
A Mixed-Clock Issue Queue Design for Globally
Asynchronous, Locally Synchronous Processor Cores ∗

Venkata Syam P. Rapaka
Carnegie Mellon University

5000 Forbes Ave,
Pittsburgh, PA, USA

vp@ece.cmu.edu

Diana Marculescu
Carnegie Mellon University

5000 Forbes Ave,
Pittsburgh, PA, USA

dianam@ece.cmu.edu

ABSTRACT
Ever shrinking device sizes and innovative micro-architectural
and circuit design techniques have made it possible to have
multi-million transistor systems running at multi-gigahertz
speeds. However, such a tremendous computational capa-
bility comes at a high price in terms of power consumption
and design effort in distributing a global clock signal across
the chip. One of the most promising strategies that ad-
dresses these issues is the Globally Asynchronous, Locally
Synchronous (GALS) design style where multiple domains
are governed by different, locally generated clocks. Due to
its inherent complexity, a possible driver application for such
a design style is the case of superscalar, out-of-order proces-
sors. While micro-architectural evaluations for GALS mi-
croprocessors have been made available recently, no concrete
implementations have been analyzed in a detailed way. In
this paper we propose a mixed-clock issue queue de-
sign for high-end, out-of-order superscalar processors, able
to sustain different clock rates and speeds for the incoming
and outgoing traffic. We compare and contrast our imple-
mentation with existing synchronous versions of issue queues
used stand-alone or in conjunction with mixed-clock FIFOs
for inter-domain synchronization.

Categories and Subject Descriptors
B.2.2 [Performance Analysis and Design Aids]: Sim-
ulation; B.4.3 [Interconnections (Subsystems)]: Asyn-
chronous/synchronous operation

General Terms
Design, Measurement, and Performance

Keywords
GALS, Issue window design, mixed-clock circuits

∗This research was supported in part by SRC Grant No.
2001-HJ-898 and by NSF CAREER Award No. CCR-
008479.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

1. INTRODUCTION
Moore’s Law’s, which predicted a trend of exponential

growth in transistor density and performance still holds true
for current generation systems and it is expected to hold for
the next few generations. In fact, shrinking process tech-
nology and novel design styles have resulted in highly dense
circuits, that are capable of operating at very high frequen-
cies. As a result, present day microprocessors based on such
circuits have emerged as powerful computational systems by
including innovative micro-architectural and circuit design
techniques. For these types of systems, as well as for general
ASICs, the synchronous design paradigm has been the pop-
ular choice during the past decades. Commercial CAD tools
and a well established design flow have made this choice par-
ticularly attractive.

In synchronous design, the master clock acts as a timing
reference signal for all basic modules of the design. A well-
designed global clock distribution network, with additional
circuitry for keeping clock skew under reasonable limits is
required to make sure that local clock signals reaching dif-
ferent computational blocks are synchronized. However, due
to the increasing number of transistors and complexity of
today’s designs, a continuous reduction in clock skew is pos-
sible only by careful design and simultaneous consideration
of global interconnect delay increase.

In recent years, the Globally Asynchronous, Locally Syn-
chronous (GALS) [7, 13] approach has been explored to
tackle this problem. Such a solution eliminates the require-
ment of a global reference clock signal by assuming that
the system is comprised of several synchronous blocks com-
municating asynchronously. In both existing approaches,
the treatment of the impact of asynchronous communica-
tion on overall performance and power consumption is done
at micro-architectural level, where underlying circuit details
are obscured or even unknown. One of the most impor-
tant pieces in the overall GALS design of a superscalar, out-
of-order processor is the issue queue. While in [7],[8] it is
assumed that the issue queue is fully synchronous and is in-
terfaced asynchronously with the dispatch clock domain via
already existing asynchronous FIFOs, in [13],[12] the issue
queue itself is assumed to be mixed-clock, thus allowing for
dispatching and issuing instructions asynchronously. How-
ever, a physical, detailed implementation of such issue queue
has not been presented, nor analyzed.

The contribution of this paper stems in proposing a mixed-
clock issue queue design, able to sustain different clock
rates and speeds for incoming and outgoing traffic. In ad-

dition, we demonstrate via detailed circuit level simulation
its role as a communication interface between the dispatch
and execute clock domains, and compare and contrast the
power consumption and throughput of our implementation
with existing synchronous versions of issue queues used in
stand alone mode or in conjunction with mixed-clock FIFOs
[4] for inter-domain synchronization.

1.1 Prior Work
Issue logic plays an important role in the performance of a

superscalar processor. Its functionality is achieved through
the use of two important functions namely wakeup and se-
lect. A detailed analysis of complexity-effective superscalar
processors has been presented in [11]. Only the tag-matching
part of the wakeup logic and a hierarchical position based
scheme have been described there. The selection logic is
very efficient if a single request signal is to be selected. For
selecting two (or more) request signals, the selection blocks
have to be used in series. The request signals to the subse-
quent selection blocks are masked based on the grant signals
generated by the previous selection blocks. Such a method
can be extremely slow for selecting more than one signal.
A possible alternative for a high speed four-way issue queue
has been presented in [9]. In the proposed solution, the is-
sue queue is partitioned into smaller parts and one instruc-
tion is selected from each part, thus reducing the available
parallelism in the pipeline drastically. A moderate speed
two-way issue queue design has been presented in [5], but it
requires a large number of connections in an asymmetrical
manner. This entails the usage of strong buffers for some
signals, while the overall structure can lead an inefficient
layout. While our developed wake-up logic is based on the
scheme described in [11], our selection logic is similar to the
one described in [5], but with some significant changes.

Synchronization is crucial for a mixed-clock design and
various schemes have been proposed to address this prob-
lem. A robust FIFO-based approach has been presented in
[4]. In this case, synchronizing latches are used for commu-
nication of handshake signals between clock domains. Al-
though it has a low latency in the steady state operation,
the worst case latency is two clock cycles. The use of such a
FIFO for inter-domain synchronization seems to be feasible,
but it increases the number of transistors in the circuit and
introduces an additional stage in the pipeline. A stretchable
clock approach has been proposed in [14]. Such an interface
primarily addresses the interface between asynchronous and
synchronous modules. If used for communication between
two clock domains, it eliminates the skew between the two
clocks and ensures that the rising and/or falling edges are
synchronized. However, such a technique cannot be used
if the producer and consumer clocks are very different in
speed. Our synchronization approach is similar to the one
described in [4] in the sense that it is based on synchronizers
for inter-domain communication, but we use the issue queue
as the interfacing structure, without the need of additional
storage structures.

1.2 Organization of this Paper
The rest of the paper is organized as follows:

• In section 2, we describe the basic features of the su-
perscalar pipeline organization considered.

• Our approach for using the issue queue for communi-
cation is illustrated in section 3.

• In section 4 we compare our approach with the syn-
chronous case with and without synchronizing FIFOs
and present the experimental results.

• Section 5 concludes the paper and discusses possible
directions for future research.

2. THE SYNCHRONOUS SUPERSCALAR
PIPELINE

Superscalar, out-of-order execution in high-end proces-
sors adds another dimension in terms of performance boost
by exploiting available instruction level parallelism (ILP).
There is a trade off between the complexity of the pro-
cessor and the operating frequency. A detailed analysis
of complexity-effective superscalar processors has been pre-
sented in [11]. For the purpose of our study, we consider a
superscalar, out-of-order processor, as shown in Figure 1. A
brief description of each stage is as follows:

• The fetch stage fetches the instructions from the I-
Cache and the program counter is updated using the
branch prediction logic.

• The decode and rename stage is responsible for assign-
ing available physical registers to the current logical
destination registers and read the current mappings of
the source registers from the map table. It also resolves
the RAW dependencies (if any) in the current pool
of logical source and destination registers and updates
the register status table indicating the non-availability
of the assigned physical destination registers.

• The dispatch stage is responsible for checking for the
availability of physical source registers and entering in-
structions into the issue queue. This is done by access-
ing the register status table, and comparing the source
registers with destination registers being written back
during the current cycle. The available entries of the
issue queue are also determined in this stage by main-
taining an availability FIFO.

FETCH DECODE DISPATCH ISSUE EXECUTE WRITE BACK COMMIT

CLK2CLK1 CLK1

Figure 1: The basic pipeline

• The issue stage wakes up the ready instructions and
selects instructions based on the availability of func-
tional units using a fixed priority scheme.

• The execute stage consists of the functional units per-
forming the operation specified by the instruction.

• The write-back stage updates the physical destination
registers with the values generated after execution.

• The commit stage ensures in-order retiring of the in-
structions.

In this paper, we only concentrate on the interplay be-
tween the dispatch and issue stages where it has been sug-
gested that an asynchronous interface may be introduced in
GALS processors [7],[13]. To this end, we consider the un-
derlying microarchitecture organization from Figure 1 and
concentrate on the interface between the dispatch and issue
logic in three cases: (i) the fully synchronous case, where
both dispatch and issue stages run at the same, globally
generated clock signal; (ii) a GALS case, in which the dis-
patch and issue stages are placed in different clock domains
and interfaced via an asynchronous FIFO [4]; (iii) a second
GALS case, in which the issue queue itself is mixed-clock
and supports dispatching from and issuing instructions to
different clock domains. We will compare the three designs
in terms of power consumption, energy per issue, and worst-
case latency.

2.1 The Baseline Issue Logic
Without loss of generality, we have considered a 2-way

wide pipeline. However, our implementation is easily ex-
tended to a 4-way or a 8-way case. The issue logic has two
primary functions, namely Wakeup and Selection.

Clk

Clk

CAM Cell B

CAM Cell A

........

...
..

W
O

R
D

 L
IN

E
S

W
O

R
D

 L
IN

E
S

RDY Cell A

RDY Cell B

........

Request

DATA A

DATA B

TAGS

TAGS

MatchB

MatchA
RdyA

RdyB

Valid
VALID CELL

����

�������
�

������

Figure 2: Request generation logic

A typical entry in the issue queue is illustrated in Figure 2.
It is made up of five components, the physical mappings of
the two source registers, the two availability flags for these
two registers and a Valid bit for the whole entry. As de-
scribed in the dispatch stage, a source register can become
”ready” before it has been entered into the issue queue. In
case of instructions having a single operand, the other source
register is set to ”ready” to avoid deadlock. The source reg-
isters are compared with the tags of destination registers be-
ing written back during each cycle and they become ready
if a match occurs. A request signal is generated when both
source operands become ready. The Valid bit is set when
the instruction enters the issue queue and is reset when it
has been selected for execution.

Many entries in the issue queue may generate request sig-
nals during a clock cycle, and only a few (two in our case)
have to be selected based on the availability of functional
units. Several schemes have been proposed previously for
instruction selection. In our design, we employ a position
based selection scheme. An instruction is selected by pro-
viding a grant signal by the end of the clock cycle, and the
corresponding entry is read in the beginning of the next
clock cycle. The corresponding grant signal is used for read-
ing the components of the entry and for resetting the Valid

bit, which effectively erases the entry from the issue queue.
This freed entry is updated back in the availability FIFO.

2.2 Request Logic Implementation
The request generation logic shown in Figure 2 has three

important components namely: CAM cells, the Valid bit
and the Ready flag. The CAM Cells consist of two four-
ported SRAMs with a matching circuitry similar to the one
presented in [11]. The first two ports as configured as write
ports and the other two are configured as read ports. The
two write ports are used by the dispatch logic for writing
entries into the issue queue and the read ports are used
by the issue logic to send the selected instructions to the
execution units. Each entry in the issue queue generates a
request signal and receives a grant signal from the selection
logic. This grant signal is used as the word signal and the
positive phase of the clock signal is used as the read signal
while reading the data. All the grant signals are reset to
LOW in the negative edge of the cycle to allow pre-charge
of the bit lines. The Ready flag for a source register can be
set either before the instruction enters the issue queue or it
can happen after it enters. The implementation of theReady
flag is shown in Figure 3. A 2-port SRAM is used for writing
the status of the source register just before it enters the issue
queue. The source register becomes ready if it matches one
of the tags and it should remain ready even after the tag
value changes. We use a negative edge triggered flip flop for
storing this value. This value should be erased when a new
entry is written, so the rising edge of one of the two word
lines is used to reset the stored value.

Out

w1

w2

Rdy1

w1

Rdy2

w2

2Port RAM

Rdy Write

bit2bit1 bitbar2bitbar1

DFF
In

BIT

reset

Clk

Figure 3: The Ready flag

2.3 Selection Logic
The 32-entry issue queue generates 32 request signals dur-

ing the positive phase of each cycle. In our two-way wide
pipeline, the selection logic has to select two out of the acti-
vated request signals. A block level illustration of the selec-
tion unit is shown in Figure 4. A 32-bit wide bus, Request
is used for asserting the 32 request signals and the grant
signals are asserted on the two 32-bit wide output buses,
Grant 1 and Grant 2. Only one of the signals of these two
buses will be asserted high. We have implemented a fixed
priority scheme for selecting the instructions based on their
position in the issue queue, i.e out of the all the asserted
Request signals the signals with the two lowest indices will
be selected. This can be easily extended to an oldest first
scheme ([9]).

In the first stage all Grant 1 signals are precharged, and
all the asserted Request signals will discharge the Grant 1 of
all the signals below them. This will leave the Grant 1 signal

Request<31:28>

Disable_In_2<7>

Disable_In_1<7>

Precharge

Grant_2<31:28>

Grant_1<31:28>

Disable_Out_2<7>

Disable_Out_1<7>

Precharge

Disable_In_1<0>

Disable_In_2<0>

Request<3:0>

Disable_Out_1<0>

Disable_Out_2<0>

Grant_1<3:0>

Grant_2<3:0>

Priority Encoder Cell 4

Priority Encoder Cell 4

...
...

..

Figure 4: The selection unit

of the Request signal with the highest priority un-discharged.
In the second stage all the Grant 2 signals are precharged
and all the asserted Request signals whose Grant 1 was dis-
charged will discharge all the Grant 2 signals below them.
Thus, this scheme will leave the Grant 2 of the top two Re-
quest signals un-discharged. Static logic gates are used to
de-assert the Grant 2 signal if the Grant 1 signal remains un-
discharged. The circuit level implementation for two grant
signals is shown in Figure 5. We have used dynamic circuits
for disabling the lower level grant signals as opposed to the
static gates used in [5] for speed considerations.

Grant_1<2>

Grant_1<2>

PrechargeRequest<2>

Precharge

Disable_In_1<0>

Precharge
Grant_1<0>Grant_1<1>

Request<0>

Request<1>
Request<0>Request<1>

Request<2>

Disable_In_2<0>

Precharge

������

������

��������

	�	
 ���� ����

���� ����

�������� ������

Grant_2<2>

(b) Grant_2(a) Grant_1

Figure 5: The Grant circuits

The Disable signals (or the Kill signals) from each signal
are connected directly to all the Grant signals below. For in-
stance the Request<0> signal has to be present in discharge
circuitry of all the grant signals below. Thus, this scheme
entails a strong buffer circuitry for all the top order request
signals and can also lead to an inefficient layout. We made
a minor change to scheme by grouping four Request signals
and generating a single disable signal for the whole group.
Thus, in the worst case the disable signal from the top-most
group will have to be connected to only seven groups below,
thus reducing the number of interconnected lines consider-
ably. It is to be noted that this scheme can also improve
the efficiency of the layout of the selection unit. We found
this hierarchical scheme to perform better both in terms of
power and performance when compared to the brute force
scheme. The final circuit level implementation is illustrated
in Figure 6

3. MIXED-CLOCK ISSUE WINDOW DESIGN
We have assumed a simplified mixed clock pipeline as il-

lustrated in Figure 1. In the synchronous version of the
pipeline Clk1 and Clk2 are the same. In the GALS version
of the pipeline, Clk1 and Clk2 are different. The interface
between the two clock domains is assumed to be done via a
mixed-clock issue queue. For comparison, we also consider

the case when the entire issue queue is fully synchronous
with Clk2, and the case in which synchronization with Clk1
is done via a generic mixed-clock FIFO [4]. In all three cases,
we assume a 32-entry, 2-way wide issue queue.

����

Precharge

Request<0> Request<2>

Precharge

Request<1>Request<3>

Disable_Out_1<0>

Precharge

Precharge

����������

 � !�! "�"# Disable_In_1<2>

Disable_Out_1<1>

FU
1_

A
va

ila
bl

e

Disable_Out_1<0>

Precharge

Precharge

$�$%�%&�&'

(�() *�*+�+ Disable_In_2<2>FU
2_

A
va

ila
bl

e

Disable_Out_2<1>

Disable_Out_2<0>

Precharge

Precharge

Grant_1<1>Grant_1<3>

Request<1>Request<3>

Grant_1<0>

Request<0>

Grant_1<2>

Request<2>

,�,-.�./�/0�01

2�23 4�45�5 6�67

89:�:;�;

<�<=�= >�>?�? @�@A BB
BB

Disable_Out_2<0>

(b) Disable_In_2<2>(a) Disable_In_1<2>

(d) Disable_Out_2<0>(c) Disable_Out_1<0>

Figure 6: The Disable circuits

3.1 The Valid Bit
The mixed-clock issue queue differs from its synchronous

counterpart in the implementation of the Valid bit. The
Valid bit plays the crucial role for synchronization between
the two clock domains. Since the Valid bit is written by
the dispatch unit and read by the issue unit, there can be
a timing violation if it is directly used in the issue domain.
To cope with this problem, we use two synchronizers to in-
crease the Mean Time-to-Failure (MTF) of the Valid bit
while using it in the clock domain of issue logic. The Valid
bit implementation is illustrated in Figure 7. Similar to the
case of CAM Cells, it also has four ports and four word sig-
nals. No explicit data signals are required as the Valid bit
is set when an entry is written into the issue queue and it
is reset when the entry is read. Hence, if one of w1 or w2 is
high a logic high is written into the Valid bit and a logic low
is written when either w3 or w4 goes high. Since the Valid
bit has to be initialized to zero during reset, the negative
pulse of the reset is also used to set the Valid bit to zero.

w1

w2

w4

w3

Global Reset

w1

w2

w3

bit1 bitbar1 bit4........

BIT

DFF DFF

DFF Reset

Clk Clk

Pulse Generator

Valid

w4

4-PORT SRAM

VALID WRITE

bitbar4

Figure 7: The Valid bit

Since its value is set to zero in the issue clock domain, it
need not be synchronized again. So, the falling edge of the
Valid bit is used for generating a negative pulse which resets
the two synchronizers to zero. The pulse generator circuit
is illustrated in Figure 8.

OutIn

Figure 8: Pulse generator

3.2 Synchronization of Tag Matching
During the operation of the pipeline, we have to syn-

chronize the tags generated by the execution units with the
write-back and dispatch units running on Clk1. Additional
care has to be taken to avoid deadlock in the pipeline. Con-
sider the worst case situation in the pipeline illustrated in
Figure 9. The execution units generate the results of desti-
nation register X (say) in the negative phase of clock cycle a0
of Clk2, and the tags are broadcasted in the positive phase
of a1. The tags are synchronized to Clk1 by using two syn-
chronizers and they can be used only after two rising edges
of Clk1. In the worst case the rising edge of clock cycle b1
just misses the generated tags, i.e the setup time is violated.
In this case the tags become available in the positive phase
of clock cycle b3 of Clk1. Thus, any instruction entered into
the issue queue before b3, which requires the result of X
marks the corresponding source register as unavailable. In
the worst case, an instruction requiring the result of X is
entered into the issue queue in the negative phase of clock
cycle b2. It becomes valid in the domain of Clk1 in b3 and
in the domain of Clk2 in a4. So, this instruction is wait-
ing in the issue queue for a tag which has been generated
four cycles ago. If pipeline operates in a way similar to its
synchronous counterpart, this instruction can never be is-
sued and a deadlock occurs. This problem can be solved
by postponing the tag matching by three cycles. The tags
generated in the cycle a0 are made available for comparison
in cycle a4.

Tag

a0

b0

Clk2

Clk1

Valid_Clk1

Valid_Clk2

Data

a1 a2

b1 b2 b3 b4

a4a3

b5

a5

D0 D2 D4D3 D5D1

Figure 9: Synchronizing tag matching

3.3 Mixed-Clock FIFO
The implementation details of the FIFO along with con-

siderations to avoid deadlock have been described in [4]. In
this section, we will analyze the FIFO based scheme for a
mixed-clock superscalar pipeline. Consider the mixed-clock
pipeline in which the dispatch unit and the issue unit are
running on two different clocks. It is not a trivial task to in-
terface these two units using a mixed-clock FIFO. The data
which is passed from the dispatch unit to the issue unit con-
sists of the physical mappings of the source and destination
registers along with the availability of the source operands.

a0 a1 a2 a3

Clk

Word

Valid

Ready_A

Ready_B

Match_A

Match_B

Request

Grant

Figure 10: Synchronous issue window

But, the entries to be entered in the issue queue may have
to wait in the FIFO for an arbitrary amount of time. We
will have to add tag matching capability to each entry in the
FIFO. We will also have to address all the issues discussed
before in this section for synchronizing tag matching. Once
the entries are read from the FIFO they have to be written
into the issue queue. Additional care has to be taken to
update the status of the operands of the entry being read
in the current cycle before it is written into the issue queue.
We have to check if any of the tags being broadcasted in
the present cycle match with the operands of the entry. It
is to be noted that this is exactly what happens in the dis-
patch stage along with accessing the register status table.
Hence, the work done by the dispatch stage before the entry
is entered into the FIFO is almost redundant. So, it may be
prudent to shift the FIFO before the dispatch stage, and to
run the dispatch and issue stages synchronously.

4. EXPERIMENTAL RESULTS
We have designed all the circuits described in this paper

using an STMicro 0.13µm technology. We have done the
pre-layout simulations using hspice for the issue logic design
for three cases. In the first case the issue logic is synchronous
with the dispatch logic and both run at the same speed of
1GHz. The corresponding simulation results are shown in
Figure 10. The dispatch unit writes an entry into the issue
window in the negative phase of the clock. The entry is
set to valid, the source operand A is not available and the
source operand B is available. The entry tries to match the
source operand A with the tags of the destination registers
forwarded from the execution unit. When a tag matches
with operand A, a request is asserted and in this case this
entry is selected for issue. In the next clock cycle, the source
operands are read and the instruction is issued for execution.
This entry is also erased from the issue window by resetting
the Valid bit.

In the GALS pipeline, the mixed clock issue window in-
terfaces between two different clock domains: the dispatch
unit is running on Clk1 of 1.1 GHz and the execution unit
running on a Clk2 of 1 GHz. The choice of the clock speed
for the dispatch unit has been done based on timing anal-
ysis of the dispatch and rename logic (that are likely to be

Component Synchronous Mixed-Clock FIFO

Power 21.02 mW 22.08 mW 25.11 mW

EPI 13.13 17.94 18.83

WCL 1 4 4

Table 1: Comparison of the three schemes

a1a0 a2 a3 a4 a5 a6

b0 b1 b3b2 b4 b5

Clk1

Ready_A

Valid_Clk2

Clk2

Valid_Clk1

Word

Ready_B

Match_A

Match_B

Request

Grant

Figure 11: Mixed clock issue window

on the critical path in the front-end of the pipeline). The
simulation results have been illustrated in Figure 11. An en-
try is written into the issue window in the negative phase of
Clk1. The Valid bit is passed through the two synchronizing
latches and takes two clock cycles to become active. After
this instant, the operation of the issue window is similar to
it’s synchronous counterpart. It is to be noted that we have
to delay the forwarding of destination tags by three clock
cycles to avoid deadlock in the issue window. In this case
the required register is generated in b0, but is broadcast in
b1. The GALS pipeline with the FIFO acting as the inter-
face adds an additional stage in the pipeline along with the
synchronization penalty. The pipeline behaves in the same
manner as the synchronous version, but entails a worst case
delay of three cycles. We compared the three strategies in
terms of power consumption, the energy consumed per issue
(EPI), given by Equation 1 (Power is power consumed by
the circuit in mW , Tn is the time required in ns to issue the
n instructions), and the Worst Case Latency (WCL).

EPI =
Power × Tn

n
(1)

As expected, the mixed-clock issue queue entails a penalty
in latency as well as power consumption. Although the
mixed-clock issue queue should not be directly compared
with the mixed-clock FIFO, it can be observed that the for-
mer is better than the latter in terms of power, and is equiv-
alent in terms of latency. In addition, the smaller overhead
of extra logic needed for synchronization makes the mixed-
clock issue queue comparable to its fully synchronous coun-
terpart. While it does introduce additional latency, this
latency can be hidden most of the time as typically instruc-
tions written into the issue window are not issued until a
few cycles later.

5. CONCLUSION
In this paper we have proposed a mixed-clock issue

queue design for high-end, out-of-order superscalar proces-
sors, able to sustain different clock rates and speeds for the
incoming and outgoing traffic. We have compared and con-
trasted our implementation with existing synchronous ver-
sions of issue queues used stand-alone or in conjunction with
mixed-clock FIFOs for inter-domain synchronization. It can
be seen that the power consumption of the mixed-clock issue
queue is comparable to its synchronous counterpart, and is
better than the mixed-clock FIFO. As expected it introduces
extra latency when compared with its synchronous counter-
part, but it may be hidden by the inherent latency in the
pipeline. The presented work can be extended by improv-
ing the issue queue by reducing the latency. The features
described in this work can be incorporated into an architec-
tural level simulator to compare the different schemes for
standard benchmark programs.

6. REFERENCES
[1] R. Canal and A. Gonzalez. A low-complexity issue logic. In

Intl. Conference on SuperComputing (ICS), pages 327–335,
June 2000.

[2] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. IEEE Press, New
York, 2001.

[3] D. M. Chapiro. Globally Asynchronous Locally Synchronous
Systems. PhD thesis, Stanford University, 1984.

[4] T. Chelcea and S. M. Nowick. Robust interfaces for mixed
timing systems with application to latency-insensitive
protocols. In Design Automation Conference (DAC), pages
21–26, 2001.

[5] J. A. Farell and T. C. Fischer. Issue logic for a 600-mhz
out-of-order execution microprocessor. IEEE Journal of
Solid-State Circuits., 33:707–712, May 1998.

[6] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In
Intl. Symposium on Computer Architecture (ISCA), pages
230–239, June 2001.

[7] A. Iyer and D. Marculescu. Power and performance evaluation
of globally asynchronous and locally synchronous processors. In
Intl. Symposium on Computer Architecture (ISCA), pages
158–168, June 2002.

[8] A. Iyer and D. Marculescu. Power efficiency of multiple clock,
multiple voltage cores. In IEEE/ACM Intl. Conference on
Computer-Aided Design (ICCAD), pages 379–386, Nov 2002.

[9] J. Leenstra, J. Pille, A. Mueler, W. M. Sauer, and D. F.
Wendel. A 1.8 ghz instruction window buffer for an out-of-order
microprocessor core. IEEE Journal of Solid-State Circuits.,
36:1628–1635, Nov 2001.

[10] J. Muttersbach, T. Villiger, and W. Fitchner. Practical design
of globally asynchronous and locally synchronous systems. In
Intl. Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC), pages 52–59, 2000.

[11] S. Palacharla, N. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In Intl. Symposium on Computer
Architecture (ISCA), pages 206–218, June 1997.

[12] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott. Dynamic frequency and voltage
control for a multiple clock domain microarchitecture. In Intl.
Symp. on Microarchitecture (MICRO), pages 356–367, 2002.

[13] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott. Energy-efficient processor
design using multiple clock domains with dynamic voltage and
frequency scaling. In Intl. Symp. on High Performance
Computer Architecture (HPCA), pages 24–35, 2002.

[14] A. E. Sjogren and C. J. Myers. Interfacing synchronous and
asynchronous modules within a high-speed pipeline. IEEE
Tran. on VLSI Systems., 8(5):573–583, Oct 2000.

[15] J. E. Smith and G. S. Sohi. The microarchitecture of
superscalar processors. In IEEE, pages 1609–1624, Dec 1995.

[16] K. Y. Yun and A. E. Dooply. Pausible clocking-based
heterogeneous systems. IEEE Tran. on VLSI Systems.,
7(4):482–488, Dec 1999.

