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Power-Efficient Superscalar Processors
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Abstract—This paper investigates a possible solution to the
problem of power consumption in superscalar, out-of-order
processors by proposing a new microarchitecture, specifically
designed to reduce increasing power requirements of high-end
processors. More precisely, we show that by modifying the well-es-
tablished superscalar processor architecture, significant savings
can be achieved in terms of power consumption. Our approach
aims at limiting the growing amount of power used in a typical
processor for dynamic optimizations (including out-of-order
scheduling and register renaming). Our proposed approach
achieves significant power savings by reusing as much as possible
from the work done by the front-end of a typical superscalar,
out-of-order pipeline, via the use of a special cache nested deeply
into the processor structure. By reusing instructions that are
already decoded, reordered, and have their registers already re-
named, the front end of the pipeline can be turned off for large
periods of time with significant savings in the overall power con-
sumption. Experimental results show up to 35% (30% on average)
savings in average energy per committed instruction, and 35%
(20% on average) savings in energy-delay product, with about 9%
average performance loss, over a large spectrum of SPEC95 and
SPEC2000 benchmarks.

Index Terms—Computer architecture, microprocessors.

I. INTRODUCTION

TODAY’S superscalar processor microarchitectures place
an increasing emphasis on exploiting instruction-level par-

allelism. This often translates into having multiple execution
units that can accommodate a large variety of instruction mixes.
In order to support all these execution capabilities and to achieve
a significant speedup, the conventional instruction path needs to
include wide issue buffers to allow a larger number of in-flight
instructions and wide instruction paths to feed all available ex-
ecution units.

Traditionally, performance concerns have taken priority over
energy costs or power consumption. Power efficiency has been
addressed mainly at the technology level, through lower supply
voltages, smaller transistors, silicon-on-insulator (SOI) tech-
nology, better packaging, etc. Nevertheless, power dissipation
has become one of the primary design constraints for modern
processors, and thus, microarchitecture designers must now
take power requirements into consideration as well. Most of the
processors that are currently intended for mobile applications
support techniques like frequency and voltage scaling [1], [2] in
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order to reduce their power requirements in those applications
where high performance is not required.

Another research direction focuses on microarchitectural
techniques that aim at limiting the power consumed in areas
of the design that are not needed during specific computations.
Gating the input transitions has been one of these techniques,
proposed mainly as a potential way to reduce the power
consumption for large designs [3]. Focusing on a specific
component of the processor, techniques like filter cache [4] or
L-cache [5] were proposed to increase the power efficiency of
the cache subsystem.

More recently, an interesting architectural innovation imple-
mented by Intel in the Pentium 4 microprocessor is the use
of a special cache that shortens the branch misprediction path
[6], [7]. By placing this cache in the pipeline after the x86 de-
coding stages, and by storing decoded instructions (uops) in the
trace-cache, the whole decode stage can be shut down for sig-
nificant periods of time while the rest of the execution engine
continues working. When a hit in the trace-cache occurs, in-
structions do not need to be decoded again and can be fed into
the pipeline directly from the trace-cache.

Moving one step forward, one can envision such an execu-
tion cache (EC) as being placed even deeper in the pipeline
to allow for even further improvements through shortening the
branch misprediction path. If the cache is placed after the issue
stage, instructions that are fetched, decoded, and have already
had registers renamed can be stored in issue-order (and not in
program-order) in the EC. Assuming that the efficiency of this
EC is very good, most of the time instructions are executed out
of this cache and fed directly to the execution engine. However,
when a trace is not available, the front-end of the pipeline can
be restarted such that the execution is resumed like in a normal
superscalar processor.

Like all caches proposed or used in current microprocessors,
our EC is based on the code locality property. Usually, programs
are comprised of instructions executed many times in a short
interval of time. Furthermore, once an instruction is repeatedly
executed, there is a large probability for the subsequent program
sequence to be re-executed in the same fashion. Since all current
superscalar processors are built to dynamically optimize the ex-
ecution of program sequences by reordering instructions so they
can be executed faster, it makes sense to assume that most of the
optimizations will be done in the same fashion, each time the
sequence is re-executed.

To this end, we propose a novel micro-architectural organiza-
tion that allows for better power efficiency through reusing the
work done by the front-end of the pipeline. Furthermore, tech-
niques like guarded evaluation [8] or clock gating [3] will enable
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TABLE I
BASELINE MICROARCHITECTURE PARAMETERS

significant reductions in power consumption for pipeline stages
that are not used during different phases of the program execu-
tion. If the front-end of the pipeline is not used for long periods
of time, we can shut it off and thus obtain further savings in the
leakage power.

This paper is organized as follows. Section II gives a brief
motivation for our work, while Section III presents some of the
previous work that is most relevant for our approach. Section IV
presents the main aspects of our microarchitectural design, in-
cluding the selected EC structure, the organization of the new
register file, and the register renaming technique that will allow
us to reuse renaming information collected while building the
traces. The experimental setup is described in Section V and
the results of these tests are included in Sections VI–VII. In
Section VIII, we present the power-performance tradeoffs avail-
able when using this type of microarchitecture. We conclude in
Section IX with some final remarks and possible directions for
future research.

II. MOTIVATION

Probably the most important disadvantage that out-of-order
processors have over other cores not relying on dynamic sched-
uling hardware is their relative power inefficiency. To identify
the major sources of energy overhead, we have considered a su-
perscalar, out-of-order pipeline (Table I).

Analyzing the power consumption for each major compo-
nent of the superscalar architecture, we obtain the breakdown
in Fig. 1. To this end, we have assumed that each component
not used can be clock-gated, on a per-cycle basis, with an over-
head given by the leakage current. The leakage value presented
in Fig. 1 is obtained using the models proposed by Butts and
Sohi [9]. The normalized leakage current per device was esti-
mated as in [10].

A large part of the total power budget is required for the mod-
ules accounting for the front-end of the pipeline, branch pre-
dictor, I-cache, and instruction window. To achieve better power

Fig. 1. Energy per committed instruction for ijpeg (0.13 �m process
technology, V = 1:8 V, f = 1:0 Ghz, large input set).

efficiency we focus on these front-end modules, trying to reuse
as much as possible from the already performed work. Obvi-
ously, the functions performed by the fetch and decode stages
are identical each time a specific trace from the program is ex-
ecuted. Using a novel register file structure, we can also reuse
the work done by the rename and issue stages.

For truly achieving work reuse, we propose a new microarchi-
tecture, with a modified type of trace-cache placed between the
issue and execute stages, storing traces of instructions in issue
order. This new microarchitecture will allow turning off the
front-end of the processor for large periods of time, saving the
power required by all the modules belonging to these pipeline
stages.

III. RELATED WORK

When it comes to performance, high-end processor designers
have always been the last to accept a possible compromise. As
intended for applications where raw performance is the primary
target, the last bit of potential efficiency is usually squeezed
from each architectural design. In this respect, all the power-re-
duction work has usually been concentrating on defining mech-
anisms at lower levels of abstraction. Traditional circuit-level
approaches, as voltage scaling, transistor resizing or libraries
redesign [12], are now employed by most modern superscalar
processors.

Guarded evaluation [8] was proposed as a static technique
to reduce the power required by a combinational circuit when
some of the operands do not change through successive time
steps. Another method, clock gating [3], was proposed to save
the power wasted by units that are temporarily not used. Both of
these techniques require some extra logic (or a static algorithm)
to identify when sub-blocks of the larger design that are not used
in order to prevent input transitions from occurring.

These techniques are currently widely accepted and tools like
Wattch [11] that model the power consumption of a superscalar
processor consider them as implemented by default. However,
even though high performance commercial processors imple-
ment clock gating to some extent, most of them do not use it
very aggressively. This is mostly due to the inherent difficulties
in predetermining, on a cycle-by-cycle basis, whether a module
will be needed or not, or in finding longer intervals when a
module can be completely shut down.

A mechanism aimed at using a very long instruction word
(VLIW)-like core for improving the performance of a processor
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was previously explored [13]. Unlike our approach, the DIFF
engine is a dual core processor. The first core is a simple, single-
issue pipeline that is capable of scheduling traces of instruc-
tions and store them in a special cache. Should these traces be
re-executed, they will be fed directly to a secondary, VLIW-like
execution core, greatly improving the performance when com-
pared against the initial single-issue pipeline.

In the miss path scheduler (MPS) microarchitecture [14], an
external instruction scheduler is added to a VLIW core. Nor-
mally, the execution takes place in the simple, parallel engine
and the MPS is used only infrequently to bring instructions
from the memory and schedule them (creating VLIW words and
storing them in the instruction cache for further reuse). Since the
instruction and data caches are assumed infinite and the branch
prediction is based on profiling, the performance is dictated here
only by the VLIW core capabilities. MPS does not use two exe-
cution cores but, unlike both our approach and DIFF, assumes an
infinite I-cache. Since the external instruction scheduler is very
seldom used, the overhead incurred for scheduling the VLIW
words is not an issue.

Storing instructions in the logical program order rather than
actual memory order has been previously proposed [15]–[17].
Usually, the trace-cache employed in all these studies is used
as a mechanism for improving the fetch efficiency and allowing
for multiple branch predictions during each clock cycle. An ex-
ception is the TurboScalar microarchitecture [18], where a long
and thin pipeline is used for creating traces that feed a very short
and thick pipeline, thus harvesting a much higher instructions
per cycle (IPC).

All these studies have focused on increasing the performance
of the processor core, but do not address the power consumption.
Modified DIFF or MPS implementations that use limited caches
can conceptually be quite close to our design. However, DIFF
uses two different pipelines, resembling TurboScalar more than
our implementation [18]. Furthermore, all these examples as-
sume the existence of a separate scheduler for a VLIW engine.
In these studies, the complexity of creating traces and storing
them in an efficient structure is taken off of the critical execu-
tion path and placed after the Retire stage of the pipeline. Thus,
they avoid most of the performance drop caused by the extra
work required for filling the trace-cache and can perform a lot
of optimizations before storing the instructions (reordering, re-
naming, and hashing). However, they do not address nor quan-
tify the substantial power overhead incurred by all the required
logic.

More recently, a trace cache-based mechanism aimed at both
improving performance and reducing power consumption was
proposed by Intel [6], [7], [19]. Storing traces of decoded in-
structions, this design can bypass the fetch and decode stages
and send instructions from the trace cache directly to the Re-
name. Due to the CISC ISA, the parallel x86 decoders have
been traditionally one of the most complex parts of the pro-
cessor, limiting the maximum achievable clock frequency and
accounting for an important part of the total power budget. Since
the new trace cache based microarchitecture only relies on these
decoders for a small fraction of time, it can use a much sim-
pler (albeit, a lower performance) decoding scheme, reducing
the overall power requirement.

Fig. 2. Superscalar microarchitecture using an EC for reusing scheduled
instruction streams.

Unlike the Intel-proposed trace cache, the work described
herein intends to reuse as much as possible from the work per-
formed in decode, rename and issue mechanisms instead of just
bypassing the decoders. While this approach is not intended to
increase performance, it can yield some important savings in the
power required by the entire pipeline front-end.

The general approach has been previously described in [20].
In this paper, we propose a different caching technique to im-
prove the utilization of the EC. Thus, we can reduce the required
cache size, obtaining comparable results under more realistic
assumptions. Also, we include a more in-depth study of this mi-
croarchitecture and we evaluate the advantages and limitations
of this approach.

IV. MICROARCHITECTURAL DESIGN

In this paper, we propose a more power efficient processor
microarchitecture. In order to achieve this when an instruction
is re-executed, the goal is to reuse as much as possible from the
computations performed during previous executions.

To reuse the work and reduce the branch misprediction path,
we propose to place an EC deep in the pipeline, after the issue
stage. To avoid the performance penalty incurred by an extra
pipeline stage between the issue and the execution stages, in-
structions are issued in parallel to both the execution stage and
the EC. The conceptual microarchitecture is illustrated in Fig. 2.

Normally, instructions are fetched from the I-cache through
the fetch stage and then decoded. In the next stage, physical
registers are assigned for each logical register, avoiding poten-
tial false dependencies. The resulting instructions are placed in
the issue window for dependency checking. A number of inde-
pendent instructions are issued to the execution stage and, in
parallel, added to a fill buffer in order to create program traces.
When enough instructions are placed in this fill buffer, the en-
tire program sequence is stored in the EC in the issue order, for
later potential reuse.
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In this setting, the branch misprediction path can be signif-
icantly shortened by feeding the execution units directly from
EC whenever possible. Initially, when EC is empty, instructions
are launched from the issue window, while a trace is built in
parallel. We call this step the trace segment build phase. Upon
a mispredict (or a trace completion condition), a search is per-
formed to identify a possible next trace starting at that point, and
should a hit occur, the instructions continue to be executed from
the EC, on the alternative execution path (dotted line in Fig. 2).
When operating on this alternative execution path, the processor
behaves essentially like a VLIW core with instructions being
fetched from the EC and sent directly to the execution engine.
If a miss is encountered on a trace search, the pipeline front-end
must be launched again and a new trace is built.

A. EC Architecture

Similar to the conventional trace-cache implementations,
our design divides the program into traces of instructions
that are stored in a different order than the one given by their
original addresses. This design allows to implicitly include
information about the reordering work done in the fetch and
Issue stages through the actual order in which instructions are
stored. However, the cache chosen in the proposed architecture
is structurally different from the trace-cache typically used for
increasing the fetch bandwidth.

When stored in issue order, instructions lose their original,
logical order and they can be retrieved only on a sequential basis.
However, in order to allow for traces to be reused, the start ad-
dress of each trace needs to correspond to a physical address
in the memory space. Instructions from two consecutive traces
cannot be interleaved, so at each change of trace the processor
must restart trace execution in-order.

Specifically, at each trace end, a trace look-up step must be
performed. While most of the time the performance penalty as-
sociated with this look-up can be hidden (the look-up being
started in advance), there are certain conditions when this is not
possible. Together with the need for an in-order start of each
trace, this leads to some performance penalty associated with
each trace change.

To minimize the overall performance impact of this design,
traces must be as long as possible. While most trace-cache de-
signs proposed in the literature limit the traces to at most three
basic blocks, in our case it is desirable to include as many in-
structions as possible. However, as they get longer, the number
of traces that can be accommodated in a reasonably sized cache
decreases. This leads to a hit rate decrease at trace look-up, so
a higher front-end utilization is achieved. While this does not
impact overall performance significantly, it increases the power
consumption since both the front-end and the EC (in trace-build
mode) are simultaneous utilized. To address this problem, we
allow the maximum size of the traces to be dynamically modi-
fied. The trace size is proportional to the number of branch mis-
predicts, such that longer traces are obtained whenever program
locality is very good.

The simultaneous presence of traces with different lengths in
the EC (some of them very long) has prevented the use of a
standard trace cache model [16], [17] or the very efficient block
based trace-cache structure [15]. Thus, we have decided to go

Fig. 3. EC structure.

for a solution that resembles the Intel implementation of the
Pentium 4 microarchitecture [6] because it can accommodate
traces of arbitrary length. The block architecture of this solution
is presented in Fig. 3.

The EC structure consists of a tag array (TA) and a corre-
sponding data array (DA). The TA is an associative cache, ad-
dressed using the translated program counter. It is used for trace
look-up and it should be as fast as possible to reduce the per-
formance overhead associated with searching for a new trace.
SET ID (in the TA) points to the DA set containing the start
of the desired trace. DA is a multi-way set associative cache
(four-way in our case) composed of multiple memory banks. A
comparison with TRACE ID is performed for each block in the
set to identify the correct starting block. The next chunk of in-
structions is located in one of the blocks of the following set,
and so on (see Fig. 3). A special end-of-trace marker identifies
the end of the trace.

By knowing beforehand which set will be accessed next,
we avoid performing a new look-up for each subsequent read.
Furthermore, knowing the next set allows the use of multiple
memory banks to implement the DA. While one of the banks
is used, the others can be turned off, resulting in further energy
savings. Thus, the entire array is used only when accessing
the first instructions in a trace. On all subsequent accesses,
the energy consumed by the line decoder and by the unused
banks can be saved. Depending on the application, the ratio of
the accesses made to only one bank against the total number
of accesses can vary between 1:2 (e.g., gcc) and 3:4 (e.g., for
floating point benchmarks).

Inside each block, an arbitrary number of issue Units is stored
(Fig. 4). An issue Unit consists of independent instructions that
can be issued in parallel to the functional units. Since issue Units
are recorded during the trace-building phase (when the front-end
of the pipeline is used) and then reused in all subsequent exe-
cutions of the trace, the processor will take the same optimizing
decisions each time it executes the code.

While in the previous implementation [20] only one issue
Unit was stored in each block, here we allow as many as pos-
sible. This allows for a significant reduction in the number of
accesses and thus, in the power required by the EC. All instruc-
tions coming from the issue window are first assembled into
traces using the fill buffer and then recorded to the EC. The fill
buffer can accommodate two DA blocks, and when enough in-
structions are available to fill a block, they are written to the EC.



18 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

Fig. 4. EC block organization.

When reading from the EC, we issue one issue Unit at a time,
using a similar mechanism. If enough space is available in the
fill buffer, a block is read from the DA and added to the buffer.

In our proposed design, each block contains more than one
issue unit, and thus, needs more than one clock cycle to be sent
to the execution core. This organization allows for hiding some
of the EC latency because an access can be started before actu-
ally being forced to stall the pipeline. At the same time, using
longer cache lines increases the power required per access, but
it also helps reducing the total number of accesses. Across our
set of benchmarks, the longer line proved to be slightly more
efficient in terms of power consumption.

The downside of increasing the block size is that the efficiency
of the EC decreases, instruction slots remaining empty. We
have focused on blocks that can accommodate eight or sixteen
instructions, and our tests have shown that the eight instructions
version can be significantly more efficient in terms of instruction
space storage.

A least recently used (LRU) policy is used for freeing up
blocks in each set from the DA when a new trace-building
phase is initiated. To terminate the creation of a trace, the
trace-building algorithm takes into account several criteria like:
trace length, occurring mispredicts, jumps, and the ability of
finding another existing trace starting at the current point.

B. Trace Creation and Ending Policies

When creating a new trace, instructions are added until an end
condition is met. Such end conditions can occur when the trace
grows beyond a maximum length, when we encounter hard to
predict instructions (e.g., function returns or indirect branches)
or when a branch mispredict occurs and execution must resume
from a different address. When fetching instructions from the
EC, execution is abandoned on trace-end (detected when at-
tempting to fetch more instructions) or on a mispredict (detected
by the write back stage). To replace a trace, a lookup is first per-
formed on the TA; if this search misses, the front-end of the
pipeline is restarted. Should a hit occur, instructions are issued
directly from the EC, after observing the trace look-up penalty.

We point out that a trace is created following a number of
branch predictions. Since we must store very long traces in a
reasonably sized cache, we cannot afford to store multiple traces
starting at the same physical address. Even more, storing mul-
tiple such traces would require a predictor for selecting between
them, and such a predictor would be prohibitively complex. As

no reasonably accurate predictors have been proposed for pre-
dicting more than three branches in a single cycle, conventional
trace cache architectures limit the trace size to three basic blocks
[15], [16].

Since our traces can be hundreds of instructions long, they can
contain much more than three basic blocks. We tried to select
among multiple program traces starting at the same physical ad-
dress by using a limited predictor (predicting only two branches
in advance), but results did not improve significantly. For this
reason, we have decided against implementing a next-trace pre-
dictor, which would prove very inaccurate for more than three
branches, while requiring an important energy overhead.

In our case, the trace is declared invalid and another one
created if previous predictions prove to be wrong. The policy
implemented here is to declare a trace invalid when mis-
predictions are encountered in a row, on the same trace. Traces
created on unusual code paths tend to generate a large number
of mispredictions during re-execution, and they are filtered out
by this mechanism. While these traces are filtered out faster
and performance improves when decreases, the usage of
the front-end of the pipeline also increases, leading to an in-
crease in power consumption. We have used values of two
and three for (that is, replace the trace after two or three
consecutive mispredicts).

As mentioned above, the EC must be quite large so its power
requirements can offset a large part of the savings. To address
this issue, we try to avoid accessing it very often by using a large
fill buffer. Also, given the known pattern of most accesses, we
split the EC into banks that are gated when not in use. An I-cache
with the same size would require significantly more power, as it
would be accessed every cycle and its access pattern would not
allow sub-banking. As it will be seen in Section VI, the results
for a larger I-cache show some significant performance benefit
(relative to the EC version) for some benchmarks, but at the cost
of more than three fold increase in the I-cache power.

C. The Register File

Placing the above-described EC deep in the pipeline, after the
issue stage, allows for reusing the work done by all the front-end
stages. This also implies that register renaming is not performed
on the instructions issued directly from the EC. Being different
at each trace run, the values held by the register file cannot be
stored in the EC and reused. However, register renaming is only
performed in trace creation mode. This operating mode assumes
that the virtual-to-architected register mapping is the same at the
beginning of each trace. Some architectural changes need to be
brought to the register pool and control unit to ensure that this
can be implemented. We use a special register pool structure for
this task, conceptually similar to the one proposed by Nair and
Hopkins [13]. The logic structure is presented in Fig. 5.

Our structure employs a special pool of physical registers
for renaming every logical register in the ISA. In our proposed
microarchitecture, each architected register is organized as a
circular buffer of physical registers, as opposed to a stack
organization that was proposed previously [21].

Unlike a typical register file, where an architected register
can be renamed to any physical entry, in our implementation an
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Fig. 5. Architected register structure.

architected register can be renamed by using just the physical
entries of the corresponding pool. However, each subsequent
write goes to a different physical register of the pool using a
deterministic algorithm. This approach solves the problem of
potential false data dependencies and can be used for imple-
menting register renaming. Because of its very predictable be-
havior, this mechanism is similar to what has been proposed for
implementing modulo-scheduling [17].

As with any rotating register file, the number of in-flight in-
structions that have the same logical destination is bounded by
the number of physical registers available in the circular buffer.
This limitation reduces the renaming capacity when compared
against other register renaming schemes. However, following
the usual register allocation convention used by most compilers,
we note that some registers are written very often (e.g., those
holding local variables), while others are mostly read (e.g., stack
pointer, return address, etc.). Following these conventions, we
can use a different number of renaming registers for imple-
menting each architected register, thus alleviating the renaming
capacity problem while also preventing the register file structure
from becoming too large.

When going through rename each instruction is allocated
a physical register as destination, other than the one holding
the last known value for the corresponding architected register.
Having different physical destinations, instructions can write
the result as soon as it is available, setting the (valid) bit.
This bit is used to detect where in the register file we have valid
data. If all the source registers for an instruction have this bit
set, the instruction can be issued to the execution unit. The bit is
cleared when the physical register is allocated as a destination
in the rename stage and it is set when the value is written in
the write back stage. The actual value in the physical register
(register ) is only accessed when we have to perform
the read/write operation.

The (speculated) bits are used for specifying committed
values and they are cleared only after the instruction is retired.
In order to be able to roll back the speculative state when a mis-
predict (or interrupt) occurs, we need at least one committed
value in the circular queue. Whenever a rollback condition oc-
curs, the index is reverted to this “last committed” value for the
architected register. A physical register cannot be assigned as a

destination for a new instruction (in the register renaming stage)
if the associated S bit is set. If this happens, there are not enough
physical registers to perform renaming at this moment and the
Rename stage stalls.

The indices (values – ) are initialized with
consecutive values and represent the logical
order of the registers in the circular queue. IDX is a pointer
in this queue representing the most recently allocated register.
All accesses (to the value field or to the status bits and )
are associative, comparing the renaming information against the
POS tags. While executing a trace, the POS tags remain constant
and represent the logical order of the circular queue (the order
the registers are allocated). When the trace starts, the physical
register with tag 0 holds the actual value for the
architected register.

D. Register Renaming

When the instruction reaches the renaming stage, physical
registers must be assigned as its source and destination registers.
The IDX value is the index of the physical register holding the
last value written to that architected register. It is incremented
(modulo ) for each “write” operation so successive writes to
the same architected register will actually use different physical
registers. For each “read,” IDX is read and assigned to the in-
struction as a physical register selector.

The (speculated) bit is checked for the corresponding phys-
ical register and, if it is found set, the pipeline is stalled. Other-
wise, is set and (Valid) is reset to mark the value as not yet
available. will be set when the result is computed and written
back to the register, while will be deleted later, when the in-
struction is retired.

Each trace generation is done with an initial value of
, meaning that the correct value for the register is stored in the

location marked by . If this condition is respected,
all subsequent executions can be done without further renaming
the registers. The caveat is that this requires a checkpoint to be
performed when a trace execution ends: the POS values must be
recomputed for the circular buffer, such that most recent value
is stored in the first entry. This can be done by subtracting IDX
from each POS, but it would require a separate adder for each
physical register. However, since the physical order of the en-
tries is irrelevant and it does not have to match the logical one,
the same effect can be obtained by XOR-ing each POS with IDX.
After doing so, all registers receive different tags ranging be-
tween 0 and -1 and the register holding the last value receives

.
For an easier understanding of this mechanism, let us assume

the following example. Assume a code is executed in a loop,
with each iteration consisting of the following sequence:

Addr0:
Mov r1, #5 ;
Mov r2, r0 ;
Add r3, r1, r0 ;
Sub r2, r3, r1 ;
Xor r1, r1, r2 ;
Jmp Addr0 ; go back to the beginning
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Let us assume that the trace will be created unrolling only
two successive iterations of this loop (this can hold or the trace
can be longer, but it doesn’t make a difference for the register
renaming algorithm). For this example, we also assume the use
of four physical registers for each architected register. After un-
rolling, the trace becomes the following:

0. Mov r1, #5 ;
1. Mov r2, r0 ;
2. Add r3, r1, r0 ;
3. Sub r2, r3, r1 ;
4. Xor r1, r1, r2 ;
5. Jmp Addr0 ; go back to the beginning

; (6 after the loop is unrolled in the EC)
6. Mov r1, #5 ;
7. Mov r2, r0 ;
8. Add r3, r1, r0 ;
9. Sub r2, r3, r1 ;
10. Xor r1, r1, r2 ;
11. Jmp Addr0 ; go back to the beginning

; (restart the same trace)

When this trace is executed for the first time, the front-end of
the pipeline, issue and register renaming is performed. At the
beginning of the trace the IDX field is zero for all four registers
used here. The registers are renamed as following:

0. Mov r1, #5 ; (IDX is incremented for r1)
1. Mov r2, r0 ; (IDX incremented for r2,

; (IDX is found 0 for r0)
2. Add r3, r1, r0 ;
3. Sub r2, r3, r1 ;
4. Xor r1, r1, r2 ;
5. Jmp Addr0 ; continue with instruction 6
6. Mov r1, #5 ;
7. Mov r2, r0 ;
8. Add r3, r1, r0 ;
9. Sub r2, r3, r1 ;
10. Xor r1, r1, r2 ;
11. Jmp Addr0 ; go back to the beginning

In representing the above trace, we have used the notation ri.j
for physical register in the pool associated with the architected
register .

When the trace ends, each physical queue needs to be reor-
ganized. For register r0, IDX remains set to 0 so all POS fields
remain unchanged. For registers 1 and , IDX will be again
zero (in our example we have four writes per trace for these
registers), so the relative ordering in the circular queue remains
the same. For 3, IDX is 2 at the end of the trace, so the XOR

will actually modify all POS values. Physical entry #2 will be-
come #0 and the rest will receive a new position in the circular
queue. When retrieving the same trace from the EC, we execute
directly:

0. Mov r1.1, #5
1. Mov r2.1, r0.0

2. Add r3.1, r1.1, r0.0
3. Sub r2.2, r3.1, r1.1
4. Xor r1.2, r1.1, r2.2
5. Jmp Addr0
6. Mov r1.3, #5
7. Mov r2.3, r0.0
8. Add r3.2, r1.3, r0.0
9. Sub r2.0, r3.2, r1.3
10. Xor r1.0, r1.3, r2.0
11. Jmp Addr0

As it can be seen, all renaming information is already present.
Execution starts with all valid values in the physical entry #0
and the first destination, they will not destroy the old value. Of
course, when re-executing the trace, physical register #0 in each
pool may be different than last time. The associative scheme
ensures that all traces will see the same register configuration
each time they are executed. Another valid option here is to
physically copy the values toward the origin of each queue when
a trace ends. However, by using the associative approach, one
can avoid copying the values and the potential latency associated
with such an operation.

E. Supporting Precise Interrupts

A very important aspect of an instruction set architecture
(ISA) is the support of precise interrupts. Should an exception
occur, most legacy ISAs guarantee an in-order state before
executing the service trap. To do so, the instructions must be
tagged during dispatch in such a way that the retire stage knows
how to place them in-order before testing potential exceptions.
When executing instructions from the EC, we must make sure
we have enough information to support reordering.

As described above, all accesses to the register file structure
are associative on each architected register; a new trace is not al-
lowed to access the registers before the checkpoint occurs at the
end of the previous trace. This can be a potential drawback, since
we essentially introduce a few bubbles in the pipeline between
traces. On some trace changes, these bubbles appear anyway,
due to branch mispredictions. We take into consideration these
effects and include them in the overall performance numbers
presented in Section VI.

However, such an operation mode guarantees that the issue
window can only contain instructions belonging to a single
trace. As in a normal out-of-order processor, instructions are
tagged for in-order retirement before being sent to execution.
Similar to the issue window, the retire stage can store only one
trace, so the reordering tags are still valid. This fact allows
in-order instruction retiring, each time using the same retire
buffer allocation that was recorded during trace creation.

V. EXPERIMENTAL SETUP

To validate our approach, we have modified the SimpleScalar
microarchitectural simulator to support our register file and
EC models, a longer pipeline and an operating mode based
on inter-stage buffers. Also, to support instructions coming
either in-order, from the front-end or out-of-order, from the EC,
we had to modify the simulator to execute all the instructions
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TABLE II
CONTENT OF THE DATA ARRAY

out-of-order, in the execution stage instead of the dispatch
stage. For the baseline microarchitecture, the register renaming
mechanism chosen is similar to the one used by the MIPS
R10000 processor [22].

The power models were based or similar to the ones used in
Wattch [11]. For the modules that do not exist in the original
SimpleScalar framework, we have used the same methodology.
The EC modules (the tag array and the data array) have been
modeled as regular caches optimized for speed (similar to the
L1 cache models used in Wattch). The register file was broken in
two modules: a regular register file that holds data and a rename
file that holds the renaming information. The physical register
file (together with the POS values) is simulated as an associative
array, and one (valid) bit is associated with each entry. The
rename file includes the IDX and the values, and is simulated
as a directly mapped array.

For evaluating the leakage power, we have used the method-
ology proposed in [9]. The model is based on the estimation of
the total number of devices for the entire processor, as well as
their type.

As the combinational circuitry required by the checkpointing
mechanism is very simple, we do not include its power con-
sumption. The circuitry involved for checkpointing is very
simple, the only operation needed being a 3-bit XOR between
the values in POS and the values in IDX for all entries in the
register file (67 ISA registers with four physical entries per
register). Furthermore, this circuitry is not used during each
cycle, but only when a trace is started, reducing its effect in the
overall power consumption.

All results presented in the next sections assume an EC that
can hold eight instructions per block in the data array. For each
entry, the recorded information includes the decoded instruction,
the renaming information for each of the three registers, a trace
tag, the retire position and the sequence identifier (Table II).
In this study, we have assumed an Alpha-like ISA, with 32-bit
code and a factor of expansion after decode of 1.5 (thus,
each stored decoded instruction is 48 bits long). The trace tag
is created in the decode stage and is used for retrieving the
initial instruction ordering inside the trace when this ordering is
needed (e.g., when an interrupt or mispredict occurs inside the
trace). The retire position is allocated during Rename and it is
essentially an index in the retire buffer, allowing for supporting
precise interrupts. On each reuse, instructions will retire in
the same manner, using the information stored in this field.

TABLE III
CONTENT OF THE TAG ARRAY

Fig. 6. Base pipeline microarchitecture.

The Sequence Id is the same across instructions belonging to
the same issue unit, but it is toggled when an issue unit ends
to signal the last instruction that can be issued in parallel.

Overall, each entry is 76 bytes long. We assume a single clock
cycle for passing this information from the EC to the fill buffer,
due to a very wide bus. However, since most of the time we can
start an access several cycles in advance, a narrower bus can be
used, sending a block over two or three cycles. Furthermore, if
an entire issue unit is present in the fill buffer, it can be sent to
the execution before the entire line is retrieved from the data
array.

The content of the Tag Array is presented in Table III. Each
entry must hold the Starting Address that must be matched
against the PC. A second address is needed for the Data Array,
and it indicates the first set where the trace is stored. The trace
Id is a value that identifies the DA entries belonging to the same
trace and the Mispredict count stores the number of times that
a misprediction occurred on the current trace.

We have considered an 8-stages pipeline, which is close to
the pipeline depth used in some of today’s processors. Its con-
ceptual structure is presented in Fig. 6.

The main parameters of the microarchitecture we considered
are presented in Table IV. We have accounted for the difference
in global clock power due to an increased number of pipeline
registers that have to be clocked. To validate our results, we have
used a mix of benchmarks from both SPEC95 and SPEC2000.
All tests were performed by fast forwarding over the first 500 M
instructions and then doing detailed simulation for the next 50 M
instructions.

VI. PERFORMANCE RESULTS

Generally, the performance of our processor is lower than the
one achieved by the corresponding superscalar design. While
performance is actually improved for benchmarks with a poor
code locality, it can drop significantly for benchmarks with a
very low miss rate in the first level I-cache. For the pipeline
shown in Table IV, the EC version performed up to 6.5% faster
than the basic one for benchmarks like mesa or gcc and up to
19% slower for ijpeg or parser (see Fig. 7).

Overall, our microarchitecture is 8.5% slower on average
when using a large EC (100K), or 9.8% slower when using a
smaller one (50K). All values presented in Fig. 7 are normal-
ized with respect to the base microarchitecture. While most
benchmarks run slower on this new microarchitecture, for
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TABLE IV
MICROARCHITECTURE PARAMETERS

Fig. 7. IPC variation for the EC microarchitecture architected register
structure.

some of them the performance can actually increase. This may
be considered somewhat surprising, as our approach is meant
to alleviate power consumption problems and not necessary
increase performance.

The proposed structure performs better on mesa and gcc,
while it performs worse than the baseline microarchitecture on
other benchmarks like parser, gzip or compress. Comparing
these results against the I-cache miss rate (Fig. 8), we notice
that our microarchitecture performs better when the I-cache
miss rate is important in the baseline. Due to the much larger
EC that is now storing the instructions, the overall miss rate is
reduced and this factor tends to be significant for some of the
benchmarks. An exception is vortex, where the new EC does
not help much in reducing the I-cache miss rate. In this case,
the number of traces that our microarchitecture creates is rather
large, and the entries of the EC have to be refilled with new
instructions very often.

Fig. 8. Benchmark behavior: I-cache miss rate (baseline architecture as in
Table IV, but without EC).

Fig. 9. Performance variation for larger I-cache sizes (baseline architecture,
normalized with respect to the version using a 32K I-cache, as in Table IV.

Fig. 10. Performance of a modified baseline using the queue-based register
file (normalized against the baseline using the MIPS-like register file).

Since our microarchitecture achieves maximum speed-up on
benchmarks where the I-cache miss rate is high, it makes sense
to test the performance and power requirements of a superscalar
processor that uses a larger I-cache. In order to minimize the
fetch miss rate, we doubled the number of sets in the I-cache,
bringing its size to 64K. The normalized performance increase
is presented in Fig. 9.

Significant performance gains are observed for benchmarks
where our EC-based microarchitecture also performs better or
very close to the baseline microarchitecture (gcc, mesa, vortex).
These gains are obtained at the expense of an increase in power
consumption—the 64K I-cache requires 60% more power than
the original 32K cache (Section VII).

As even larger performance gains can be obtained for the
baseline processor if the I-cache size is increased, it becomes
clear that the proposed microarchitecture does not offer any
significant performance benefits. In order to identify the actual
cause for the performance degradation that we see on most of
the benchmarks, we also simulated a modified baseline, using
the queue-based register file (Fig. 10).

Except for gcc, mesa, and, to a lesser extent equake, where the
original higher I-cache miss rate helps the EC-based microar-
chitecture, the modified baseline still performs similarly or even
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Fig. 11. Effect of the EC latency on the overall performance (normalized
with respect to the (2, 1 cycles) EC-based microarchitecture). The baseline
configuration (2, 1) assumes that the first access to a trace requires two cycles,
and the subsequent ones can be performed in a single cycle. (3, 1) and (5, 1) are
configurations where the first access takes three and five cycles, respectively,
with subsequent accesses taking one cycle.

significantly better than the EC-based microarchitecture (parser,
compress, turb3d, gzip). This suggests that the smaller renaming
capacity and the associative register access are not the only fac-
tors limiting the performance. However, most of the results are
very close (less than 2% difference on average), which suggest
that these are the main bottlenecks. The rest of the performance
penalty is caused by the fixed scheduling not being able to cope
with variable latency instructions, and by the slightly increased
mispredict penalty observed for any miss in the EC.

Another interesting aspect is the effect the EC latency has on
the overall performance. As pointed out in Section IV, most of
these accesses can be started early, effectively hiding their la-
tency. Accesses that cannot be predicted early are those that do
not follow the normal execution path—at branch mispredictions
or when loads issued speculatively collide with previous unex-
ecuted stores. In all these cases, we have to sequentially access
both the TA and the DA of the EC. We have run the same bench-
marks, assuming a 100K EC and increasing the latency of these
accesses from two cycles (as in the previous results) to up to five
cycles. While some benchmarks experience a hit in performance
of about 5% when using a five-cycle latency, for others the ef-
fect is negligible. On average, increasing this latency from two
to five cycles results in about 3% average performance degrada-
tion (Fig. 11).

VII. POWER CONSUMPTION RESULTS

As presented in Section VI, the use of a large EC helps low-
ering the I-cache miss rate for two out of the ten benchmarks.
On these benchmarks, performance of the proposed microar-
chitecture is similar to the one offered by a superscalar, out-of-
order processor with a much larger I-cache. However, the larger
I-cache translates in a significantly increase in the overall power
requirements.

As not all benchmarks can benefit from the larger I-cache
size, we decided against comparing our microarchitecture with
a baseline that uses more than 32K of L1 I-cache. This way, the
power consumption comparison is fairer for benchmarks that do
not need the larger size cache. Should a different baseline mi-
croarchitecture be used, the power benefits will be significantly
larger than the results presented in this section.

For reporting power consumption, we use the average energy
per committed instruction (EPI). For a better understanding of

Fig. 12. Energy per instruction breakdown for ijpeg (0.13 �m process
technology, V = 1:8 V, f = 1:0 Ghz, large input set).

our results, we start by presenting a breakdown of the power re-
quirements for the major structures in our design. We have used
here the same benchmark (ijpeg) as for the breakdown presented
in Fig. 1 in order to estimate the overall savings that are achieved
by our microarchitecture.

The results in Fig. 12 are obtained for ijpeg, using a 50K EC
and correspond to a situation where roughly 90% of the time the
processor is reading instructions from the EC. The EC energy
cost includes both TA and DA energy values. While the power
consumed in the front-end of the pipeline decreased (Instruction
Window, I-cache), the other modules of the processor require
roughly the same power (ALUs, load store queue, etc.). An in-
teresting aspect is the big increase in leakage power, of almost
37%. This is caused by the introduction of a large cache (the EC)
inside the pipeline, but also by the fact that many units are now
unused, increasing their contribution to the total static power.
However, most of the leakage due to array structures can be ef-
ficiently kept under control via the use of gated memory
cells [25].

An interesting case is the EC: by sub-banking the DA we
have managed to maintain reasonable power consumption. As
the size grows, an increasing number of banks are needed in
order to keep the power cost under control. However, the number
of banks does not need to be very large. While our previous
implementation [20] required very deep sub-banking to reduce
power consumption, in this case a decent power cost can be
achieved even with a reasonable number of banks.

For testing the overall power consumption of our microar-
chitecture, we considered two EC sizes (50K and 100K), both
divided into four banks. With the smaller EC, average EPI is re-
duced by as much as 35% (e.g., equake or compress). Overall,
EPI is reduced by 29%. In Fig. 13, all these values are nor-
malized with respect to the energy requirements of the original
pipeline organization.

When using a larger EC, the power consumption required by
the cache increases. However, performance and the time spent
executing instructions on the alternative execution path increase
significantly for some benchmarks (vortex, vpr, gcc, turb3d).
Thus, the increased power consumption of the EC is offset by
the performance gains and we have slightly better results with
an overall reduction of up to 31%.

Interesting cases are gcc and vortex. If EC size is doubled
(to 100K), the hit rate increases and the alternative path usage
becomes much better. If the 50K size EC is used for gcc, the
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Fig. 13. EPI for a 50K and 100K EC organized in four banks (normalized with
respect to the baseline presented in Table IV, without EC).

Fig. 14. Alternative execution path usage.

Fig. 15. EC EPI (including the associated leakage energy).

processor issues instructions from this cache only 43% of the
time (compared to up to 94% of the time for compress).

In such situations, EC becomes less efficient since it may not
be capable to accommodate a significant part of the application
code. Traces are created more often than they are used, burning
power both in the front-end and in the EC. For most benchmarks,
instructions are issued from the cache more than 70% of the
time, whereas in case of gcc the EC usage is only 43% if a 50K
EC is used (Fig. 14). We can see the same situation (but to a
lesser extent) for vortex, which is using the alternative execution
path for only about 54% of the time.

Increasing the EC size to 100K increases the hit rate and thus,
its efficiency on some of the benchmarks. Both EC configura-
tions simulated in this study behave very well for FP bench-
marks, because branches are very predictable and the number of
possible traces is rather small. However, for integer benchmarks
the overall utilization of the alternative path is much lower. The
relatively long traces built in this case are only used a few times
and then discarded. An example is gcc, where the alternative ex-
ecution path usage is less than 45% of the total execution time
for the 50K EC.

Another interesting aspect is the power consumption of the
EC (see Fig. 15). The cache is divided in multiple banks, which
can be separately turned off. The number of banks significantly

Fig. 16. Overall processor EPI (including the associated leakage energy).

Fig. 17. Overall power consumption of the baseline microarchitecture using a
larger I-cache (normalized with respect to the baseline from Table IV).

affects the power requirements of the EC. In order to study this
effect, we have run ijpeg with different cache organizations.

The power consumption of the EC decreases significantly
as we consider an implementation with several independent
banks. However, increasing the number of banks above eight
yields diminishing returns. Furthermore, the power required by
the EC is only a small part of the overall power requirements
of the microarchitecture, the differences being much smaller if
we consider the EPI for the entire microarchitecture (Fig. 16).

In our tests, we have considered a four-bank EC organization.
The overall gain that can be achieved by further splitting the
cache is minimal and, in our opinion, a higher number of banks
is not realistic for an actual implementation.

As seen in Section VI, a larger I-cache would significantly
improve the performance of the original microarchitecture for
several benchmarks. However, when using a larger I-cache, the
power requirements increase as well. Fig. 17 presents the exper-
imental results obtained with a larger L1 I-cache. For compar-
ison, we included the results obtained using the EC. All results
are normalized with respect to the baseline microarchitecture
without EC and a 32K I-cache.

When increasing the I-cache to 64K, overall EPI increases
by 5%. At the same time, when using the EC the energy per
committed instruction decreases by up to 35%.

VIII. POWER-PERFORMANCE TRADE-OFF ANALYSIS

From a performance point of view, the proposed microarchi-
tecture has both advantages, as well as limitations. An obvious
aspect is that the alternative execution path is shorter than the
normal pipeline. This reduces the mispredict penalty when the
next trace is found in the EC, and becomes a definite advantage
when executing programs with bad branch predictability. As the
current trend is to use deeper pipelines, the benefit is likely to
increase. However, although placing the EC deep in the pipeline
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limits the branch mispredict penalty, there are some caveats as-
sociated to it. Each time instructions are issued from the EC, the
normal branch predictor from the fetch stage is not used and the
branch is speculated based on the pre-constructed trace. During
trace execution, the branch prediction is equivalent to that of
a 1-bit predictor, which will predict branches the same way as
during the trace-build phase. By tuning the trace removal algo-
rithm, the overall penalty can be decreased, choosing between
optimizing for performance (a bad trace is rapidly erased) or
power consumption (a bad trace is executed a few times before
being erased).

Another potential drawback is the inability to schedule
instructions around a variable latency operation. When a miss
occurs in the data cache, a classic out-of-order microprocessor
is able to execute other instructions. When scheduling is fixed
at trace creation time, this ability is lost. However, most of
these misses occur when the processor leaves a hot spot in the
program and the cache needs to be refilled. Usually, these are
the moments when the program traces need to be changed. We
have tried avoiding the creation of traces in such cases, but
the improvement in performance was marginal, at the expense
of significant extra power consumed by the front-end of the
pipeline. Some techniques for filtering out less useful traces
generated during the execution of a program are presented in
[19]. While we have not implemented them in our tests, they
should be applicable on our microarchitecture as well.

The register file architecture introduces another potential
drawback. As all accesses to this structure are associative,
a new trace is not allowed to access the registers before the
checkpoint occurs. Since very long traces are allowed, these
trace changes appear mostly when a mispredict is detected. If
a mispredicted branch takes multiple clock cycles for being
retired after it was detected, it is possible for the next trace to
be stalled waiting for this checkpoint to occur.

Overall, our microarchitecture doesn’t offer any significant
improvement in performance over the baseline superscalar,
out-of-order processor. Our target is to obtain a structure with
better power efficiency. We showed that this is possible, even
though it comes at the cost of a small drop in performance.
In terms of the Energy x Delay metric, our microarchitecture
is performing significantly better, offering reductions of more
than 20% over the baseline superscalar, out-of-order processor.
There are a number of parameters that can be varied in order
to tune the microarchitecture for better performance or better
power efficiency, like the EC size and organization, the max-
imum trace length or the trace removal algorithm.

IX. CONCLUSION

In this paper, we have proposed a new microarchitecture
aimed at increasing the power efficiency through reusing as
much as possible from the work performed in the front-end
of the pipeline. Our structure is slightly slower than a cor-
responding superscalar, out-of-order microarchitecture (8%
to 9% on average) while using significantly less power. We
show that this approach can achieve an average of 28% to 31%
reduction in power consumption, depending on the EC size.

There are, however, drawbacks to this approach. Our structure
splits the program into traces, breaking some of the potential
parallelism that could have been harvested by the normal super-
scalar implementation. Furthermore, depending on the overhead
considered for turning off the unused stages in the pipeline, the
power savings could decrease.

A potential way to solve the problem of turning off the mod-
ules would be to use simultaneous multithreading (SMT). Being
proposed as a way to increase the utilization of idle resources,
the SMT architecture could use more efficiently the available
hardware. Thus, one of the two threads can be taken from EC,
while the other could be executed through the entire pipeline,
avoiding the need to turn off front-end stages.
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