
ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

MCD: A Multiple Clock Domain 
Microarchitecture

Dave Albonesi

in collaboration with

Greg Semeraro

Grigoris Magklis

Rajeev Balasubramonian

Steve Dropsho

Sandhya Dwarkadas

Michael Scott



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Caveats

n We started this project in 1999
o But didn’t get rolling until 2000

n First publication was February 2002 in HPCA

n Hit the “tip of the iceberg” so far

⇒ Much of what I tell you is in flux and subject to change

⇒ But lots of room for interesting research!



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Motivation for MCD

n Greater asynchrony likely in the future
o Doug Matzke of TI in IEEE Computer, September 1997
o Barbara Chappell of Intel in IEEE Spectrum, July 1999

n Companies have a tremendous investment in synchronous 
design

n Designers know how to deal with sending signals between 
clock domains

n Gradual elimination of global signals creating more 
autonomous chip units
o Example: Replay Traps instead of pipeline holds

n Single microprocessor-wide frequency constrains the 
IPC/frequency tradeoffs that can be made in different units
o E.g., floating point design decisions linked to front-end decisions



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Motivation for MCD

n Multiple on-chip voltages are here, and on-chip voltage 
conversion is on the way

n Limitations of global Dynamic Voltage Scaling (DVS) 
o Applicable to a subset (e.g., rate based) of all applications
o Shrinking gap between supply and threshold voltages decreasing DVS 

effectiveness

n Applications may be bottlenecked by a subset of the major 
functions (fetch/dispatch, integer, floating point, load/store) 
of a general-purpose processor
o Different bottlenecks for different applications
o Different bottlenecks and degrees of bottlenecks for phases of a given 

application



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

MCD at a high level

Issue Queue

ALUs & RF

L1 I-Cache

Dispatch, Rename, ROB

Fetch Unit

Issue Queue

ALUs & RF

Main
Memory

L2 Cache

Ld/St Unit

L1 D-Cache

Integer Domain FP Domain

Memory Domain

Front-end Domain External Domain



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Rev1.0 MCD microarchitecture
design decisions

n Four on-chip domains
o 16% of chip reachable in single clock at 100nm technology [Matzke]
o Assume two processors per die, 1MB of on-chip cache
o Results in five equal-size domains
o Chose four to account for different sizes
o Research on the appropriate GALS granularity is direly needed!

n Break down into front-end, integer, floating point, memory
o Major queues (issue queues, load/store queue, ROB) already in place 

as buffers that can be used as synchronization points
o Synchronization can mostly be hidden if queue remains partially full
o Much autonomy between these major functions

n Separate L1 Dcache from integer and floating point
o Performance not adversely effected

l May be sensitive to the synchronization cost (ours is low) 
o Allows memory to be separately optimized

n Put the L2 cache in the memory domain
o No L1-L2 synchronization penalty for loads/stores
o Applications with large L1 Icache miss rates may be impacted



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Synchronization via queues

FIFO queue structure

n Key insight: synchronization cost 
can be hidden so long as the queue 
remains partially full

n Detailed design by Chelcea and 
Nowick in DAC 2001



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Inter-domain synchronization

n Src runs with CLK1, dst with 
CLK2

n Src writes at T1

n If T > Ts then dst can use the 
data at T2

n If T < Ts then dst can use the 
data at T3

T

CLK1

CLK2

1

2 3

4



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Synchronization circuit

n From Sjogren and Myers (ARVLSI ’97)
o Avoids pending timing violation by stretching the clock
o Ts is 30% of the clock cycle in our design

l Insensitive to the range of 25-35%

n MCD performance overhead is very sensitive to the 
synchronization cost
o Roughly 5-10% performance cost to each additional cycle of 

synchronization time

n Major issue: design of robust, yet low latency, inter-domain 
interfaces tailored to the particular signal/bus being passed in
an MCD-style dynamic superscalar microprocessor



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Fine-grain dynamic voltage scaling

n Exploit imbalance of applications in their domain usage
o Scale individual domain frequencies to match the demand

n Effective over a variety of applications
o SPEC2000, Mediabench, Olden

n Both hardware and software approaches feasible
o Hardware: feedback and control system

l Appropriate for legacy apps
l Hardware overhead

o Software: profiling, insert special domain control instructions
l Appropriate for embedded and other applications which behave 

consistently among different runs
l Recompilation or binary rewriting



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Voltage scaling hardware models

n Baseline assumptions
o Voltage range of 1.2-0.65V, frequency range of 250MHz-1GHz in each 

domain (same as baseline processor)
o Independent jitter for each domain

l Calculate next clock edge based on frequency, last clock edge and jitter
l Synchronization penalties assessed based on clock edge relationships

n “Transmeta-like” model
o Models having to pause operation while increasing frequency and 

voltage
o 32 voltage steps, 28.6mV intervals
o 20us per change

n “Xscale-like” model
o Models being able to operate through changes
o 320 steps, 2.86mV intervals
o 0.1718us to transition, but continue to execute



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Offline analysis

n Why offline analysis?
o Provide target against which to compare to-be-developed on-line 

control algorithms
o Drive energy profiling tool, to help programmers understand 

applications and hardware
o Drive re-writing tools for embedded applications 

n Summary of operation 
o Run application once at maximum speed
o Collect dependences among primitive events
o Stretch events off the critical path, distribute slack as evenly as 

possible
o Quantize to respect domain boundaries and reconfiguration overhead; 

annotate application (simulator)
o Re-run application with chosen reconfiguration points, to measure real 

energy savings and performance cost



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

“Shaker” Algorithm

n Construct a dependence DAG from 
simulator whose nodes are events, e.g., 
o Enter instruction fetch queue
o Enter an issue queue
o Start execution of an operation

n Timestamp from simulator assigned to 
each event

n Arcs denote delay between events

n Distribute any slack in the graph 
among the arcs as evenly as possible
o Goal: minimize the variance among 

events in the same domain 

n O(cN), for N nodes and c frequency 
steps



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Coalescing Intervals

n For each domain do
o For each interval do

l Construct a histogram of event frequencies from the DAG
l Identify threshold of acceptable performance degradation

o Repeatedly merge neighboring intervals when profitable to do so
l Merge histograms, calculate new frequency and energy savings, merge 

intervals if improvement
l Amortizes the cost of a voltage/frequency change over the time spent at 

that voltage frequency for the “Transmeta” model

n Output list of reconfiguration points



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Simulation Parameters

n Resources similar to Alpha 21264
n Voltage range: 0.65 – 1.2 V
n Frequency range: 0.25 – 1 GHz

n Representative benchmarks from:
o Mediabench
o Olden
o SPEC 2000 (int and fp)

n Three configurations:
o MCD at maximum frequency (baseline MCD)
o MCD with dynamic voltage scaling (dynamic MCD)
o Single-clock with dynamic but global voltage scaling

n No attempt to scale front-end domain (20% of total)
n Transmeta-style model (freeze through change)

o 32 voltage steps: 20µs per step, 10-20µs for frequency change

n XScale-style model (execute through change)
o 320 voltage steps: 0.1718µs per step



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

“Transmeta” versus “Xscale” 
models

n “Xscale” ability to operate through voltage/frequency 
changes permits more frequent reconfigurations

n Remaining data for “Xscale” model only



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Performance Degradation

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ad
pc

m
ep

ic
g7

21
m

es
a

em
3d

he
alt

h
m

st

po
wer

tre
ea

dd tsp
bz

ip2 gc
c

m
cf

pa
rs

er ar
t

sw
im

av
er

ag
e

Baseline MCD Dynamic MCD



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Energy Savings

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m
ep

ic
g7

21
mes

a
em

3d

he
alt

h
mst

po
wer

tre
ea

dd tsp
bz

ip2 gc
c

mcf

pa
rse

r ar
t

sw
im

av
er

ag
e

Baseline MCD Dynamic MCD Global Voltage Scaling



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Energy-Delay Product

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m
ep

ic
g7

21
mes

a
em

3d

he
alt

h
mst

po
wer

tre
ea

dd tsp
bz

ip2 gc
c

mcf

pa
rse

r ar
t

sw
im

av
er

ag
e

Baseline MCD Dynamic MCD Global Voltage Scaling



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Epic-decode – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Ghostscript – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Bisort – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Em3d – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Power – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Mesa – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Vortex – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Art – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Offline Result Summary

n Dynamic MCD
o Less than 10% performance degradation
o About 27% energy savings
o 20% energy-delay product

n Global voltage scaling
o About 12% energy savings
o 3% energy-delay product

n Appreciable variability among application phases

n Profiling tool under development
o Operates on major loops and functions
o Uses shaker algorithm and call graph information to insert frequency 

control instructions into the application
o Results so far come very close to the offline algorithm



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Hardware based control: the 
attack/decay algorithm

n Exploits correlation between changes in input queue 
utilization and domain frequency

n Each domain operates independently

n For each domain in each interval (10K instructions)
o Check difference in input queue utilization compared to last interval

l If decreased too much 
m If performance has not degraded too much, 

v decrease frequency (attack)
l If increased too much 

m increase frequency (attack)
l If at topmost (lowermost) frequency for too long

m decrease (increase) frequency (attack)
l Else

m decrease frequency (decay)

n Can be implemented in ~10K transistors for a four-domain 
processor



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay design space

n Deviation Threshold
o Difference in utilization needed to trigger an attack

n Reaction Change
o Amount of frequency change on an attack

n Decay 
o Amount of frequency decrease on a decay

n Performance degradation threshold
o Amount of performance degradation during the last interval below

which a frequency decrease is allowed in the next interval

n Each of these parameters may be independently set within 
each domain
o We use same parameters in each domain for now



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay algorithm at work

n Changes in floating point queue utilization for epic decode



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay algorithm at work

n Changes in floating point frequency for epic decode



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay algorithm at work

n Differences in load/store queue utilization for epic decode



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay algorithm at work

n Changes in load/store frequency for epic decode



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Performance degradation

n Same overall performance degradation as offline with 1% 
performance degradation target (Dynamic-4,01)



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Energy savings

n Achieves 90% of the energy savings as offline with 1% 
performance degradation target (Dynamic-4,01)



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Energy-delay improvement

n Achieves 90% of the energy-delay improvement as offline 
with 1% performance degradation target (Dynamic-4,01)



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay summary

n Correlates input queue utilization changes with frequency 
changes

n Independent control for each domain

n Implementable in a reasonable number of transistors
o ~0.1% of a 10M transistor chip

n Achieves 90% of the energy savings of an offline algorithm 
with identical performance degradation



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Future work

n Inter-domain interface design

n Choice of domains and boundaries

n Front-end control

n Performance optimizations

n Dynamic voltage gating



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Future work: front-end control

n Front-end currently fixed rather than dynamic
o 20% of the total energy

n Applying modified fetch-gating algorithms to the front-end
o Every interval, monitor the average fetch rate and the average commit 

rate
o Scale front-end frequency so that

l Fetch rate = factor * commit rate
l Factor is some value close to 1.0



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Future work: MCD performance 
optimizations

n Opportunities to turn MCD performance degradation into a 
performance advantage
o Exploit the higher frequencies possible in each domain

l More domains?
o Separately optimize the IPC/frequency tradeoff in each domain

l Dynamically?



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Future work: dynamic voltage gating

n May want to gate a domain voltage to save leakage
o Alternative approaches, e.g., sleep modes

n Voltage scaling works best when work is “smoothed out” 
over a long period of time

n Voltage gating would work best when work is “clumped 
together” to introduce idle time

n Best combination of the two that optimizes energy-delay

n State saving or maintenance may be required



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

For More Info…

http://www.ece.rochester.edu/~albonesi/acal


