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 Abstract 
One of the most important problems faced by 

microarchitecture designers is the poor scalability of some of 
the current solutions with increased clock frequencies and 
wider pipelines. As several studies show, internal processor 
structures scale differently with decreasing device sizes. While 
in some cases the access latency is determined by the speed of 
the logic circuitry, for others it is dominated by the 
interconnect delay. Furthermore, while some stages can be 
super-pipelined with relatively small performance loss, others 
must be kept atomic.  

This paper proposes a possible solution to this problem, 
avoiding the traditional trade-off between parallelism and 
clock speed. First, allowing instructions to enter and leave the 
Issue Window in an asynchronously manner enables faster 
speeds in the front-end at the expense of small synchronization 
latencies. Second, using an Execution Cache for storing 
instructions that are already scheduled allows for bypassing 
the issue circuitry and thus clocking the execution core at 
higher frequencies. Combined, these two mechanisms result in 
a 50% to 60% performance increase for our test 
microarchitecture, without requiring a completely new 
scheduling mechanism. Furthermore, the proposed 
microarchitecture requires significantly less energy, with 30% 
reduction in a 0.13um or 20% in a 0.06um process technology 
over the original baseline. 

1. Introduction 
For the last few years, a major point of contention among 

microprocessor designers has been deciding the best way to 
increase performance in the presence of the undesirable effects 
of increased complexity. Some argue that complex 
implementations that attempt to maximize the number of 
instructions issued per cycle are the most desirable, since they 
usually rely on relatively short pipelines and are less affected 
by the increasing gap in memory speed. The other camp argues 
that a better approach is to keep the implementation 
complexity low and sacrifice some of the parallelism in order 
to maximize the clock frequency. Such processors rely on 
much longer pipelines, are more affected by poor branch 
predictability and are dependent on highly optimized memory 
hierarchies. However, they are better suited for highly 
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sequential code and should theoretically scale better with 
newer process technologies and smaller feature sizes. 

As clock speed increases and pipelines grow wider, the 
overhead for dynamically scheduling instructions becomes 
significant both in terms of latency and power consumption. In 
addition, as pipelines grow longer to sustain increasing clock 
frequencies, internal latencies may also increase. This trend 
has been uncovered by several previous studies. While 
Hrishikesh et al. [1] show that clock speed could still be 
improved by further reducing the logic depth per stage, they 
also acknowledge that simply superpipelining the main 
structures of an out-of-order processor will not improve 
overall performance. The issue logic is singled out as one of 
the structures that will ultimately impose limitations on the 
achievable clock speeds.  

Clock speed improvement is not the only aspect limited by 
a monolithic, single clock, issue queue. Palacharla et al. [2] 
studied the effect of increasing pipeline width on the 
complexity of a superscalar, out-of-order processor. 
Specifically, their study assumes that future designs need to 
support an increasing number of in-flight instructions and 
larger issue widths. While latencies of most internal structures 
increase linearly with the issue width, the complexity of the 
wakeup logic grows quadratically with the width of the 
pipeline. Thus, it is concluded that designing single-cycle 
structures for the issue logic is likely to become problematic 
for future implementations. 

Since other pipeline structures are likely to scale better 
with future process technologies and increasing parallelism, 
methods for circumventing this limitation will become more 
and more important. Ideally, all pipeline stages would need to 
be sped-up by the same ratio, either by using fast transistors or 
by superpipelining. However, ideal scaling cannot be achieved 
by using plain superpipelining for the issue logic, without 
losing the capability of back-to-back scheduling. To overcome 
this problem, we introduce a special microarchitecture that can 
take advantage of the modules that can be clocked faster, even 
in the presence of a large and slow Issue Window. 

This paper proposes two mechanisms that allow both the 
front-end and the execution core to run at their own nominal 
speed. Working together, they allow future growth in 
performance while also providing significant energy savings. 

• Dual Clock Issue Window. A Dual Clock Issue 
Window design allows the front-end of the pipeline to run at a 
different clock speed, asynchronously from the execution 
back-end. Assuming that the front-end can be clocked faster, 



 

this would allow a large (and relatively slow Issue Window) to 
uncover more Instruction Level Parallelism. 

• Pre-Scheduled Execution. Trying to keep the execution 
as much as possible inside the faster back-end of the pipeline, 
we propose to use an Execution Cache placed after the Issue 
Window. Instructions that are fetched, decoded and have had 
their registers renamed are sent to execution while being stored 
in issue-order (instead of program-order) in the Execution 
Cache. Most of the time instructions are executed out of this 
cache and fed directly to the execution engine. Assuming the 
execution core can be clocked faster than the front-end (which 
in this case contains the relatively slow Issue Window), the 
overall performance can be improved. At the same time, this 
mechanism promises better power efficiency since it allows a 
significant part of the work to be reused when re-executing 
instruction sequences.  

Such a cache has already been proposed [3] as an efficient 
mechanism for reducing the dynamic power in a superscalar, 
out-of-order processor, but its potential for improving the 
overall performance has not yet been investigated. In our 
setup, the Execution Cache is used to effectively create a new 
and faster execution path. To enable this operating mode, we 
use a new Register File and Register Renaming mechanism 
to alleviate the capacity constraints of previous solutions. 
While both the Dual Clock Issue Window and the Execution 
Cache have been described before, they have not been used 
together to create an efficient, high performance 
microarchitecture. Furthermore, the resulting Flywheel 
microarchitecture is more scalable than its superscalar, out-of-
order counterpart for deep sub-micron technologies as it does 
not rely on a single clock design methodology. 

The adaptation mechanism supported by our 
microarchitecture is similar to a mechanical engineering 
concept: the flywheel. After applying an external stimulus, the 
flywheel continues spinning because of its large inertia. In our 
design, the front-end of the pipeline is only used for creating 
traces that will be later re-executed on the back-end alone. 
When the front-end is decoupled, the back-end continues 
executing traces already stored in the EC as long as it hits 
there. This holds due to high locality of these traces (the 
equivalent of inertia in mechanical terms) and progresses until 
locality is lost and the front-end must be restarted1. 

This paper is organized as follows: in Section 2 we present 
the motivation behind our approach, while Section 3 describes 
the main details of our microarchitectural design, including the 
pipeline organization, the new issue queue implementation, the 
Execution Cache and the new Register File. The experimental 
setup is described in Section 4 and results on several Spec95 
and Spec 2000 benchmarks are included in Section 5. We 

 
 

 

1 As it can be seen, the analogy is not perfect by equating speeds in 
mechanical and hardware sense, in that the flywheel gradually slows 
down after the external stimulus is removed, whereas in our design 
the execution speed is actually increased after the slow, front-end 
circuitry is decoupled.  

present a summary of the previous work that is relevant to our 
approach in Section 6 and conclude the paper in Section 7. 

2. Motivation 
As feature size decreases and transistors become faster and 

faster, the relative importance of the time spent driving signals 
on long metal lines grows. Thus, signal paths that are 
dominated by transistor speed are expected to scale 
significantly better in future process technologies than wire-
dominated ones. In [2], Palacharla et al. look at how different 
structures scale with faster logic and increasing wire 
importance. The study found the wake-up and bypass 
networks to be the two structures that scale worst with 
decreasing technology sizes. While the latency of the bypass 
network increases quadratically with the number of functional 
units, the latency of the wake-up circuitry depends 
quadratically on the Issue Window size.  

By extending the models presented in [2] and [4], we can 
compare the relative latencies of different modules in future 
process technologies. In Figure 1, we can see that a reasonably 
sized cache is about two times slower than the Issue Window 
in 0.25um or 0.18um process technologies, but it scales much 
better achieving about the same access time as the 128-entry 
Issue Window in 0.06um2. 

The ability to perform back-to-back scheduling is so 
important for obtaining high performance that most 
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g. 1.  Latency scaling for Issue Windows (IW), caches and register files (RF).
icroarchitects assume it as a requirement. The scheduling 
gic performs two basic operations: Wake-Up and Select. 
uring the Wake-Up phase, instructions in the Issue Window 
eck their dependencies and, if these are resolved, they 
quest access to a functional unit for execution. During the 
cond phase, some of these instructions are selected and 
heduled. To be able to schedule dependent instructions in the 
xt clock cycle, the output of a previous Select operation 
ust be available when Wake-Up starts. Thus, these two 
erations must be executed together during a single cycle. 
The importance of performing these operations in a single 
cle has been shown before [1]. Three operational loops are 

2 Even though some authors use 0.065um as the next process 
hnology after 0.09um, we use the numbers provided in [4] and thus 
 assume a 0.06um process technology. 
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Execution Cache most of the time, they can be sent directly to 
the execution core allowing it to work at its own maximum 
frequency. The resulting design will thus have two operational 
modes: trace creation mode and trace execution mode. In 
the first mode, instructions are read from the I-Cache and fed 
through the normal front-end of the pipeline. The execution 
core is synchronous with the slow Issue Window, and thus it 
has to operate at the baseline frequency. However, the front-
end will function faster, enabled by the Dual Clock Issue 
Window that allows dispatching and issuing instructions 
asynchronously one to each other.  
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Fig. 2.  IPC degradation when adding one extra stage to the front-end of the
pipeline (Fetch/Mispredict loop) and to the Issue Window (Wake-up/Select
loop). 

udied (Load/Use, Branch/Mispredict, Wake-Up/Select) and 
ake-Up/Select is singled out as the most critical. We show in 

igure 2 the impact of further pipelining the issue logic for a 
ur-way superscalar, out-of-order microprocessor based on a 

ine-stage pipeline, with seven cycles mispredict penalty (dark 
ar). We also show, as a comparison, the impact of adding one 
age to the front-end (light bar).While the performance hit of 
e additional front-end stage is limited (less than 3% on 

verage), it can increase to more than 40% when the Wake-
p/Select loop is pipelined (slightly less than 30% 
erformance loss on average). As a large Issue Window is 
kely to become the bottleneck for future frequency growth in 
 single-clock processor, our design tries to build on the 
ultiple clock methodology, limiting the performance 

egradation induced by the slow Wake-Up/Select logic. 

. Design exploration framework 
In this paper, we propose an alternative solution to the 

aditional tradeoff between parallelism and clock speed. As 
e rest of the pipeline is likely to scale better than the Issue 
indow in future process technologies, we assume that it will 

e able to work at higher clock speeds. Thus, instead of trying 
 make the Issue Queue faster, our proposed approach limits 
s impact on the overall microarchitecture performance. The 
lution relies on using multiple clock domains, allowing 

ifferent segments of the pipeline to work at different speeds.  
The front-end of the pipeline is decoupled through the use 

f a Dual Clock Issue Window. In this setup, instructions can 
e brought in the Issue Window faster, exposing more 
arallelism. This mechanism can significantly improve 
erformance in cases where many independent instructions can 
e found; for code with poor instruction level parallelism 
LP) the only way to improve performance is to execute each 
struction faster. Even though the execution core might scale, 
e cannot directly increase the clock speed of the ALUs as the 

ycle time may be dictated by other slower structures (namely, 
e Issue Window). Should the ALUs be clocked faster, 
structions would need to be scheduled at this increased 
eed, and this is not possible due to the slow issue logic. 
In order to allow the execution core to work at a faster clock 
eed, the back-end is decoupled by the use of an Execution 
ache (EC). Assuming that instructions are retrieved from the 

After each branch misprediction, the EC is searched for a 
trace starting at the current Program Counter (PC) location. 
Should such a trace be found, the processor switches to trace 
execution mode. The front-end is completely shut down, 
including the scheduling logic. Instructions are read from the 
EC and fed directly to the functional units. In this setup, the 
resulting critical path can be clocked faster. For the front-end 
of the pipeline, we can use a dedicated PLL or ring oscillator 
to generate the maximum clock frequency supported by these 
stages. However, in order to avoid using two separate circuits 
for generating the back-end clock signal, we can generate them 
both starting from a unique (and fast) clock signal. By dividing 
this signal by different constants, we can generate both the 
slow clock signal required in trace creation mode, as well as 
the fast clock signal used in trace execution mode. While this 
method prohibits the use of many possible clock speeds 
combinations, it only requires a negligible overhead for 
switching between the two operating modes. When running in 
the trace-execution mode we can either let the faster clock go 
into the Issue logic and use clock gating, or we can 
additionally use power gating for additional power savings [8]. 
In our tests, we are using clock gating of the Issue Window 
when not in use (and thus, our results are conservative as 
power gating may provide additional power savings). 

3.1. Pipeline organization 
To this end, we start with a nine-stage pipeline that 

implements a four-way superscalar, out-of-order processor. 
Our baseline microarchitecture is able to fetch up to four 
aligned instructions and move them in lockstep towards a 
monolithic Issue Queue (similar to the one used by MIPS 
R10000 [6]). Here, they are reordered according to their data 
dependencies and ready instructions are sent in parallel to the 
out-of-order execution core. When an instruction is selected, 
its tag is broadcast to all entries in the Issue Window (for 
Wake-up) and to the Register Availability Table (RAT) [7].  

The proposed microarchitecture is presented in Figure 3. In 
this setup, the pipeline is effectively broken into two separate 
clock domains. In the first domain, instructions are fetched 
from the I-cache, decoded and their registers are renamed. The 
second domain contains the Issue Window and the Reorder 
Buffer, the Register File (Read and Write Back stages) and the 
functional units. As independent instructions are retrieved 



 

from the Issue Window and sent towards the execution core, 
they are, in parallel, added to the Execution Cache creating 
program traces. The EC can also be a provider of instructions. 
After a branch misprediction, the next PC address is compared 
against existing traces and, should a match occur, instructions 
will be retrieved directly from EC. 

The last modification that we bring to the typical 
superscalar, out-of-order processor is the Rename mechanism. 
As instructions come from the EC in execution order, typical 
register renaming can not be performed and we have to rely on 
information stored during trace creation. Thus, in order to 
reuse our traces, we have to make sure that the mapping 
between architected and physical registers is preserved 
whenever a trace is restarted. To solve this problem, we split 
the renaming mechanism in two sub-stages: a normal, Rename 
stage that allocates physical entries for each architected 
registers and a second, Update stage that remaps these entries 
when instructions are re-executed. 

3.2. Fine grain dynamic voltage scaling 
Using an altered Instruction Window, we attempt to 

increase the overall performance of the microprocessor by 
increasing the clock speed used in the front-end. Thus, the 
design needs to be slightly modified in order to provide 
synchronization capabilities for data coming from one domain 
and requests coming from the other. 

Most of the asynchronous communication takes place after 
the Dispatch stage, as instructions must be synchronized with 
the back-end clock signal before being considered for Issue. 
Other synchronization points exist as well: fetch redirect 
requests go from Write Back to the Fetch stage, branch 
predictor updates are sent from Retire to the Fetch stage and 
physical register releases are triggered in Retire, but must be 
operated in the Rename Table. In all these cases, we assume a 
FIFO-based communication with the same synchronization 
latency as proposed before [9][10]. 

The synchronization circuitry needed by the Issue Window 
is similar to the one proposed in [11]. Essentially, instructions 
are placed in unused entries synchronously with the producer 
clock, where they wait a certain synchronization time before 
being seen by the Wake-up/Select circuitry that operates 
synchronous with the consumer clock. After this delay is 
observed, Wake-up and Select can proceed in the same manner 
as in the synchronous counterpart. 

An additional problem appears though when tags are 
forwarded after selection. As the tag matching circuitry from 
Wake-up is placed in the same clock domain, it is reached 
earlier than the Register Availability Table (RAT) (Figure 3). 

 

 

Fig. 4.  Timing behavior for a synchronous Issue Window (top) vs. a Dual
Clock Issue Window (bottom). 
Thus, it becomes possible for an instruction to pass the 
Dispatch stage without seeing the broadcast tag, and also miss 
it before reaching the tag match circuitry from Wake-up. 

In Figure 4, instruction INST #3 depends on the results 
generated by INST #1 and INST #2. In the fully synchronous 
case (top of Figure 4) the tags can arrive either early, before 
the instruction reaches the Issue Window (INST #2) being 
sampled in RAT, or later, and in that case they are seen during 
the first Wake-Up cycle (INST #1). However, in the 
asynchronous case (bottom of Figure 4), the synchronization 
delay (SYNC in Figure 4, lower signals) creates another 
possible scenario: INST #1 can generate its tags late enough 
that they reach RAT after INST #3 leaves Dispatch, but too 
early to be seen during the first Wake-Up cycle. 

This problem has been acknowledged before [11], and two 
possible solutions have been proposed for it: delay the tag 
matching of the Wake-up until the broadcast data is seen in the 
other clock domain (Delay Network in Figure 3) or memorize 
this tag for a few cycles and duplicate the tag matching lines. 
While the implementation is simple in the first case, it loses 
the exact same capability that we intended to preserve in the 
first place – back to back scheduling. In the second case, the 
performance penalty is negligible, but the complexity of the 
Issue Window increases (Figure 5). In our design, the back-
end clock includes the Wake-Up/Select logic and thus will 
always be slower than the one used by the front-end. This 
limits the extent of the problem, so in this case we only need to 
perform wake-up using the tags forwarded in the previous two 
cycles. 

Fig. 

 

5. Duplicated tag matching for the Dual Clock Issue Window. 
Fig. 3.  Proposed modifications for the Issue Mechanism. 



 

3.3. Pre-scheduled execution 
In order to take the Wake-Up/Select logic off the execution 

path, we propose that an Execution Cache be placed deep in 
the pipeline, after the Issue Stage (as illustrated in Figure 6). In 
this setting, the branch misprediction path can be significantly 
shortened by feeding the execution units directly from the EC 
whenever possible. Initially, when EC is empty, instructions 
are launched from the Issue Window, while a trace is built in 
parallel. This step is called the trace segment build phase. 
Upon a mispredict (or a trace completion condition), the EC is 
searched and, should a hit occur, instructions start to be sent 
on the alternative execution path (the trace execution phase). 
When operating on this alternative execution path, the 
processor behaves like a VLIW core, with instructions being 
fetched from the EC and sent directly to the execution engine. 
If a miss is encountered on a trace search, the pipeline front-
end is restarted and a new trace is built. 

Similar to conventional trace-cache implementations, the 
proposed design divides the program into traces of instructions 
that are stored in a different order than the one given by their 
original addresses. This allows for implicitly encoding 
information about the reordering work done in the Fetch and 
Issue stages through the actual order in which instructions are 
stored. However, the cache chosen in the proposed architecture 
is structurally different from the trace-cache typically used for 
increasing the fetch bandwidth. 

When stored in issue order, instructions lose their original, 
logical order and can be retrieved only on a sequential basis. 
Only the start address of each trace needs to correspond to a 
physical address in the memory space. Instructions from two 
consecutive traces cannot be interleaved, so with each change 
of trace the processor must restart execution in-order. 
Furthermore, after each trace, a trace look-up step must be 
performed. While most of the time the penalty associated with 
this look-up can be hidden (the look-up being started in 
advance), there are certain conditions when this is not 
possible. Together with the need for in-order start, this leads to 
some performance penalty associated with each trace change. 

To minimize the performance impact of this design, traces 
must be created as long as possible. While most trace cache 
designs proposed in the literature limit the traces to at most 
three basic blocks, it is desirable to include as many 
instructions as possible if no misprediction is encountered. The 
simultaneous presence of traces with different lengths (some 
of them very long) in the EC has precluded the use of a 
standard trace cache model [21][22] or the very efficient block 

based trace cache structure [23]. Thus, Flywheel relies on a 
solution that resembles the Pentium 4 implementation [25] to 
accommodate traces of arbitrary length. The architecture of 
this solution is presented in Figure 7a. 

The EC structure consists of a Tag Array (TA) and a corre-
sponding Data Array (DA). The TA is an associative cache, 
addressed using the translated program counter. It is used for 
trace look-up and it should be as fast as possible to reduce the 
performance overhead associated with searching for a new 
trace. The SET_ID value obtained from the TA points to the 
DA set containing the first instructions of the trace. DA is a 
multi-way set associative cache composed of multiple memory 
banks. A comparison with TRACE_ID is performed for each 
block in the set, identifying the correct starting point of the 
trace. The next chunk of instructions is located in one of the 
blocks of the following set, and so on (see Figure 7a). A spe-
cial end-of-trace marker identifies the end of the trace. By 
knowing beforehand which set will be accessed next, we avoid 
performing a new look-up for every access. Knowing the next 
set also allows the use of multiple memory banks to implement 
the DA. While one of the banks is used, the others can be 
turned off, resulting in further energy savings.  

Inside each block, an arbitrary number of Issue Units are 
stored (Figure 7b). An Issue Unit consists of independent 
instructions that can be issued in parallel to the functional 
units. Since Issue Units are recorded during the trace building 
phase and then reused, the processor will make the same 
optimizing decisions each time it executes the code. Each 
block accommodates multiple Issue Units, causing a 
significant reduction in the total number of accesses. All 
instructions coming from the Issue Window are first 
assembled into traces using a Fill Buffer and then recorded in 
the EC. The Fill Buffer can accommodate two DA blocks; 
when enough instructions are available to fill a block, they are 
written to the EC. When reading from the EC, we issue one 
Issue Unit at a time, using a similar mechanism. If enough 
space is available in the Fill Buffer, a block is read from the 
DA and added to the buffer. 

As each block contains more than one Issue Unit, it needs 
more than one clock cycle to be sent to the execution core. 
This organization allows for hiding a large part of the EC 
latency, an access being initiated before we are forced to stall 
the pipeline. While the longer cache lines increases the power 
required for each access, they also help reducing the total 
number of accesses. One complete block is read during each 
access, and instructions are stored in the circular Fill Buffer. 
Since the buffer can accommodate two DA blocks, a second 
access can be started immediately. When the new set of 

Fig. 7. Execution Cache structure (a) and block organization (b) 

Fig. 6. Superscalar microarchitecture using an EC for reusing scheduled 
instruction streams. 



 

instructions arrives (several cycles later), they are added to the 
Fill Buffer. Thus, even if an Issue Unit spans across two DA 
blocks it will still be issued in a single cycle most of the time. 
Corner cases can still occur though, when the Issue Units are 
very large. In such cases the second block might arrive late, 
the Issue Unit being split over two or more execution cycles. 
The downside of increasing the block size is that the efficiency 
of the EC decreases, many instruction slots remain empty. Our 
tests have shown that smaller blocks can be significantly more 
efficient in terms of instruction space storage, whereas very 
small blocks tend to have negative influence on the overall 
performance. For our evaluation, we have focused on eight-
instruction blocks that are usually able to accommodate three 
or more Issue Units. 

3.4. Associative register file 
To enable pre-scheduled execution, we need a special 

Register File, along with a new Register Renaming 
mechanism. As instructions come out of the EC without 
preserving their original program order, registers cannot be 
renamed for such trace replays. At the same time, operand 
values cannot be simply stored in the EC and reused, as they 
are generally different during each trace run. Since the 
processor must rely on the renaming information collected 
during the trace build phase, a different registers pool and 
control unit has to be used. To handle this task, a special 
register file structure is used [3].  

This structure employs a special pool of physical registers 
for renaming every logical register of the ISA. Unlike in a 
typical scheme where an architected register can be mapped 
onto any physical register, here it can be renamed using only 
the entries of the corresponding pool (Figure 8). Each write 
goes circularly to a different physical register, solving the 
problem of false data dependencies. As with any rotating 
register file, the number of in-flight instructions that have the 
same logical destination is bounded by the number of physical 
locations available in the circular buffer. 

When going through the Rename stage, each instruction is 
allocated a physical register as destination. This entry must be 
different than the one holding the last known value for the 
corresponding architected register. Having different physical 
destinations, instructions can write their result as soon as it 
becomes available, setting the V (valid) bit. The S (speculated) 
bits are used for remembering which values have actually been 

committed, and they are cleared only after the instruction has 
retired. The N indices (values POS 0 - POS N-1) are initialized 
with consecutive values (0,1,2 … N-1) and represent the 
logical order of the registers in the circular queue. IDX is a 
pointer in this queue representing the most recent register used 
for writing. All accesses are associative, comparing the 
renaming information against the POS tags. Inside a trace, the 
POS tags remain constant and represent the logical order of the 
circular queue (the order in which entries are allocated).  

Each trace generation is started with an initial value of IDX 
= 0 for all architected registers, meaning that the current value 
of the register is stored in the location marked by POS = 0. If 
this condition is respected, all subsequent executions can be 
performed without further renaming the registers. The caveat 
is that this requires a checkpoint to be performed when a trace 
execution ends: all POS values must be recomputed so that the 
circular buffer starts with the latest written entry. This can be 
done by subtracting from POS the IDX value, but it would 
require a separate adder for each physical register. However, 
since the physical order of the registers is not relevant and it 
does not have to match the logical one, the same effect can be 
obtained by XOR-ing the IDX with each POS value. By doing 
so, all registers have different tags ranging between 0 and N-1 
and the register holding the last value receives POS = 0. 

While it solves the problem of false data dependencies, this 
associative register renaming scheme has several important 
limitations. First, an associative organization complicates the 
actual hardware implementation of such a mechanism. In this 
setup, each architected register would have to be implemented 
as a separate piece of logic, being accessed directly as a block 
and associatively inside the block. 

A second drawback of this scheme is that it only offers 
limited rename capacity. Our tests show that a situation where 
the Rename stage has to stall is quite common with a limited 
number of physical entries inside each pool, and this problem 
gets worse as pipelines grow longer. The actual pool size 
required for eliminating most of these conditions depends on 
the number of in-flight instructions, and, as we target a design 
with a high number of such instructions, this can rapidly 
become an important problem. 

Finally, another problem is that the associative Register File 
design can introduce stalls in the pipeline when a checkpoint 
needs to be executed. All accesses that we perform on this 
structure must see a coherent state, so all the control 
information (the POS fields) must be preserved until the last 
access is performed for the current trace. This happens in the 
Retire stage (for updating the S bits), so the checkpoint cannot 
be performed until the last instruction of the trace is retired. 
Requiring a different POS configuration, a new trace will not 
be allowed to access the register file before the checkpoint 
occurs at the end of the previous trace. Depending on the 
execution mode, this problem blocks the first instruction of the 
next trace either in the Register Rename stage or in the 
Execution Cache, introducing bubbles in the pipeline.   

Fig. 8. Architected register structure 



 

The effect can be reduced by allowing very long traces in 
the EC. In this case, the problem will mostly arise when a trace 
must be abandoned due to a branch misprediction. Such a 
condition can be detected as early as the Execute stage, so 
there are at least several cycles lost until the checkpoint can be 
performed. This problem can become even more important if 
the instruction is speculated and must wait additional cycles in 
the Reorder buffer. If it takes multiple clock cycles for a 
mispredicted branch to be retired after it was detected (in the 
Write Back stage), it is very likely that the next trace will be 
stalled waiting for this checkpoint to occur. A similar problem 
occurs in the Pentium 4 microarchitecture [28]. Keeping in 
flight a large number of instructions, the processor must 
speculate across multiple branches. Each of these branches can 
turn out to be mis-speculated, so the processor must have the 
possibility to recover after each of them. In order to avoid 
keeping copies of the Rename Map (named Front-End RAT) 
for each such branch instruction, Pentium 4 uses a second 
copy (Retirement RAT) that is updated in-order, at 
completion. Whenever a mispredict occurs and the speculative 
state must be rolled back, the Front-End RAT is replaced by 
the content of the Retirement RAT before the next instruction 
can pass through Register Rename. This introduces a similar 
penalty, between the moment when the condition is observed 
and the one when the offending instruction can be retired. 

3.5. Direct access register file 
While the mechanism described above can conceptually 

solve the problem of false data dependencies, its limitations 
make it unsuitable for a real hardware implementation. Thus, 
the Flywheel microarchitecture relies on a modified renaming 
algorithm that addresses these problems, as described next. 

To avoid the associative Register File access, we must 
generate a physical register ID in both operating modes, trace 
creation and trace execution. For this, we must split the 
Register Rename operation in two separate phases, each of 
them occupying one pipeline stage. The first phase (Register 
Rename) functions essentially in the same way as the 
associative mechanism. It assumes that the Register File is still 
organized in logical clusters, and always allocates the next 
pool entry for a new result. The second phase (Register 
Update) performs a remapping between the cluster-based 
logical renaming space and the contiguous physical Register 
File. The required resources are presented in Figure 9. 

The Rename Table holds essentially the same information as 
the IDX fields in Figure 8. For each architected register, this 
table holds the ID of the current entry in the logical pool. 

When a source operand must be renamed, this value is read 
and assigned directly to the instruction. For a destination 
register, the value must be first incremented (specifying the 
next logical entry in the pool) and then stored back to the 
Rename Table. After passing through the first Rename stage, 
each architected register is assigned a logical identifier (LID). 
During the Dispatch and Issue stages, registers are only 
specified inside the logical (associative) renaming space. 
However, they can be uniquely identified using the architected 
register name and the LID. This information is used for 
accessing the Register Availability Table (RAT) and for 
keeping track of data dependencies in the Wakeup logic. The 
SPEC table is accessed using the same method and it holds the 
same information as the S bits in Figure 8.  

The second phase of the renaming process is performed in 
the Register Update stage. Here, the register is remapped from 
the logical renaming space to the physical Register File, 
generating the correct register addresses. Instructions can 
come from either the front-end of the pipeline or from the EC; 
as long as they have LIDs associated with their architected 
registers the process can be performed in similar fashion. Each 
logical pool is defined in the Remapping Table (RT) by its size 
and starting address, and the physical offset (PO) is obtained 
by combining them with the LID.  

Further down the pipeline, the Register File can be accessed 
directly, using the information generated in the Register 
Update stage. The PO is also needed at completion time, for 
updating the Future Remapping Table (FRT). FRT is identical 
to the regular RT, holding one entry for each architected 
register. Similar to the Retirement RAT in Pentium 4 [28], the 
purpose of this table is to keep track of the latest non-
speculative values, and it is updated with the PO of each 
destination register. Similar to the Pentium 4 microarchitecture 
[28] where the Retirement RAT is copied to the Front-End 
RAT, the FRT must be copied to the RT during the checkpoints 
that occur at each trace-change.  

After a trace completion (e.g., a branch mispredict), the 
Rename Table is reset and the LIDs start being generated from 
0. When passing through the Register Update stage, these 
LIDs are XORed together with the information in the RT, 
causing the source operands to point to the latest committed 
values for their respective architected registers.  

Fitting inside this dual-stage register renaming scheme, a 
dynamic approach has been proposed for solving the problem 
of the limited renaming capacity [12]. At specified intervals, 
the history of the renaming constraints is evaluated and 
register redistribution can be performed. Specifically, 
architected registers that have been detected to be bottlenecks 
are supplemented with additional physical entries, taken from 
other pools that are only infrequently accessed. This scheme 
ensures that the processor can adapt itself to different 
conventions for register allocation. When registers are 
redistributed, a size and base address are set for each 
architected register. This information is stored in the Rename 

Fig. 9. Resources used for the two-phase renaming mechanism 



 

Table, and used for generating the LIDs or the physical 
register address. The drawback of such a mechanism is that 
whenever redistributions are performed, previous renaming 
information becomes obsolete and all entries in the EC must be 
invalidated. Together with the actual register redistribution, 
this can require a significant number of clock cycles, so this 
operation should not be performed very often. 

In our experiments, we assumed that the counters are tested 
every 500,000 cycles, and, if needed, redistribution will 
require an additional 100 cycles. Our results show that only a 
small fraction of the total architected registers need more than 
four physical entries (typically 10 to 15%). Furthermore, the 
best configuration is mostly dictated by the conventions used 
for register allocation, so the number of redistribution is fairly 
small and steady state can be rapidly reached.  

This new register renaming design still maintains several 
limitations. First, it requires an additional pipeline stage, which 
adds a cycle to the mispredict penalty and will cost about 2-3% 
in performance. Second, it still imposes restrictions on starting 
a new trace. As in Pentium 4, the FRT must be copied to the 
RT before new instructions can pass through Register Update. 
This checkpoint can only be performed after the offending 
instruction is ready for commitment, and thus pipeline stalls 
can occur in certain cases. However, this can only happen if it 
takes more than five cycles from the moment when the 
misprediction is detected until the instruction can be retired.  

An additional problem arises when using this design with 
the Execution Cache (Figure 10). 

When instructions are issued from the EC, a trace can end 

without generating a mispredict. Such a trace completion will 
be detected when reading instructions from the EC, and a new 
trace can be looked up immediately. Ideally, instructions from 
the new trace will be sent to execution as soon as possible, but 
in this design they cannot go through Register Update until the 
previous trace has been completely retired. As the Register 
Update stage is very close to the EC, most of the time the new 
trace will have to wait for a few cycles before it can proceed 
towards the execution core. On the alternative execution path, 
the last instruction of the trace will require at least 5 cycles to 
go through the pipeline. Very often, it takes significantly more 
than 5 cycles due to data dependencies or higher execution 
latency. However, the look-up for a next trace can be started 
early, so new instructions could be retrieved very fast. 

To solve this problem, we can add a Speculative Remapping 
Table (SRT) to the Register Update Stage. As instructions pass 
through this stage and physical register addresses are 

computed, this SRT is updated with the same information that 
eventually goes to the FRT. After a trace-end instruction 
updates SRT, this table holds the exact same information that 
will be contained in FRT after the instruction is retired. Apart 
from the PO for each physical register, this table must also 
hold the Trace Id of the last instruction that modified it. As 
instructions arrive out-of-order, this field is needed for making 
sure that an older instruction does not modify the record of a 
newer one. For each instruction that passes through Register 
Update, the SRT entry corresponding to its destination is read 
together with the normal entry in the RT. In parallel with 
computing the physical register address, the Trace Id is 
compared against the SRT and, if newer, the SRT entry is 
updated with the new PO. The update will likely require an 
extra cycle, so the content will be up-to-date one cycle after 
the last instruction of the trace passes through Register Update.  

By swapping this table with the regular RT, the execution of 
a new trace can be started immediately. Thus, the penalty for 
changing the trace is reduced to a single cycle. However, this 
mechanism can only be used when the end-of-trace instruction 
is detected before the Register Update stage. When a branch 
mispredict is detected in the Execute stage, the content of the 
SRT might not be coherent so it cannot be used for restarting a 
trace right away. In this case, the FRT must be used so the new 
trace must wait until the previous one retires completely. 

4. Experimental setup 
For a 128-entry Issue Window with an issue width of six 

instructions per cycle, a fairly balanced baseline design (in 
0.18um process technology) can be obtained by using 64K L1 
caches with a two-cycle access time. For the D-cache we 
assume a four-way associative implementation and for the I-
cache a simpler, two-way associative implementation. A 192-
entry Register File offers enough rename entries for this 
design, without introducing further clock speed restrictions. 
Assuming a single-cycle access for the Issue Window and 
Register File, and a two-cycle pipelined access for L1 caches, 
the clock speeds achieved by these modules are presented in 
Table 13. While the D-cache is dual ported in order to support 
two load/store instructions in parallel, we only need a single 
read/write port for the I-cache. Thus, the front-end of the 
pipeline can potentially be clocked higher than the back-end. 
As suggested by many recent processor implementations, the 
functional units are unlikely to become a limitation, being 
scalable to frequencies significantly higher [27][28]. 

For the Flywheel microarchitecture, we sized the modules in 
such a way that they do not become a bottleneck themselves 
for future frequency increases. Thus, a 128K EC access will 
take three cycles, while the larger, 512-entry Register File will 
require two cycles for read/write. These results suggest that in 
future process technologies we will reach a point where the 
front-end of the pipeline will support twice the frequency of 

 
Fig. 10. Equivalent pipeline in trace execution mode 

 
 

3 The access times have been computed as in [4]. 



 

the Issue Window, while the Execution Core will also support 
a higher clock speed, but by only 50%. The clock frequencies 
presented in Table 1 are obtained assuming the implementation 
details described in [2]. Using different circuit-level 
implementations, the absolute frequencies can be quite 
different, but the scaling trends will most likely be preserved.  

To measure the impact of our microarchitecture on both 
performance and power consumption, we have implemented a 
cycle-accurate simulation model of the original fully 
synchronous pipeline and its dual clock counterpart. Our 
simulator is based on Simple Scalar [13], but reflects the target 
pipeline more accurately. As opposed to SimpleScalar, it uses 
normal pipeline registers, an Instruction Windows that closely 
resembles the mechanism described herein and a Retire Buffer. 
The register renaming mechanism chosen is similar to the one 
used by the MIPS R10000 processor [6]. We have used the 
Wattch modeling framework [14] to include power models in 
our simulator. However, instead of assuming that unused 
modules are consuming 10% of their normal in-use power 
consumption, we developed models for the static energy 
leakage based on the framework described in [15] using 
STMicro technology. 

In addition to modeling the switching capacitance of 
memories and buses inside the processor, we have also 
modeled the switched capacitance of the global and local clock 
grids. We have assumed a clock distribution hierarchy 
resembling the one used by the Alpha 21264 processor, 
modeling one global clock grid and local clock grids 
corresponding to each of the synchronous domains. The area 
and metal density for each clock grid are the ones published 
for the Alpha 21264 processor.  

The parameters for the microarchitecture under 
consideration are presented in Table 2. In our experiments, we 
have used integer and floating-point benchmarks from both 
SPEC95 and SPEC2000 suites. For all experiments, we have 
fast-forwarded over the first 500 million instructions and then 
continued simulation for another 100 million instructions. As 
our proposed microarchitecture uses different clock 
frequencies for each section of the pipeline, all our evaluations 
use the total execution time as a measure of performance. 

5. Experimental results 
When limited to the same clock frequency, our 

microarchitecture is still able to keep pace with the 
superscalar, out-of-order baseline. The effect of the limited 
renaming capacity offered by our register allocation 
mechanism is very significant in some cases. Together with the 
Dual-Clock Issue Window, the adaptive register file makes the 
pipeline almost three stages longer and accounts for more than 
10% performance drop in several benchmarks (gzip, vpr, 
parser). However, due to the reduced mispredict penalty 
offered by the alternative execution path, the Flywheel 
microarchitecture is able to overcome these limitations and 
offer an average 5% increase in performance over the baseline. 
In Figure 11, all the results are normalized with respect to the 
fully synchronous superscalar, out-of-order baseline. 

Furthermore, the proposed microarchitecture is able to 
utilize the alternative execution path for an average 88% of the 
time. Assuming this path can be sped up using a faster clock 
signal, this offers an important opportunity to increase the 
performance. While in some cases the front-end of the pipeline 
is still used for 40% of the time, on most benchmarks the 
processor spends more than 90% of the execution time 
fetching instructions directly from the EC. 

As expected, performance increases significantly when 
increasing the clock speed of the execution core. According to 

TABLE 2 
Microarchitecture parameters 

Parameter Value 
Pipeline 9 stages baseline, 4 way out-of-order 
Instruction Window 128 entries, issue width of 6 

Register File 192 entries, single cycle for the baseline 
512 entries, two-cycle access for Flywheel 

Load / Store Queue 64 entries 

I-Cache 64k, 2 way set-associative, 2 cycles hit time, 
LRU replacement alg. 

D-Cache 64k, 4 way set-associative, 2 cycles hit time, 
LRU replacement alg. 

L2 Cache Unified, 512k, 4 way set-associative, LRU 
replacement alg. 

L2 access time 10 cycles 
Execution Cache  128k, 2 way set-associative, 3 cycles hit time 

Memory access time 100 cycles (scaled accordingly when clock 
speed is increased) 

Functional Units 
4 Integer ALUs, 2 Integer MUL/DIV 
2 Memory ports 
2 FP Adders, 1 FP MUL/DIV 

Branch Prediction G-share, 12 bits history, 2048 entries 

Technology (for power 
estimation [12]) 

0.13um - Vdd = 1.4V, Vt = 0.22V 
0.09um - Vdd = 1.2V, Vt = 0.20V 
0.13um - Vdd = 1.1V, Vt = 0.18V 

Normalized leakage 
current per device 

0.13um – 80 nA (normalized per device) 
0.09um – 280 nA (normalized per device) 
0.06um – 280 nA (normalized per device) 

TABLE 1 
Clock frequency estimated for the main modules of the pipeline, in 

future process technologies (MHz). 
Baseline 0.18um 0.13um 0.09um 0.06um 

Issue Window (single cycle) 950 1,150 1,500 1,950 
I-Cache (two cycles) 1,300 1,800 2,600 3,800 

D-Cache (two cycles) 1,000 1,400 2,000 3,000 
Register File (single cycle) 1,150 1,650 2,250 3,250 

Flywheel     
Execution Cache (three cycle) 1,000 1,400 2,050 3,000 
Register File (two cycles) 1,050 1,500 2,000 2,950 
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Fig. 11. Performance of the baseline processor using the Dual-Clock Issue 
Window and the new Register Allocation mechanism and of the Flywheel 

microarchitecture at the baseline clock speed. All results are normalized with 
respect to the baseline performance (Table 2). 



 

the assumptions made in Section 4, we limited our exploration 
to a 50% increase in the execution core clock speed and an up 
to 100% increase in the front-end clock speed (Table 1). We 
assumed that all internal modules scale according to their 
section of the pipeline, while the external memory does not 
scale and thus the number of clock cycles required for a 
memory access increases correspondingly. 

In Figure 12, clock speeds are presented as pairs, with the 
first value representing the increase for the front-end (FE) and 
the second value representing the increase for the execution 
core (BE). In all tests, the back-end of the pipeline (BE) is 
sped-up with 50% in trace-execution mode, while being 
synchronous with the Issue Window in trace-creation mode. 
The front-end (FE) clock is varied from the Issue Window 
speed (FE0%) to twice this speed (FE100%). While in some 
cases the front-end clock speed does not influence much the 
overall performance (vpr, parser), in other cases it helps 
significantly. The large effect seen in vortex, where the speed-
up increases from 29% (FE0%, BE50%) to 59% (FE100%, 
BE50%), is mainly generated by the reduction in mispredict 
penalty achieved by the faster clock speed in the front-end.  In 
this case, the alternative execution path is only used for less 
than 60% of the time. In all the other cases, the faster front-end 
mainly helps bringing more instructions to the Issue Window, 
exposing more parallelism for the traces that are to be stored 
and replayed from the EC. 

An interesting observation is that the performance of our 
microarchitecture actually scales super-linearly with the clock 
speed. In the (FE50%, BE50%) case where we apply the same 
clock speed increase to both the front-end and the execution 
core, the overall performance increases by an average of 54%. 
This fact is caused by the increased parallelism that we expose 
by accumulating instructions faster in the Issue Window. In 
Figure 12, all values are normalized with respect to the fully 
synchronous baseline microarchitecture. 

In terms of total energy, our microarchitecture is more 
effective than the baseline because we use less hardware for 
executing each instruction when replaying traces from the EC. 
Whenever the processor uses the alternative execution path, all 
the dynamic power that would normally be consumed in the 
front-end is saved. On average, the Flywheel microarchitecture 
saves almost 30% in energy across our entire set of 
benchmarks, with larger savings for benchmarks like gcc and 
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Fig. 12. Relative performance of the Flywheel microarchitecture when 
increasing the clock speed in both the front-end and in the execution core by up 
to 100% for the front end (FE) and 50% for the back-end (BE). Speed-up factors 

have been computed based on latency analysis using Cacti (Table 1).  
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Fig. 13. Relative energy consumed by the Flywheel microarchitecture when
increasing the clock speed in both the front-end and the execution core. All 

results are normalized with respect to the baseline microarchitecture. 

quake and smaller savings for vortex where the front-end 
tilization is larger (Figure 13). As the front-end clock speed 
ncreases, the higher dynamic power can be noticed in some 
enchmarks (e.g., vpr, parser) while in other cases the higher 
xecution parallelism is more important and the total energy 
ecreases (equake, turb3d). 

While the total energy remains relatively constant with 
ncreasing the front-end clock frequency, the power actually 
ncreases. The average power required for the (FE0%, 
E50%) case is only 2% larger than the baseline power 
onsumption, but for the (FE100%, BE50%) this average 
rows to 15% more than the baseline. However, the Flywheel 
icroarchitecture offers a large increase in performance for a 

ignificantly smaller increase in power, making this processor 
ore suitable for applications where the power consumption is 

 priority. In the (FE50%, BE50%) case, our microarchitecture 
ffers 54% increase in performance for only 8% increase in 
ower consumption (Figure 14). 

As process technology evolves and transistors are getting 
maller, dynamic power becomes a smaller fraction of the total 
ower used by the processor. Thus, the power efficiency of the 
lywheel microarchitecture will be significantly diminished. In 
igure 15, we study the evolution of the achievable energy 
avings in 130nm, 90nm and 60nm process technologies for 
he (FE100%, BE50%) case. While at 130nm this 
onfiguration saves almost 30% of the total energy, at 60nm 
e project that it will still be more efficient than its baseline 

ounterpart, by saving around 20% of total energy. 

. Related work 
Using multiple clock frequencies in the same chip design, 

lobally Asynchronous, Locally Synchronous circuits have 
een proposed by previous studies as ways for exploiting the 
rend towards making functional blocks more autonomous 
16]. Superscalar, out-of-order processors built under this 
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Fig. 14. Relative power consumed by the Flywheel microarchitecture when
increasing the clock speed in both the front-end and the execution core. All

results are normalized with respect to the baseline microarchitecture. 



 

proposed by Intel [25][26]. By storing traces of decoded 
instructions, their design can bypass the Fetch and Decode 
stages and send instructions from the Trace Cache directly to 
the renaming mechanism. Due to the use of CISC ISA, the 
parallel x86 decoders have been traditionally one of the most 
complex parts of the processor, limiting the maximum 
achievable clock frequency and amounting for an important 
part of the total power budget. Going one step further, it has 
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Fig. 15. Relative energy for the Flywheel microarchitecture at 130nm, 90 nm
and 60 nm. All results are normalized with respect to the baseline in their 

respective process technology. 
paradigm have been evaluated for both performance and 
power consumption [17][9][18]. While performance can be 
significantly worse than in the fully synchronous case, these 
papers identify the ability of the GALS processor to use 
different clock frequencies and supply voltages for each of the 
synchronous islands.  

The circuitry needed for decoupling the front-end of the 
pipeline from the execution core is similar to the one proposed 
in [11]. There, a more general case is considered. For our 
purpose, the Dual-Clock Issue Window design can be greatly 
simplified since it will always interface a faster front-end with 
a slower Issue circuitry. While the front-end of the pipeline 
needs to be decoupled from the Issue Window using a mixed-
clock interface, increasing the clock frequency in the execution 
core can be done without introducing another such interface. 
The proposed mechanism relies on the ability to completely 
bypass the slower circuitry of the Wake-Up/Select by using an 
Execution Cache to store instructions in issue order.  

A somewhat similar mechanism has been previously 
explored by Nair in [19]. The DIF engine is a processor with a 
dual core. The first core is a simple, single-issue pipeline, 
capable of scheduling traces of instructions and storing them 
in a special cache. Should these traces be re-executed, they 
will be fed directly to a more parallel, VLIW-like execution 
core, improving the performance when compared against the 
initial single-issue pipeline. 

In the MPS microarchitecture [20], an external instruction 
scheduler is added to a VLIW core. Normally, the execution 
takes place in the simple, parallel engine and the MPS (Miss 
Path Scheduler) is used only infrequently to bring instructions 
from the memory and schedule them (creating VLIW words 
and storing them in the Instruction Cache for further reuse). 
Since the instruction and data caches are assumed infinite and 
the branch prediction is based on profiling, the performance is 
dictated here only by the VLIW core capabilities.  

Storing instructions in the logical program order rather than 
actual memory order was previously proposed [21][22][23]. 
Usually, the trace-cache employed in all these studies is used 
as a mechanism for improving the fetch efficiency and 
allowing for multiple branch predictions during each clock 
cycle. An exception is the TurboScalar microarchitecture [24], 
where a long and thin pipeline is used for creating and 
scheduling traces that feed a very short and thick pipeline.  

A Trace Cache-based mechanism aimed at both improving 
performance and reducing power consumption has been 

been proposed [3][12] to move a similar structure deeper in the 
pipeline, after the Issue logic. Such a design would allow 
reusing all the work performed in the front-end of the pipeline, 
offering significant energy reductions at the expense of a small 
decrease in performance. However, as shown in this paper, 
such a design can be beneficial for both energy and 
performance if used in a properly designed architecture. 

As shown by Palacharla et al. [2], a large Issue Queue is 
likely to become a problem for both clock speed increase and 
wider pipelines. Several solutions to deal with it have been 
proposed. A straightforward approach is to pipeline the issue 
logic by splitting the Wake-Up and Select phases into two 
separate pipeline stages and using Speculative Wake-Up to 
compensate for the loss in IPC [7]. As instructions are waken 
up using tags that have not been selected yet, the Select stage 
is removed from the critical loop leaving the Wake-Up 
circuitry alone to dictate the clock speed. While IPC is only 
slightly affected if the processor has enough execution 
resources, this solution does not address the issue of quadratic 
increase in the Wake-Up latency. As this latency starts 
dominating the Issue Window speed, this solution loses its 
efficiency. In addition, the energy-performance operating point 
for this design is inferior to the one proposed in this paper as it 
targets only performance, without regard to power efficiency. 

Other solutions focus on reducing the complexity of the 
Issue Queue through limiting the number of instructions that 
must be woken-up simultaneously. Thus, Palacharla et al. [2] 
proposed to implement the scheduling mechanism as a 
collection of dependency queues in which only the topmost 
instruction in every such queue is woken-up. Hrishikesh et al. 
[1] proposed to organize the Issue Queue into multiple stages 
and forward results to only one stage during each clock cycle.  

Instead of reducing the complexity (and implicitly its 
effectiveness) of the Issue Window, our microarchitecture 
aims at limiting its influence in the overall performance. Using 
the parallelism exposed by a large Issue Window, but without 
having to settle for the limited clock speed imposed by it, we 
are effectively removing it as a bottleneck for future 
scalability. 

7. Conclusions 
As transistors become smaller and faster, a large Issue 

Queue is likely to become a bottleneck for both clock speed 
increases and more parallel designs. First, its latency is 
quadratically dependent on the number of in-flight 
instructions. Second, the Wake-Up delay is dominated by 



 

interconnections, so it will not scale well with future process 
technologies. Considering that the rest of the pipeline is likely 
to scale better with future process technologies and increasing 
parallelism, methods that circumvent this limitation will 
become more and more important.  

In this paper, we proposed a method for circumventing the 
traditional tradeoff between parallelism and clock speed. Our 
microarchitecture can benefit from the potentially higher clock 
speeds achievable in the front-end of the pipeline and in the 
execution core. While still using a large and slow scheduling 
mechanism, the proposed design effectively limits its 
importance in the overall performance.  

Our analytic estimates (based on Cacti) show that 
significant clock speed increase can be expected during next 
process technologies, for both the front-end and back-end 
execution core. Based on these estimations, our results show 
that the Flywheel microarchitecture will scale very well, with 
performance increase surpassing the increase in clock 
frequency. For a 50% clock speed increase, our 
microarchitecture shows a 56% performance increase at the 
expense of only 9% increase in power. In terms of total 
energy, the Flywheel microarchitecture is more efficient than 
its equivalent superscalar, out of order counterpart, providing 
up to 30% energy reduction across various benchmarks. 
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