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Caveats

n We started this project in 1999
o But didn’t get rolling until 2000

n First publication was February 2002 in HPCA

n Hit the “tip of the iceberg” so far

⇒ Much of what I tell you is in flux and subject to change

⇒ But lots of room for interesting research!
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Motivation for MCD

n Greater asynchrony likely in the future
o Doug Matzke of TI in IEEE Computer, September 1997
o Barbara Chappell of Intel in IEEE Spectrum, July 1999

n Companies have a tremendous investment in synchronous 
design

n Designers know how to deal with sending signals between 
clock domains

n Gradual elimination of global signals creating more 
autonomous chip units
o Example: Replay Traps instead of pipeline holds

n Single microprocessor-wide frequency constrains the 
IPC/frequency tradeoffs that can be made in different units
o E.g., floating point design decisions linked to front-end decisions
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Motivation for MCD

n Multiple on-chip voltages are here, and on-chip voltage 
conversion is on the way

n Limitations of global Dynamic Voltage Scaling (DVS) 
o Applicable to a subset (e.g., rate based) of all applications
o Shrinking gap between supply and threshold voltages decreasing DVS 

effectiveness

n Applications may be bottlenecked by a subset of the major 
functions (fetch/dispatch, integer, floating point, load/store) 
of a general-purpose processor
o Different bottlenecks for different applications
o Different bottlenecks and degrees of bottlenecks for phases of a given 

application
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MCD at a high level
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Rev1.0 MCD microarchitecture
design decisions

n Four on-chip domains
o 16% of chip reachable in single clock at 100nm technology [Matzke]
o Assume two processors per die, 1MB of on-chip cache
o Results in five equal-size domains
o Chose four to account for different sizes
o Research on the appropriate GALS granularity is direly needed!

n Break down into front-end, integer, floating point, memory
o Major queues (issue queues, load/store queue, ROB) already in place 

as buffers that can be used as synchronization points
o Synchronization can mostly be hidden if queue remains partially full
o Much autonomy between these major functions

n Separate L1 Dcache from integer and floating point
o Performance not adversely effected

l May be sensitive to the synchronization cost (ours is low) 
o Allows memory to be separately optimized

n Put the L2 cache in the memory domain
o No L1-L2 synchronization penalty for loads/stores
o Applications with large L1 Icache miss rates may be impacted
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Synchronization via queues

FIFO queue structure

n Key insight: synchronization cost 
can be hidden so long as the queue 
remains partially full

n Detailed design by Chelcea and 
Nowick in DAC 2001
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Inter-domain synchronization

n Src runs with CLK1, dst with 
CLK2

n Src writes at T1

n If T > Ts then dst can use the 
data at T2

n If T < Ts then dst can use the 
data at T3
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Synchronization circuit

n From Sjogren and Myers (ARVLSI ’97)
o Avoids pending timing violation by stretching the clock
o Ts is 30% of the clock cycle in our design

l Insensitive to the range of 25-35%

n MCD performance overhead is very sensitive to the 
synchronization cost
o Roughly 5-10% performance cost to each additional cycle of 

synchronization time

n Major issue: design of robust, yet low latency, inter-domain 
interfaces tailored to the particular signal/bus being passed in
an MCD-style dynamic superscalar microprocessor
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Fine-grain dynamic voltage scaling

n Exploit imbalance of applications in their domain usage
o Scale individual domain frequencies to match the demand

n Effective over a variety of applications
o SPEC2000, Mediabench, Olden

n Both hardware and software approaches feasible
o Hardware: feedback and control system

l Appropriate for legacy apps
l Hardware overhead

o Software: profiling, insert special domain control instructions
l Appropriate for embedded and other applications which behave 

consistently among different runs
l Recompilation or binary rewriting
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Voltage scaling hardware models

n Baseline assumptions
o Voltage range of 1.2-0.65V, frequency range of 250MHz-1GHz in each 

domain (same as baseline processor)
o Independent jitter for each domain

l Calculate next clock edge based on frequency, last clock edge and jitter
l Synchronization penalties assessed based on clock edge relationships

n “Transmeta-like” model
o Models having to pause operation while increasing frequency and 

voltage
o 32 voltage steps, 28.6mV intervals
o 20us per change

n “Xscale-like” model
o Models being able to operate through changes
o 320 steps, 2.86mV intervals
o 0.1718us to transition, but continue to execute
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Offline analysis

n Why offline analysis?
o Provide target against which to compare to-be-developed on-line 

control algorithms
o Drive energy profiling tool, to help programmers understand 

applications and hardware
o Drive re-writing tools for embedded applications 

n Summary of operation 
o Run application once at maximum speed
o Collect dependences among primitive events
o Stretch events off the critical path, distribute slack as evenly as 

possible
o Quantize to respect domain boundaries and reconfiguration overhead; 

annotate application (simulator)
o Re-run application with chosen reconfiguration points, to measure real 

energy savings and performance cost
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“Shaker” Algorithm

n Construct a dependence DAG from 
simulator whose nodes are events, e.g., 
o Enter instruction fetch queue
o Enter an issue queue
o Start execution of an operation

n Timestamp from simulator assigned to 
each event

n Arcs denote delay between events

n Distribute any slack in the graph 
among the arcs as evenly as possible
o Goal: minimize the variance among 

events in the same domain 

n O(cN), for N nodes and c frequency 
steps
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Coalescing Intervals

n For each domain do
o For each interval do

l Construct a histogram of event frequencies from the DAG
l Identify threshold of acceptable performance degradation

o Repeatedly merge neighboring intervals when profitable to do so
l Merge histograms, calculate new frequency and energy savings, merge 

intervals if improvement
l Amortizes the cost of a voltage/frequency change over the time spent at 

that voltage frequency for the “Transmeta” model

n Output list of reconfiguration points
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Simulation Parameters

n Resources similar to Alpha 21264
n Voltage range: 0.65 – 1.2 V
n Frequency range: 0.25 – 1 GHz

n Representative benchmarks from:
o Mediabench
o Olden
o SPEC 2000 (int and fp)

n Three configurations:
o MCD at maximum frequency (baseline MCD)
o MCD with dynamic voltage scaling (dynamic MCD)
o Single-clock with dynamic but global voltage scaling

n No attempt to scale front-end domain (20% of total)
n Transmeta-style model (freeze through change)

o 32 voltage steps: 20µs per step, 10-20µs for frequency change

n XScale-style model (execute through change)
o 320 voltage steps: 0.1718µs per step
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“Transmeta” versus “Xscale” 
models

n “Xscale” ability to operate through voltage/frequency 
changes permits more frequent reconfigurations

n Remaining data for “Xscale” model only
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Performance Degradation
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Energy Savings
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Energy-Delay Product
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Epic-decode – Runtime Example
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Ghostscript – Runtime Example
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Bisort – Runtime Example
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Em3d – Runtime Example
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Power – Runtime Example
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Mesa – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Vortex – Runtime Example
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Art – Runtime Example



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Offline Result Summary

n Dynamic MCD
o Less than 10% performance degradation
o About 27% energy savings
o 20% energy-delay product

n Global voltage scaling
o About 12% energy savings
o 3% energy-delay product

n Appreciable variability among application phases

n Profiling tool under development
o Operates on major loops and functions
o Uses shaker algorithm and call graph information to insert frequency 

control instructions into the application
o Results so far come very close to the offline algorithm
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Hardware based control: the 
attack/decay algorithm

n Exploits correlation between changes in input queue 
utilization and domain frequency

n Each domain operates independently

n For each domain in each interval (10K instructions)
o Check difference in input queue utilization compared to last interval

l If decreased too much 
m If performance has not degraded too much, 

v decrease frequency (attack)
l If increased too much 

m increase frequency (attack)
l If at topmost (lowermost) frequency for too long

m decrease (increase) frequency (attack)
l Else

m decrease frequency (decay)

n Can be implemented in ~10K transistors for a four-domain 
processor
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Attack/decay design space

n Deviation Threshold
o Difference in utilization needed to trigger an attack

n Reaction Change
o Amount of frequency change on an attack

n Decay 
o Amount of frequency decrease on a decay

n Performance degradation threshold
o Amount of performance degradation during the last interval below

which a frequency decrease is allowed in the next interval

n Each of these parameters may be independently set within 
each domain
o We use same parameters in each domain for now
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Attack/decay algorithm at work

n Changes in floating point queue utilization for epic decode
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Attack/decay algorithm at work

n Changes in floating point frequency for epic decode
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Attack/decay algorithm at work

n Differences in load/store queue utilization for epic decode
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Attack/decay algorithm at work

n Changes in load/store frequency for epic decode
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Performance degradation

n Same overall performance degradation as offline with 1% 
performance degradation target (Dynamic-4,01)
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Energy savings

n Achieves 90% of the energy savings as offline with 1% 
performance degradation target (Dynamic-4,01)
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Energy-delay improvement

n Achieves 90% of the energy-delay improvement as offline 
with 1% performance degradation target (Dynamic-4,01)



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Attack/decay summary

n Correlates input queue utilization changes with frequency 
changes

n Independent control for each domain

n Implementable in a reasonable number of transistors
o ~0.1% of a 10M transistor chip

n Achieves 90% of the energy savings of an offline algorithm 
with identical performance degradation
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Future work

n Inter-domain interface design

n Choice of domains and boundaries

n Front-end control

n Performance optimizations

n Dynamic voltage gating
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Future work: front-end control

n Front-end currently fixed rather than dynamic
o 20% of the total energy

n Applying modified fetch-gating algorithms to the front-end
o Every interval, monitor the average fetch rate and the average commit 

rate
o Scale front-end frequency so that

l Fetch rate = factor * commit rate
l Factor is some value close to 1.0



ICS 2002 minimally clocked processor design tutorialDavid H. Albonesi

Future work: MCD performance 
optimizations

n Opportunities to turn MCD performance degradation into a 
performance advantage
o Exploit the higher frequencies possible in each domain

l More domains?
o Separately optimize the IPC/frequency tradeoff in each domain

l Dynamically?
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Future work: dynamic voltage gating

n May want to gate a domain voltage to save leakage
o Alternative approaches, e.g., sleep modes

n Voltage scaling works best when work is “smoothed out” 
over a long period of time

n Voltage gating would work best when work is “clumped 
together” to introduce idle time

n Best combination of the two that optimizes energy-delay

n State saving or maintenance may be required
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For More Info…

http://www.ece.rochester.edu/~albonesi/acal


