltages today, progress in on-chip voltage 
conversion

! Global Dynamic Voltage Scaling (DVS) has limited 
applicability

! Application phases may be bottlenecked by a subset of the 
major functions (fetch/dispatch, integer, floating point, 
load/store) of a general-purpose processor, but still all run at 
full speed in a synchronous processor
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MCD at a high level
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MCD microarchitecture details
! Front-end, integer, floating point, memory clock domains

" Major queues (issue queues, load/store queue, ROB) already in place 
as buffers that can be used as synchronization points

" Synchronization can mostly be hidden if queues are partially full
" Much autonomy between these major functions

! L1 Dcache separated from integer and floating point
" Allows memory to be separately optimized
" Performance not adversely effected

! L2 cache placed in the memory domain
" No L1-L2 synchronization penalty for loads/stores
" Applications with large L1 Icache miss rates may be impacted



MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Synchronization via queues

FIFO queue structure

! Two types: FIFO and issue queue

! Key insight: synchronization cost 
can be hidden if instruction would 
have waited in the queue anyways
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Hiding the synchronization delay

! Instructions that end up waiting in queues after 
synchronization

! Group of instructions crossing a domain incur a single delay

! Out-of-order execution
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Synchronization points
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Distribution of synchronization overhead
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Alpha 21264-like synchronization penalties
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SA-1110-like synchronization sensitivity
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Fine-grain dynamic voltage scaling

! Exploit imbalance of applications in their domain usage
" Scale individual domain frequencies to match the demand

! Effective over a variety of applications

! Hardware approach: feedback and control system
" Appropriate for legacy apps
" Hardware overhead

! Software approach: profiling, insert special domain control 
instructions
" Appropriate for embedded and other applications which behave 

consistently among different runs
" Recompilation or binary rewriting
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Voltage scaling hardware models

! Voltage range of 1.2-0.65V, frequency range of 250MHz-
1GHz in each domain (same as baseline processor)

! Independent jitter for each domain
" Calculate next clock edge based on frequency, last clock edge and 

jitter
" Synchronization penalties assessed based on clock edge relationships

! �Transmeta-like� model
" Models having to pause operation while increasing frequency and 

voltage
" 32 voltage steps, 28.6mV intervals
" 20us per change

! �Xscale-like� model
" Models being able to operate through changes
" 320 steps, 2.86mV intervals
" 0.1718us to transition, but continue to execute
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Offline analysis

! Provides target against which to compare more realistic  
control algorithms

! Can drive energy profiling tool, to help programmers 
understand applications and hardware

! Can drive re-writing tools for embedded applications 

! Summary of operation 
" Run application once at maximum speed
" Every interval, collect dependences among primitive events
" Stretch events off the critical path, distribute slack as evenly as 

possible
" Quantize to respect domain boundaries and reconfiguration overhead; 

annotate application (simulator)
" Re-run application with chosen reconfiguration points, to measure real 

energy savings and performance cost
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�Shaker� Algorithm
! Construct a dependence DAG from 

simulator whose nodes are events, e.g., 
" Enter instruction fetch queue
" Enter an issue queue
" Start execution of an operation

! Timestamp from simulator assigned to 
each event

! Arcs denote delay between events

! Distribute any slack in the graph among 
the arcs as evenly as possible
" Goal: minimize the variance among 

events in the same domain 
" Alternately traverse the graph up and 

down, gradually scaling events each time
" Continue until all slack is removed or all 

events adjacent to slack edges are at 
minimum frequency

! O(cN), for N nodes and c frequency 
steps
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Dilation thresholding

! Creates schedule of domain frequencies based on previous 
step and performance degradation threshold

! For each domain do
" For each interval do

# Construct a histogram of event frequencies from the DAG
# Identify threshold of acceptable performance degradation

" Repeatedly merge neighboring intervals when profitable to do so
# Merge histograms, calculate new frequency and energy savings, merge 

intervals if improvement
# Amortizes the cost of a voltage/frequency change over the time spent at 

that voltage frequency for the �Transmeta� model

! Output list of reconfiguration points
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Simulation Parameters
! Resources similar to Alpha 21264
! Voltage range: 0.65 � 1.2 V
! Frequency range: 0.25 � 1 GHz

! Representative benchmarks from:
" Mediabench
" Olden
" SPEC 2000 (int and fp)

! Three configurations:
" MCD at maximum frequency (baseline MCD)
" MCD with dynamic voltage scaling (dynamic MCD)
" Single-clock with dynamic but global voltage scaling

! No attempt to scale front-end domain 

! Transmeta-style model (freeze through change)
" 32 voltage steps: 20µs per step, 10-20µs for frequency change

! XScale-style model (execute through change)
" 320 voltage steps: 0.1718µs per step
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�Transmeta� versus �Xscale� models

! �Xscale� ability to operate through voltage/frequency 
changes permits more frequent reconfigurations

! Remaining data for �Xscale� model only
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Performance Degradation
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Energy Savings
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Energy-Delay Product
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Epic-decode � Runtime Example
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Ghostscript � Runtime Example
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Bisort � Runtime Example
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Power � Runtime Example
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Vortex � Runtime Example

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Art � Runtime Example
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Offline Result Summary

! Dynamic MCD
" Less than 10% performance degradation
" About 27% energy savings
" 20% energy-delay product

! Global voltage scaling
" About 12% energy savings
" 3% energy-delay product

! Appreciable variability among application phases

MICRO-35 Partially Asynchronous Microprocessors TutorialDavid H. Albonesi

Hardware control: the attack/decay algorithm

! Exploits correlation between changes in input queue 
utilization and domain frequency

! Each domain operates independently

! Can be implemented in ~10K transistors for a four-domain 
processor
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Attack/decay design space
! Deviation Threshold

" Difference in utilization needed to trigger an attack

! Reaction Change
" Amount of frequency change on an attack

! Decay 
" Amount of frequency decrease on a decay

! Performance degradation threshold
" Amount of performance degradation during the last interval below

which a frequency decrease is allowed in the next interval

! Endstop count
" Consecutive intervals at max or mix frequency after which we force 

an attack
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Hardware control: the attack/decay algorithm
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Attack/decay algorithm example #1
! Changes in floating point queue utilization for epic decode
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Attack/decay algorithm example #1
! Changes in floating point frequency for epic decode
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Attack/decay algorithm example #2
! Differences in load/store queue utilization for epic decode
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Attack/decay algorithm example #2
! Changes in load/store frequency for epic decode
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Performance degradation

! Same overall performance degradation as offline with 1% 
performance degradation target (Dynamic-1%)
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Energy savings

! Achieves 86% of the energy savings as offline with 1% 
performance degradation target (Dynamic-1%)
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Energy-delay improvement

! Achieves 86% of the energy-delay improvement as offline 
with 1% performance degradation target (Dynamic-1%)
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Attack/decay summary

! Correlates input queue utilization changes with frequency 
changes

! Independent control for each domain

! Implementable in a reasonable number of transistors
" ~0.1% of a 10M transistor chip

! Achieves 86% of the energy savings of an offline algorithm 
with identical performance degradation
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Profile-driven MCD control

! Profile run to identify long-running loops and functions for 
which the cost of reconfiguration can be effectively amortized

! Shaker and dilation thresholding algorithms to identify 
domain frequencies for each

! Identify functions, loops, and call tree paths at runtime 
through table lookups

! Distinguish �important� functions and loops and set 
frequencies accordingly
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Distinguishing loop/function instances
! Build a call tree, each node is a 

function or loop instance

! Distinguish different paths to a given 
function or loop

! Table lookup using path, 
loop/function PC, and possible call 
PC to identify function

! If marked �important�, change  
frequencies/voltages
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Performance comparison with offline
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Energy comparison with offline
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MCD performance optimizations

! Each domain can run at its natural frequency

! Global clock skew eliminated
" Saves clock power and metal also

! Dynamically trade off size for speed within each domain 
using an adaptive MCD
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Dynamic resizing

! Many dynamic resizing techniques proposed for power

! Speed of an adaptive structure depends on configuration
" Adaptive issue queue 70% faster at ¼ size

! Synchronous system cannot exploit the faster speed of a 
downsized structure due to other critical paths

! Structure can be overly upsized for a particular application 
but entire system must be slowed down (global clock)
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Adaptive MCD
! Idea: upsize structures within MCD domains so as not to 

impact other domain frequencies

! Design each domain to be heavily pipelined for high 
frequency (perhaps even overpipelined)

! Make selected structures adaptive to exploit ILP or to match 
larger working sets

! Upsize structures and adjust frequency when IPC 
improvement would override frequency decrease

! Drawbacks 
" Overpipelining for slower frequencies (IPC penalty)
" Configuration overheads degrade clock speed relative to fixed design
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Br PredBr PredBr Pred
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Resizable structures

! Front end domain
" Icache: 4KB-64KB 2-way
" Branch predictor sized according to Icache

# gshare PHT: 4KB-64KB
# Local PHT: 1KB-8KB, local BHT: 512 or 1024 entries

! Integer and floating point domains
" Issue queue: 16-64 entries

! Load/store domain
" Dcache: 32KB 1-way � 256KB 8-way
" L2 cache: 256KB 1-way � 2MB 8-way sized according to Dcache
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Methodology

! Baselines
" Fixed MCD: MCD with fixed frequencies with best overall TPI
" Fully synchronous: design with best overall TPI

! Fully synchronous structures sized to balanced delays

! Adaptive MCD additional branch penalty: 2 integer cycles 
and 1 front end cycle

! Adaptive MCD frequency penalty as much as 49%

! Per-application adaptation (profiling)

! Benchmarks
" 14 Mediabench
" 3 Olden
" 6 SPEC2000int
" 3 SPEC2000fp
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Fixed MCD versus synchronous

! Best fixed MCD organization
" 32KB Icache
" 32KB gshare PHT, 4KB local PHT, 1KB local BHT
" 128KB Dcache, 1MB L2
" 16 entry queues

! Best synchronous organization
" 64KB Icache
" 64KB gshare PHT, 8KB local PHT, 1KB local BHT
" 64KB Dcache, 512KB L2
" 32 entry queues

! 5% overall performance improvement
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Adaptive MCD versus synchronous

! Adaptive MCD config for each benchmark

! 18% overall performance improvement, min �3%, max 50%

Icache

4KB

8KB

16KB

32KB

64KB

Dcache

32KB 64KB 128KB 256KB

adpcm encode, bzip2,
adpcm encode

mpeg2 encode, swim, 
perimeter

jpeg compress, g721 encode, 
g721 encode, equake

jpeg compress, vpr

gsm encode, ghostscript,
gsm encode

gzip

epic decode, bh

mesa, vortex

epic encode

parser,
mesa mipmap (IQ=32) 

mesa osdemo, gcc

em3d (IQ=32)
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Areas for further research

! Best division into domains

! Circuits for voltage/frequency islands

! Front-end control (currently fixed)

! Dynamic voltage gating for leakage
" Voltage scaling works best when work is �smoothed out� over a long 

period of time
" Voltage gating works best when work is �clumped together� to 

introduce idle time
" Best combination of the two that optimizes energy-delay

! Combining performance and energy features
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For More Info�

http://www.ece.rochester.edu/~albonesi/acal


