

Increased Scalability and Power Efficiency by Using Multiple Speed Pipelines§

Emil Talpes and Diana Marculescu
Department of Computer and Electrical Engineering,
Carnegie Mellon University, Pittsburgh, PA, 15217

{etalpes, dianam}@ece.cmu.edu

 Abstract
One of the most important problems faced by

microarchitecture designers is the poor scalability of some of
the current solutions with increased clock frequencies and
wider pipelines. As several studies show, internal processor
structures scale differently with decreasing device sizes. While
in some cases the access latency is determined by the speed of
the logic circuitry, for others it is dominated by the
interconnect delay. Furthermore, while some stages can be
super-pipelined with relatively small performance loss, others
must be kept atomic.

This paper proposes a possible solution to this problem,
avoiding the traditional trade-off between parallelism and
clock speed. First, allowing instructions to enter and leave the
Issue Window in an asynchronously manner enables faster
speeds in the front-end at the expense of small synchronization
latencies. Second, using an Execution Cache for storing
instructions that are already scheduled allows for bypassing
the issue circuitry and thus clocking the execution core at
higher frequencies. Combined, these two mechanisms result in
a 50% to 60% performance increase for our test
microarchitecture, without requiring a completely new
scheduling mechanism. Furthermore, the proposed
microarchitecture requires significantly less energy, with 30%
reduction in a 0.13um or 20% in a 0.06um process technology
over the original baseline.

1. Introduction
For the last few years, a major point of contention among

microprocessor designers has been deciding the best way to
increase performance in the presence of the undesirable effects
of increased complexity. Some argue that complex
implementations that attempt to maximize the number of
instructions issued per cycle are the most desirable, since they
usually rely on relatively short pipelines and are less affected
by the increasing gap in memory speed. The other camp argues
that a better approach is to keep the implementation
complexity low and sacrifice some of the parallelism in order
to maximize the clock frequency. Such processors rely on
much longer pipelines, are more affected by poor branch
predictability and are dependent on highly optimized memory
hierarchies. However, they are better suited for highly

§ This work was supported in part by SRC Grants No. 2001-HJ-898 and
2004-HJ-1189.

sequential code and should theoretically scale better with
newer process technologies and smaller feature sizes.

As clock speed increases and pipelines grow wider, the
overhead for dynamically scheduling instructions becomes
significant both in terms of latency and power consumption. In
addition, as pipelines grow longer to sustain increasing clock
frequencies, internal latencies may also increase. This trend
has been uncovered by several previous studies. While
Hrishikesh et al. [1] show that clock speed could still be
improved by further reducing the logic depth per stage, they
also acknowledge that simply superpipelining the main
structures of an out-of-order processor will not improve
overall performance. The issue logic is singled out as one of
the structures that will ultimately impose limitations on the
achievable clock speeds.

Clock speed improvement is not the only aspect limited by
a monolithic, single clock, issue queue. Palacharla et al. [2]
studied the effect of increasing pipeline width on the
complexity of a superscalar, out-of-order processor.
Specifically, their study assumes that future designs need to
support an increasing number of in-flight instructions and
larger issue widths. While latencies of most internal structures
increase linearly with the issue width, the complexity of the
wakeup logic grows quadratically with the width of the
pipeline. Thus, it is concluded that designing single-cycle
structures for the issue logic is likely to become problematic
for future implementations.

Since other pipeline structures are likely to scale better
with future process technologies and increasing parallelism,
methods for circumventing this limitation will become more
and more important. Ideally, all pipeline stages would need to
be sped-up by the same ratio, either by using fast transistors or
by superpipelining. However, ideal scaling cannot be achieved
by using plain superpipelining for the issue logic, without
losing the capability of back-to-back scheduling. To overcome
this problem, we introduce a special microarchitecture that can
take advantage of the modules that can be clocked faster, even
in the presence of a large and slow Issue Window.

This paper proposes two mechanisms that allow both the
front-end and the execution core to run at their own nominal
speed. Working together, they allow future growth in
performance while also providing significant energy savings.

• Dual Clock Issue Window. A Dual Clock Issue
Window design allows the front-end of the pipeline to run at a
different clock speed, asynchronously from the execution
back-end. Assuming that the front-end can be clocked faster,

this would allow a large (and relatively slow Issue Window) to
uncover more Instruction Level Parallelism.

• Pre-Scheduled Execution. Trying to keep the execution
as much as possible inside the faster back-end of the pipeline,
we propose to use an Execution Cache placed after the Issue
Window. Instructions that are fetched, decoded and have had
their registers renamed are sent to execution while being stored
in issue-order (instead of program-order) in the Execution
Cache. Most of the time instructions are executed out of this
cache and fed directly to the execution engine. Assuming the
execution core can be clocked faster than the front-end (which
in this case contains the relatively slow Issue Window), the
overall performance can be improved. At the same time, this
mechanism promises better power efficiency since it allows a
significant part of the work to be reused when re-executing
instruction sequences.

Such a cache has already been proposed [3] as an efficient
mechanism for reducing the dynamic power in a superscalar,
out-of-order processor, but its potential for improving the
overall performance has not yet been investigated. In our
setup, the Execution Cache is used to effectively create a new
and faster execution path. To enable this operating mode, we
use a new Register File and Register Renaming mechanism
to alleviate the capacity constraints of previous solutions.
While both the Dual Clock Issue Window and the Execution
Cache have been described before, they have not been used
together to create an efficient, high performance
microarchitecture. Furthermore, the resulting Flywheel
microarchitecture is more scalable than its superscalar, out-of-
order counterpart for deep sub-micron technologies as it does
not rely on a single clock design methodology.

The adaptation mechanism supported by our
microarchitecture is similar to a mechanical engineering
concept: the flywheel. After applying an external stimulus, the
flywheel continues spinning because of its large inertia. In our
design, the front-end of the pipeline is only used for creating
traces that will be later re-executed on the back-end alone.
When the front-end is decoupled, the back-end continues
executing traces already stored in the EC as long as it hits
there. This holds due to high locality of these traces (the
equivalent of inertia in mechanical terms) and progresses until
locality is lost and the front-end must be restarted1.

This paper is organized as follows: in Section 2 we present
the motivation behind our approach, while Section 3 describes
the main details of our microarchitectural design, including the
pipeline organization, the new issue queue implementation, the
Execution Cache and the new Register File. The experimental
setup is described in Section 4 and results on several Spec95
and Spec 2000 benchmarks are included in Section 5. We

1 As it can be seen, the analogy is not perfect by equating speeds in
mechanical and hardware sense, in that the flywheel gradually slows
down after the external stimulus is removed, whereas in our design
the execution speed is actually increased after the slow, front-end
circuitry is decoupled.

present a summary of the previous work that is relevant to our
approach in Section 6 and conclude the paper in Section 7.

2. Motivation
As feature size decreases and transistors become faster and

faster, the relative importance of the time spent driving signals
on long metal lines grows. Thus, signal paths that are
dominated by transistor speed are expected to scale
significantly better in future process technologies than wire-
dominated ones. In [2], Palacharla et al. look at how different
structures scale with faster logic and increasing wire
importance. The study found the wake-up and bypass
networks to be the two structures that scale worst with
decreasing technology sizes. While the latency of the bypass
network increases quadratically with the number of functional
units, the latency of the wake-up circuitry depends
quadratically on the Issue Window size.

By extending the models presented in [2] and [4], we can
compare the relative latencies of different modules in future
process technologies. In Figure 1, we can see that a reasonably
sized cache is about two times slower than the Issue Window
in 0.25um or 0.18um process technologies, but it scales much
better achieving about the same access time as the 128-entry
Issue Window in 0.06um2.

The ability to perform back-to-back scheduling is so
important for obtaining high performance that most

m
lo
D
ch
re
se
sc
ne
m
op

cy

Fi

tec
we
Latency [ps]

0

500

1000

1500

2000

2500

0.25um 0.18um 0.13um 0.09um 0.06um
N o de size

IW - 128 entries, 6 ways IW - 64 entries, 4 ways
Cache - 64K, 2 ways, 1 rd/wr port Cache - 32K, 4 ways, 2 rd/wr ports
RF - 128 entries RF - 256 entries

g. 1. Latency scaling for Issue Windows (IW), caches and register files (RF).
icroarchitects assume it as a requirement. The scheduling
gic performs two basic operations: Wake-Up and Select.
uring the Wake-Up phase, instructions in the Issue Window
eck their dependencies and, if these are resolved, they
quest access to a functional unit for execution. During the
cond phase, some of these instructions are selected and
heduled. To be able to schedule dependent instructions in the
xt clock cycle, the output of a previous Select operation
ust be available when Wake-Up starts. Thus, these two
erations must be executed together during a single cycle.
The importance of performing these operations in a single
cle has been shown before [1]. Three operational loops are

2 Even though some authors use 0.065um as the next process
hnology after 0.09um, we use the numbers provided in [4] and thus
 assume a 0.06um process technology.

st
W
F
fo
n
b
st
th
a
U
p
li
a
m
d

3

tr
th
W
b
to
it
so
d

o
b
p
p
b
(I
in
w
c
th
in
sp

sp
C

Execution Cache most of the time, they can be sent directly to
the execution core allowing it to work at its own maximum
frequency. The resulting design will thus have two operational
modes: trace creation mode and trace execution mode. In
the first mode, instructions are read from the I-Cache and fed
through the normal front-end of the pipeline. The execution
core is synchronous with the slow Issue Window, and thus it
has to operate at the baseline frequency. However, the front-
end will function faster, enabled by the Dual Clock Issue
Window that allows dispatching and issuing instructions
asynchronously one to each other.

0

10

20

30

40

50

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

[%
]

Fetch/Mispredict Wake-Up/Select

Fig. 2. IPC degradation when adding one extra stage to the front-end of the
pipeline (Fetch/Mispredict loop) and to the Issue Window (Wake-up/Select
loop).

udied (Load/Use, Branch/Mispredict, Wake-Up/Select) and
ake-Up/Select is singled out as the most critical. We show in

igure 2 the impact of further pipelining the issue logic for a
ur-way superscalar, out-of-order microprocessor based on a

ine-stage pipeline, with seven cycles mispredict penalty (dark
ar). We also show, as a comparison, the impact of adding one
age to the front-end (light bar).While the performance hit of
e additional front-end stage is limited (less than 3% on

verage), it can increase to more than 40% when the Wake-
p/Select loop is pipelined (slightly less than 30%
erformance loss on average). As a large Issue Window is
kely to become the bottleneck for future frequency growth in
 single-clock processor, our design tries to build on the
ultiple clock methodology, limiting the performance

egradation induced by the slow Wake-Up/Select logic.

. Design exploration framework
In this paper, we propose an alternative solution to the

aditional tradeoff between parallelism and clock speed. As
e rest of the pipeline is likely to scale better than the Issue
indow in future process technologies, we assume that it will

e able to work at higher clock speeds. Thus, instead of trying
 make the Issue Queue faster, our proposed approach limits
s impact on the overall microarchitecture performance. The
lution relies on using multiple clock domains, allowing

ifferent segments of the pipeline to work at different speeds.
The front-end of the pipeline is decoupled through the use

f a Dual Clock Issue Window. In this setup, instructions can
e brought in the Issue Window faster, exposing more
arallelism. This mechanism can significantly improve
erformance in cases where many independent instructions can
e found; for code with poor instruction level parallelism
LP) the only way to improve performance is to execute each
struction faster. Even though the execution core might scale,
e cannot directly increase the clock speed of the ALUs as the

ycle time may be dictated by other slower structures (namely,
e Issue Window). Should the ALUs be clocked faster,
structions would need to be scheduled at this increased
eed, and this is not possible due to the slow issue logic.
In order to allow the execution core to work at a faster clock
eed, the back-end is decoupled by the use of an Execution
ache (EC). Assuming that instructions are retrieved from the

After each branch misprediction, the EC is searched for a
trace starting at the current Program Counter (PC) location.
Should such a trace be found, the processor switches to trace
execution mode. The front-end is completely shut down,
including the scheduling logic. Instructions are read from the
EC and fed directly to the functional units. In this setup, the
resulting critical path can be clocked faster. For the front-end
of the pipeline, we can use a dedicated PLL or ring oscillator
to generate the maximum clock frequency supported by these
stages. However, in order to avoid using two separate circuits
for generating the back-end clock signal, we can generate them
both starting from a unique (and fast) clock signal. By dividing
this signal by different constants, we can generate both the
slow clock signal required in trace creation mode, as well as
the fast clock signal used in trace execution mode. While this
method prohibits the use of many possible clock speeds
combinations, it only requires a negligible overhead for
switching between the two operating modes. When running in
the trace-execution mode we can either let the faster clock go
into the Issue logic and use clock gating, or we can
additionally use power gating for additional power savings [8].
In our tests, we are using clock gating of the Issue Window
when not in use (and thus, our results are conservative as
power gating may provide additional power savings).

3.1. Pipeline organization
To this end, we start with a nine-stage pipeline that

implements a four-way superscalar, out-of-order processor.
Our baseline microarchitecture is able to fetch up to four
aligned instructions and move them in lockstep towards a
monolithic Issue Queue (similar to the one used by MIPS
R10000 [6]). Here, they are reordered according to their data
dependencies and ready instructions are sent in parallel to the
out-of-order execution core. When an instruction is selected,
its tag is broadcast to all entries in the Issue Window (for
Wake-up) and to the Register Availability Table (RAT) [7].

The proposed microarchitecture is presented in Figure 3. In
this setup, the pipeline is effectively broken into two separate
clock domains. In the first domain, instructions are fetched
from the I-cache, decoded and their registers are renamed. The
second domain contains the Issue Window and the Reorder
Buffer, the Register File (Read and Write Back stages) and the
functional units. As independent instructions are retrieved

from the Issue Window and sent towards the execution core,
they are, in parallel, added to the Execution Cache creating
program traces. The EC can also be a provider of instructions.
After a branch misprediction, the next PC address is compared
against existing traces and, should a match occur, instructions
will be retrieved directly from EC.

The last modification that we bring to the typical
superscalar, out-of-order processor is the Rename mechanism.
As instructions come from the EC in execution order, typical
register renaming can not be performed and we have to rely on
information stored during trace creation. Thus, in order to
reuse our traces, we have to make sure that the mapping
between architected and physical registers is preserved
whenever a trace is restarted. To solve this problem, we split
the renaming mechanism in two sub-stages: a normal, Rename
stage that allocates physical entries for each architected
registers and a second, Update stage that remaps these entries
when instructions are re-executed.

3.2. Fine grain dynamic voltage scaling
Using an altered Instruction Window, we attempt to

increase the overall performance of the microprocessor by
increasing the clock speed used in the front-end. Thus, the
design needs to be slightly modified in order to provide
synchronization capabilities for data coming from one domain
and requests coming from the other.

Most of the asynchronous communication takes place after
the Dispatch stage, as instructions must be synchronized with
the back-end clock signal before being considered for Issue.
Other synchronization points exist as well: fetch redirect
requests go from Write Back to the Fetch stage, branch
predictor updates are sent from Retire to the Fetch stage and
physical register releases are triggered in Retire, but must be
operated in the Rename Table. In all these cases, we assume a
FIFO-based communication with the same synchronization
latency as proposed before [9][10].

The synchronization circuitry needed by the Issue Window
is similar to the one proposed in [11]. Essentially, instructions
are placed in unused entries synchronously with the producer
clock, where they wait a certain synchronization time before
being seen by the Wake-up/Select circuitry that operates
synchronous with the consumer clock. After this delay is
observed, Wake-up and Select can proceed in the same manner
as in the synchronous counterpart.

An additional problem appears though when tags are
forwarded after selection. As the tag matching circuitry from
Wake-up is placed in the same clock domain, it is reached
earlier than the Register Availability Table (RAT) (Figure 3).

Fig. 4. Timing behavior for a synchronous Issue Window (top) vs. a Dual
Clock Issue Window (bottom).
Thus, it becomes possible for an instruction to pass the
Dispatch stage without seeing the broadcast tag, and also miss
it before reaching the tag match circuitry from Wake-up.

In Figure 4, instruction INST #3 depends on the results
generated by INST #1 and INST #2. In the fully synchronous
case (top of Figure 4) the tags can arrive either early, before
the instruction reaches the Issue Window (INST #2) being
sampled in RAT, or later, and in that case they are seen during
the first Wake-Up cycle (INST #1). However, in the
asynchronous case (bottom of Figure 4), the synchronization
delay (SYNC in Figure 4, lower signals) creates another
possible scenario: INST #1 can generate its tags late enough
that they reach RAT after INST #3 leaves Dispatch, but too
early to be seen during the first Wake-Up cycle.

This problem has been acknowledged before [11], and two
possible solutions have been proposed for it: delay the tag
matching of the Wake-up until the broadcast data is seen in the
other clock domain (Delay Network in Figure 3) or memorize
this tag for a few cycles and duplicate the tag matching lines.
While the implementation is simple in the first case, it loses
the exact same capability that we intended to preserve in the
first place – back to back scheduling. In the second case, the
performance penalty is negligible, but the complexity of the
Issue Window increases (Figure 5). In our design, the back-
end clock includes the Wake-Up/Select logic and thus will
always be slower than the one used by the front-end. This
limits the extent of the problem, so in this case we only need to
perform wake-up using the tags forwarded in the previous two
cycles.

Fig.

5. Duplicated tag matching for the Dual Clock Issue Window.
Fig. 3. Proposed modifications for the Issue Mechanism.

3.3. Pre-scheduled execution
In order to take the Wake-Up/Select logic off the execution

path, we propose that an Execution Cache be placed deep in
the pipeline, after the Issue Stage (as illustrated in Figure 6). In
this setting, the branch misprediction path can be significantly
shortened by feeding the execution units directly from the EC
whenever possible. Initially, when EC is empty, instructions
are launched from the Issue Window, while a trace is built in
parallel. This step is called the trace segment build phase.
Upon a mispredict (or a trace completion condition), the EC is
searched and, should a hit occur, instructions start to be sent
on the alternative execution path (the trace execution phase).
When operating on this alternative execution path, the
processor behaves like a VLIW core, with instructions being
fetched from the EC and sent directly to the execution engine.
If a miss is encountered on a trace search, the pipeline front-
end is restarted and a new trace is built.

Similar to conventional trace-cache implementations, the
proposed design divides the program into traces of instructions
that are stored in a different order than the one given by their
original addresses. This allows for implicitly encoding
information about the reordering work done in the Fetch and
Issue stages through the actual order in which instructions are
stored. However, the cache chosen in the proposed architecture
is structurally different from the trace-cache typically used for
increasing the fetch bandwidth.

When stored in issue order, instructions lose their original,
logical order and can be retrieved only on a sequential basis.
Only the start address of each trace needs to correspond to a
physical address in the memory space. Instructions from two
consecutive traces cannot be interleaved, so with each change
of trace the processor must restart execution in-order.
Furthermore, after each trace, a trace look-up step must be
performed. While most of the time the penalty associated with
this look-up can be hidden (the look-up being started in
advance), there are certain conditions when this is not
possible. Together with the need for in-order start, this leads to
some performance penalty associated with each trace change.

To minimize the performance impact of this design, traces
must be created as long as possible. While most trace cache
designs proposed in the literature limit the traces to at most
three basic blocks, it is desirable to include as many
instructions as possible if no misprediction is encountered. The
simultaneous presence of traces with different lengths (some
of them very long) in the EC has precluded the use of a
standard trace cache model [21][22] or the very efficient block

based trace cache structure [23]. Thus, Flywheel relies on a
solution that resembles the Pentium 4 implementation [25] to
accommodate traces of arbitrary length. The architecture of
this solution is presented in Figure 7a.

The EC structure consists of a Tag Array (TA) and a corre-
sponding Data Array (DA). The TA is an associative cache,
addressed using the translated program counter. It is used for
trace look-up and it should be as fast as possible to reduce the
performance overhead associated with searching for a new
trace. The SET_ID value obtained from the TA points to the
DA set containing the first instructions of the trace. DA is a
multi-way set associative cache composed of multiple memory
banks. A comparison with TRACE_ID is performed for each
block in the set, identifying the correct starting point of the
trace. The next chunk of instructions is located in one of the
blocks of the following set, and so on (see Figure 7a). A spe-
cial end-of-trace marker identifies the end of the trace. By
knowing beforehand which set will be accessed next, we avoid
performing a new look-up for every access. Knowing the next
set also allows the use of multiple memory banks to implement
the DA. While one of the banks is used, the others can be
turned off, resulting in further energy savings.

Inside each block, an arbitrary number of Issue Units are
stored (Figure 7b). An Issue Unit consists of independent
instructions that can be issued in parallel to the functional
units. Since Issue Units are recorded during the trace building
phase and then reused, the processor will make the same
optimizing decisions each time it executes the code. Each
block accommodates multiple Issue Units, causing a
significant reduction in the total number of accesses. All
instructions coming from the Issue Window are first
assembled into traces using a Fill Buffer and then recorded in
the EC. The Fill Buffer can accommodate two DA blocks;
when enough instructions are available to fill a block, they are
written to the EC. When reading from the EC, we issue one
Issue Unit at a time, using a similar mechanism. If enough
space is available in the Fill Buffer, a block is read from the
DA and added to the buffer.

As each block contains more than one Issue Unit, it needs
more than one clock cycle to be sent to the execution core.
This organization allows for hiding a large part of the EC
latency, an access being initiated before we are forced to stall
the pipeline. While the longer cache lines increases the power
required for each access, they also help reducing the total
number of accesses. One complete block is read during each
access, and instructions are stored in the circular Fill Buffer.
Since the buffer can accommodate two DA blocks, a second
access can be started immediately. When the new set of

Fig. 7. Execution Cache structure (a) and block organization (b)

Fig. 6. Superscalar microarchitecture using an EC for reusing scheduled
instruction streams.

instructions arrives (several cycles later), they are added to the
Fill Buffer. Thus, even if an Issue Unit spans across two DA
blocks it will still be issued in a single cycle most of the time.
Corner cases can still occur though, when the Issue Units are
very large. In such cases the second block might arrive late,
the Issue Unit being split over two or more execution cycles.
The downside of increasing the block size is that the efficiency
of the EC decreases, many instruction slots remain empty. Our
tests have shown that smaller blocks can be significantly more
efficient in terms of instruction space storage, whereas very
small blocks tend to have negative influence on the overall
performance. For our evaluation, we have focused on eight-
instruction blocks that are usually able to accommodate three
or more Issue Units.

3.4. Associative register file
To enable pre-scheduled execution, we need a special

Register File, along with a new Register Renaming
mechanism. As instructions come out of the EC without
preserving their original program order, registers cannot be
renamed for such trace replays. At the same time, operand
values cannot be simply stored in the EC and reused, as they
are generally different during each trace run. Since the
processor must rely on the renaming information collected
during the trace build phase, a different registers pool and
control unit has to be used. To handle this task, a special
register file structure is used [3].

This structure employs a special pool of physical registers
for renaming every logical register of the ISA. Unlike in a
typical scheme where an architected register can be mapped
onto any physical register, here it can be renamed using only
the entries of the corresponding pool (Figure 8). Each write
goes circularly to a different physical register, solving the
problem of false data dependencies. As with any rotating
register file, the number of in-flight instructions that have the
same logical destination is bounded by the number of physical
locations available in the circular buffer.

When going through the Rename stage, each instruction is
allocated a physical register as destination. This entry must be
different than the one holding the last known value for the
corresponding architected register. Having different physical
destinations, instructions can write their result as soon as it
becomes available, setting the V (valid) bit. The S (speculated)
bits are used for remembering which values have actually been

committed, and they are cleared only after the instruction has
retired. The N indices (values POS 0 - POS N-1) are initialized
with consecutive values (0,1,2 … N-1) and represent the
logical order of the registers in the circular queue. IDX is a
pointer in this queue representing the most recent register used
for writing. All accesses are associative, comparing the
renaming information against the POS tags. Inside a trace, the
POS tags remain constant and represent the logical order of the
circular queue (the order in which entries are allocated).

Each trace generation is started with an initial value of IDX
= 0 for all architected registers, meaning that the current value
of the register is stored in the location marked by POS = 0. If
this condition is respected, all subsequent executions can be
performed without further renaming the registers. The caveat
is that this requires a checkpoint to be performed when a trace
execution ends: all POS values must be recomputed so that the
circular buffer starts with the latest written entry. This can be
done by subtracting from POS the IDX value, but it would
require a separate adder for each physical register. However,
since the physical order of the registers is not relevant and it
does not have to match the logical one, the same effect can be
obtained by XOR-ing the IDX with each POS value. By doing
so, all registers have different tags ranging between 0 and N-1
and the register holding the last value receives POS = 0.

While it solves the problem of false data dependencies, this
associative register renaming scheme has several important
limitations. First, an associative organization complicates the
actual hardware implementation of such a mechanism. In this
setup, each architected register would have to be implemented
as a separate piece of logic, being accessed directly as a block
and associatively inside the block.

A second drawback of this scheme is that it only offers
limited rename capacity. Our tests show that a situation where
the Rename stage has to stall is quite common with a limited
number of physical entries inside each pool, and this problem
gets worse as pipelines grow longer. The actual pool size
required for eliminating most of these conditions depends on
the number of in-flight instructions, and, as we target a design
with a high number of such instructions, this can rapidly
become an important problem.

Finally, another problem is that the associative Register File
design can introduce stalls in the pipeline when a checkpoint
needs to be executed. All accesses that we perform on this
structure must see a coherent state, so all the control
information (the POS fields) must be preserved until the last
access is performed for the current trace. This happens in the
Retire stage (for updating the S bits), so the checkpoint cannot
be performed until the last instruction of the trace is retired.
Requiring a different POS configuration, a new trace will not
be allowed to access the register file before the checkpoint
occurs at the end of the previous trace. Depending on the
execution mode, this problem blocks the first instruction of the
next trace either in the Register Rename stage or in the
Execution Cache, introducing bubbles in the pipeline.

Fig. 8. Architected register structure

The effect can be reduced by allowing very long traces in
the EC. In this case, the problem will mostly arise when a trace
must be abandoned due to a branch misprediction. Such a
condition can be detected as early as the Execute stage, so
there are at least several cycles lost until the checkpoint can be
performed. This problem can become even more important if
the instruction is speculated and must wait additional cycles in
the Reorder buffer. If it takes multiple clock cycles for a
mispredicted branch to be retired after it was detected (in the
Write Back stage), it is very likely that the next trace will be
stalled waiting for this checkpoint to occur. A similar problem
occurs in the Pentium 4 microarchitecture [28]. Keeping in
flight a large number of instructions, the processor must
speculate across multiple branches. Each of these branches can
turn out to be mis-speculated, so the processor must have the
possibility to recover after each of them. In order to avoid
keeping copies of the Rename Map (named Front-End RAT)
for each such branch instruction, Pentium 4 uses a second
copy (Retirement RAT) that is updated in-order, at
completion. Whenever a mispredict occurs and the speculative
state must be rolled back, the Front-End RAT is replaced by
the content of the Retirement RAT before the next instruction
can pass through Register Rename. This introduces a similar
penalty, between the moment when the condition is observed
and the one when the offending instruction can be retired.

3.5. Direct access register file
While the mechanism described above can conceptually

solve the problem of false data dependencies, its limitations
make it unsuitable for a real hardware implementation. Thus,
the Flywheel microarchitecture relies on a modified renaming
algorithm that addresses these problems, as described next.

To avoid the associative Register File access, we must
generate a physical register ID in both operating modes, trace
creation and trace execution. For this, we must split the
Register Rename operation in two separate phases, each of
them occupying one pipeline stage. The first phase (Register
Rename) functions essentially in the same way as the
associative mechanism. It assumes that the Register File is still
organized in logical clusters, and always allocates the next
pool entry for a new result. The second phase (Register
Update) performs a remapping between the cluster-based
logical renaming space and the contiguous physical Register
File. The required resources are presented in Figure 9.

The Rename Table holds essentially the same information as
the IDX fields in Figure 8. For each architected register, this
table holds the ID of the current entry in the logical pool.

When a source operand must be renamed, this value is read
and assigned directly to the instruction. For a destination
register, the value must be first incremented (specifying the
next logical entry in the pool) and then stored back to the
Rename Table. After passing through the first Rename stage,
each architected register is assigned a logical identifier (LID).
During the Dispatch and Issue stages, registers are only
specified inside the logical (associative) renaming space.
However, they can be uniquely identified using the architected
register name and the LID. This information is used for
accessing the Register Availability Table (RAT) and for
keeping track of data dependencies in the Wakeup logic. The
SPEC table is accessed using the same method and it holds the
same information as the S bits in Figure 8.

The second phase of the renaming process is performed in
the Register Update stage. Here, the register is remapped from
the logical renaming space to the physical Register File,
generating the correct register addresses. Instructions can
come from either the front-end of the pipeline or from the EC;
as long as they have LIDs associated with their architected
registers the process can be performed in similar fashion. Each
logical pool is defined in the Remapping Table (RT) by its size
and starting address, and the physical offset (PO) is obtained
by combining them with the LID.

Further down the pipeline, the Register File can be accessed
directly, using the information generated in the Register
Update stage. The PO is also needed at completion time, for
updating the Future Remapping Table (FRT). FRT is identical
to the regular RT, holding one entry for each architected
register. Similar to the Retirement RAT in Pentium 4 [28], the
purpose of this table is to keep track of the latest non-
speculative values, and it is updated with the PO of each
destination register. Similar to the Pentium 4 microarchitecture
[28] where the Retirement RAT is copied to the Front-End
RAT, the FRT must be copied to the RT during the checkpoints
that occur at each trace-change.

After a trace completion (e.g., a branch mispredict), the
Rename Table is reset and the LIDs start being generated from
0. When passing through the Register Update stage, these
LIDs are XORed together with the information in the RT,
causing the source operands to point to the latest committed
values for their respective architected registers.

Fitting inside this dual-stage register renaming scheme, a
dynamic approach has been proposed for solving the problem
of the limited renaming capacity [12]. At specified intervals,
the history of the renaming constraints is evaluated and
register redistribution can be performed. Specifically,
architected registers that have been detected to be bottlenecks
are supplemented with additional physical entries, taken from
other pools that are only infrequently accessed. This scheme
ensures that the processor can adapt itself to different
conventions for register allocation. When registers are
redistributed, a size and base address are set for each
architected register. This information is stored in the Rename

Fig. 9. Resources used for the two-phase renaming mechanism

Table, and used for generating the LIDs or the physical
register address. The drawback of such a mechanism is that
whenever redistributions are performed, previous renaming
information becomes obsolete and all entries in the EC must be
invalidated. Together with the actual register redistribution,
this can require a significant number of clock cycles, so this
operation should not be performed very often.

In our experiments, we assumed that the counters are tested
every 500,000 cycles, and, if needed, redistribution will
require an additional 100 cycles. Our results show that only a
small fraction of the total architected registers need more than
four physical entries (typically 10 to 15%). Furthermore, the
best configuration is mostly dictated by the conventions used
for register allocation, so the number of redistribution is fairly
small and steady state can be rapidly reached.

This new register renaming design still maintains several
limitations. First, it requires an additional pipeline stage, which
adds a cycle to the mispredict penalty and will cost about 2-3%
in performance. Second, it still imposes restrictions on starting
a new trace. As in Pentium 4, the FRT must be copied to the
RT before new instructions can pass through Register Update.
This checkpoint can only be performed after the offending
instruction is ready for commitment, and thus pipeline stalls
can occur in certain cases. However, this can only happen if it
takes more than five cycles from the moment when the
misprediction is detected until the instruction can be retired.

An additional problem arises when using this design with
the Execution Cache (Figure 10).

When instructions are issued from the EC, a trace can end

without generating a mispredict. Such a trace completion will
be detected when reading instructions from the EC, and a new
trace can be looked up immediately. Ideally, instructions from
the new trace will be sent to execution as soon as possible, but
in this design they cannot go through Register Update until the
previous trace has been completely retired. As the Register
Update stage is very close to the EC, most of the time the new
trace will have to wait for a few cycles before it can proceed
towards the execution core. On the alternative execution path,
the last instruction of the trace will require at least 5 cycles to
go through the pipeline. Very often, it takes significantly more
than 5 cycles due to data dependencies or higher execution
latency. However, the look-up for a next trace can be started
early, so new instructions could be retrieved very fast.

To solve this problem, we can add a Speculative Remapping
Table (SRT) to the Register Update Stage. As instructions pass
through this stage and physical register addresses are

computed, this SRT is updated with the same information that
eventually goes to the FRT. After a trace-end instruction
updates SRT, this table holds the exact same information that
will be contained in FRT after the instruction is retired. Apart
from the PO for each physical register, this table must also
hold the Trace Id of the last instruction that modified it. As
instructions arrive out-of-order, this field is needed for making
sure that an older instruction does not modify the record of a
newer one. For each instruction that passes through Register
Update, the SRT entry corresponding to its destination is read
together with the normal entry in the RT. In parallel with
computing the physical register address, the Trace Id is
compared against the SRT and, if newer, the SRT entry is
updated with the new PO. The update will likely require an
extra cycle, so the content will be up-to-date one cycle after
the last instruction of the trace passes through Register Update.

By swapping this table with the regular RT, the execution of
a new trace can be started immediately. Thus, the penalty for
changing the trace is reduced to a single cycle. However, this
mechanism can only be used when the end-of-trace instruction
is detected before the Register Update stage. When a branch
mispredict is detected in the Execute stage, the content of the
SRT might not be coherent so it cannot be used for restarting a
trace right away. In this case, the FRT must be used so the new
trace must wait until the previous one retires completely.

4. Experimental setup
For a 128-entry Issue Window with an issue width of six

instructions per cycle, a fairly balanced baseline design (in
0.18um process technology) can be obtained by using 64K L1
caches with a two-cycle access time. For the D-cache we
assume a four-way associative implementation and for the I-
cache a simpler, two-way associative implementation. A 192-
entry Register File offers enough rename entries for this
design, without introducing further clock speed restrictions.
Assuming a single-cycle access for the Issue Window and
Register File, and a two-cycle pipelined access for L1 caches,
the clock speeds achieved by these modules are presented in
Table 13. While the D-cache is dual ported in order to support
two load/store instructions in parallel, we only need a single
read/write port for the I-cache. Thus, the front-end of the
pipeline can potentially be clocked higher than the back-end.
As suggested by many recent processor implementations, the
functional units are unlikely to become a limitation, being
scalable to frequencies significantly higher [27][28].

For the Flywheel microarchitecture, we sized the modules in
such a way that they do not become a bottleneck themselves
for future frequency increases. Thus, a 128K EC access will
take three cycles, while the larger, 512-entry Register File will
require two cycles for read/write. These results suggest that in
future process technologies we will reach a point where the
front-end of the pipeline will support twice the frequency of

Fig. 10. Equivalent pipeline in trace execution mode

3 The access times have been computed as in [4].

the Issue Window, while the Execution Core will also support
a higher clock speed, but by only 50%. The clock frequencies
presented in Table 1 are obtained assuming the implementation
details described in [2]. Using different circuit-level
implementations, the absolute frequencies can be quite
different, but the scaling trends will most likely be preserved.

To measure the impact of our microarchitecture on both
performance and power consumption, we have implemented a
cycle-accurate simulation model of the original fully
synchronous pipeline and its dual clock counterpart. Our
simulator is based on Simple Scalar [13], but reflects the target
pipeline more accurately. As opposed to SimpleScalar, it uses
normal pipeline registers, an Instruction Windows that closely
resembles the mechanism described herein and a Retire Buffer.
The register renaming mechanism chosen is similar to the one
used by the MIPS R10000 processor [6]. We have used the
Wattch modeling framework [14] to include power models in
our simulator. However, instead of assuming that unused
modules are consuming 10% of their normal in-use power
consumption, we developed models for the static energy
leakage based on the framework described in [15] using
STMicro technology.

In addition to modeling the switching capacitance of
memories and buses inside the processor, we have also
modeled the switched capacitance of the global and local clock
grids. We have assumed a clock distribution hierarchy
resembling the one used by the Alpha 21264 processor,
modeling one global clock grid and local clock grids
corresponding to each of the synchronous domains. The area
and metal density for each clock grid are the ones published
for the Alpha 21264 processor.

The parameters for the microarchitecture under
consideration are presented in Table 2. In our experiments, we
have used integer and floating-point benchmarks from both
SPEC95 and SPEC2000 suites. For all experiments, we have
fast-forwarded over the first 500 million instructions and then
continued simulation for another 100 million instructions. As
our proposed microarchitecture uses different clock
frequencies for each section of the pipeline, all our evaluations
use the total execution time as a measure of performance.

5. Experimental results
When limited to the same clock frequency, our

microarchitecture is still able to keep pace with the
superscalar, out-of-order baseline. The effect of the limited
renaming capacity offered by our register allocation
mechanism is very significant in some cases. Together with the
Dual-Clock Issue Window, the adaptive register file makes the
pipeline almost three stages longer and accounts for more than
10% performance drop in several benchmarks (gzip, vpr,
parser). However, due to the reduced mispredict penalty
offered by the alternative execution path, the Flywheel
microarchitecture is able to overcome these limitations and
offer an average 5% increase in performance over the baseline.
In Figure 11, all the results are normalized with respect to the
fully synchronous superscalar, out-of-order baseline.

Furthermore, the proposed microarchitecture is able to
utilize the alternative execution path for an average 88% of the
time. Assuming this path can be sped up using a faster clock
signal, this offers an important opportunity to increase the
performance. While in some cases the front-end of the pipeline
is still used for 40% of the time, on most benchmarks the
processor spends more than 90% of the execution time
fetching instructions directly from the EC.

As expected, performance increases significantly when
increasing the clock speed of the execution core. According to

TABLE 2
Microarchitecture parameters

Parameter Value
Pipeline 9 stages baseline, 4 way out-of-order
Instruction Window 128 entries, issue width of 6

Register File 192 entries, single cycle for the baseline
512 entries, two-cycle access for Flywheel

Load / Store Queue 64 entries

I-Cache 64k, 2 way set-associative, 2 cycles hit time,
LRU replacement alg.

D-Cache 64k, 4 way set-associative, 2 cycles hit time,
LRU replacement alg.

L2 Cache Unified, 512k, 4 way set-associative, LRU
replacement alg.

L2 access time 10 cycles
Execution Cache 128k, 2 way set-associative, 3 cycles hit time

Memory access time 100 cycles (scaled accordingly when clock
speed is increased)

Functional Units
4 Integer ALUs, 2 Integer MUL/DIV
2 Memory ports
2 FP Adders, 1 FP MUL/DIV

Branch Prediction G-share, 12 bits history, 2048 entries

Technology (for power
estimation [12])

0.13um - Vdd = 1.4V, Vt = 0.22V
0.09um - Vdd = 1.2V, Vt = 0.20V
0.13um - Vdd = 1.1V, Vt = 0.18V

Normalized leakage
current per device

0.13um – 80 nA (normalized per device)
0.09um – 280 nA (normalized per device)
0.06um – 280 nA (normalized per device)

TABLE 1
Clock frequency estimated for the main modules of the pipeline, in

future process technologies (MHz).
Baseline 0.18um 0.13um 0.09um 0.06um

Issue Window (single cycle) 950 1,150 1,500 1,950
I-Cache (two cycles) 1,300 1,800 2,600 3,800

D-Cache (two cycles) 1,000 1,400 2,000 3,000
Register File (single cycle) 1,150 1,650 2,250 3,250

Flywheel
Execution Cache (three cycle) 1,000 1,400 2,050 3,000
Register File (two cycles) 1,050 1,500 2,000 2,950

0.6

0.8

1

1.2

1.4

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Register Allocation Flywheel

Fig. 11. Performance of the baseline processor using the Dual-Clock Issue
Window and the new Register Allocation mechanism and of the Flywheel

microarchitecture at the baseline clock speed. All results are normalized with
respect to the baseline performance (Table 2).

the assumptions made in Section 4, we limited our exploration
to a 50% increase in the execution core clock speed and an up
to 100% increase in the front-end clock speed (Table 1). We
assumed that all internal modules scale according to their
section of the pipeline, while the external memory does not
scale and thus the number of clock cycles required for a
memory access increases correspondingly.

In Figure 12, clock speeds are presented as pairs, with the
first value representing the increase for the front-end (FE) and
the second value representing the increase for the execution
core (BE). In all tests, the back-end of the pipeline (BE) is
sped-up with 50% in trace-execution mode, while being
synchronous with the Issue Window in trace-creation mode.
The front-end (FE) clock is varied from the Issue Window
speed (FE0%) to twice this speed (FE100%). While in some
cases the front-end clock speed does not influence much the
overall performance (vpr, parser), in other cases it helps
significantly. The large effect seen in vortex, where the speed-
up increases from 29% (FE0%, BE50%) to 59% (FE100%,
BE50%), is mainly generated by the reduction in mispredict
penalty achieved by the faster clock speed in the front-end. In
this case, the alternative execution path is only used for less
than 60% of the time. In all the other cases, the faster front-end
mainly helps bringing more instructions to the Issue Window,
exposing more parallelism for the traces that are to be stored
and replayed from the EC.

An interesting observation is that the performance of our
microarchitecture actually scales super-linearly with the clock
speed. In the (FE50%, BE50%) case where we apply the same
clock speed increase to both the front-end and the execution
core, the overall performance increases by an average of 54%.
This fact is caused by the increased parallelism that we expose
by accumulating instructions faster in the Issue Window. In
Figure 12, all values are normalized with respect to the fully
synchronous baseline microarchitecture.

In terms of total energy, our microarchitecture is more
effective than the baseline because we use less hardware for
executing each instruction when replaying traces from the EC.
Whenever the processor uses the alternative execution path, all
the dynamic power that would normally be consumed in the
front-end is saved. On average, the Flywheel microarchitecture
saves almost 30% in energy across our entire set of
benchmarks, with larger savings for benchmarks like gcc and

e
u
i
b
e
d

i
i
B
c
g
m
s
m
a
o
p

s
p
F
F
s
t
c
w
c

6

G
b
t
[

1
1.2
1.4
1.6
1.8

2
2.2

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce FE0%, BE50% FE25%, BE50% FE50%, BE50% FE75%, BE50% FE100%, BE50%

Fig. 12. Relative performance of the Flywheel microarchitecture when
increasing the clock speed in both the front-end and in the execution core by up
to 100% for the front end (FE) and 50% for the back-end (BE). Speed-up factors

have been computed based on latency analysis using Cacti (Table 1).
0.5

0.6

0.7

0.8

0.9

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

N
or

m
al

iz
ed

 e
ne

rg
y

FE0%, BE50% FE25%, BE50% FE50%, BE50% FE75%, BE50% FE100%, BE50%

Fig. 13. Relative energy consumed by the Flywheel microarchitecture when
increasing the clock speed in both the front-end and the execution core. All

results are normalized with respect to the baseline microarchitecture.

quake and smaller savings for vortex where the front-end
tilization is larger (Figure 13). As the front-end clock speed
ncreases, the higher dynamic power can be noticed in some
enchmarks (e.g., vpr, parser) while in other cases the higher
xecution parallelism is more important and the total energy
ecreases (equake, turb3d).

While the total energy remains relatively constant with
ncreasing the front-end clock frequency, the power actually
ncreases. The average power required for the (FE0%,
E50%) case is only 2% larger than the baseline power
onsumption, but for the (FE100%, BE50%) this average
rows to 15% more than the baseline. However, the Flywheel
icroarchitecture offers a large increase in performance for a

ignificantly smaller increase in power, making this processor
ore suitable for applications where the power consumption is

 priority. In the (FE50%, BE50%) case, our microarchitecture
ffers 54% increase in performance for only 8% increase in
ower consumption (Figure 14).

As process technology evolves and transistors are getting
maller, dynamic power becomes a smaller fraction of the total
ower used by the processor. Thus, the power efficiency of the
lywheel microarchitecture will be significantly diminished. In
igure 15, we study the evolution of the achievable energy
avings in 130nm, 90nm and 60nm process technologies for
he (FE100%, BE50%) case. While at 130nm this
onfiguration saves almost 30% of the total energy, at 60nm
e project that it will still be more efficient than its baseline

ounterpart, by saving around 20% of total energy.

. Related work
Using multiple clock frequencies in the same chip design,

lobally Asynchronous, Locally Synchronous circuits have
een proposed by previous studies as ways for exploiting the
rend towards making functional blocks more autonomous
16]. Superscalar, out-of-order processors built under this

0.7

0.9

1.1

1.3

1.5

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

N
or

m
al

iz
ed

 p
ow

er

FE0%, BE50% FE25%, BE50% FE50%, BE50% FE75%, BE50% FE100%, BE50%

Fig. 14. Relative power consumed by the Flywheel microarchitecture when
increasing the clock speed in both the front-end and the execution core. All

results are normalized with respect to the baseline microarchitecture.

proposed by Intel [25][26]. By storing traces of decoded
instructions, their design can bypass the Fetch and Decode
stages and send instructions from the Trace Cache directly to
the renaming mechanism. Due to the use of CISC ISA, the
parallel x86 decoders have been traditionally one of the most
complex parts of the processor, limiting the maximum
achievable clock frequency and amounting for an important
part of the total power budget. Going one step further, it has

0.5

0.6

0.7

0.8

0.9

ijp
eg gc

c
gz

ip vp
r

mes
a

eq
ua

ke
pa

rse
r

vo
rte

x
bz

ip2
tur

b3
d

av
era

ge

N
or

m
al

iz
ed

 e
ne

rg
y

130nm 90nm 60nm

Fig. 15. Relative energy for the Flywheel microarchitecture at 130nm, 90 nm
and 60 nm. All results are normalized with respect to the baseline in their

respective process technology.
paradigm have been evaluated for both performance and
power consumption [17][9][18]. While performance can be
significantly worse than in the fully synchronous case, these
papers identify the ability of the GALS processor to use
different clock frequencies and supply voltages for each of the
synchronous islands.

The circuitry needed for decoupling the front-end of the
pipeline from the execution core is similar to the one proposed
in [11]. There, a more general case is considered. For our
purpose, the Dual-Clock Issue Window design can be greatly
simplified since it will always interface a faster front-end with
a slower Issue circuitry. While the front-end of the pipeline
needs to be decoupled from the Issue Window using a mixed-
clock interface, increasing the clock frequency in the execution
core can be done without introducing another such interface.
The proposed mechanism relies on the ability to completely
bypass the slower circuitry of the Wake-Up/Select by using an
Execution Cache to store instructions in issue order.

A somewhat similar mechanism has been previously
explored by Nair in [19]. The DIF engine is a processor with a
dual core. The first core is a simple, single-issue pipeline,
capable of scheduling traces of instructions and storing them
in a special cache. Should these traces be re-executed, they
will be fed directly to a more parallel, VLIW-like execution
core, improving the performance when compared against the
initial single-issue pipeline.

In the MPS microarchitecture [20], an external instruction
scheduler is added to a VLIW core. Normally, the execution
takes place in the simple, parallel engine and the MPS (Miss
Path Scheduler) is used only infrequently to bring instructions
from the memory and schedule them (creating VLIW words
and storing them in the Instruction Cache for further reuse).
Since the instruction and data caches are assumed infinite and
the branch prediction is based on profiling, the performance is
dictated here only by the VLIW core capabilities.

Storing instructions in the logical program order rather than
actual memory order was previously proposed [21][22][23].
Usually, the trace-cache employed in all these studies is used
as a mechanism for improving the fetch efficiency and
allowing for multiple branch predictions during each clock
cycle. An exception is the TurboScalar microarchitecture [24],
where a long and thin pipeline is used for creating and
scheduling traces that feed a very short and thick pipeline.

A Trace Cache-based mechanism aimed at both improving
performance and reducing power consumption has been

been proposed [3][12] to move a similar structure deeper in the
pipeline, after the Issue logic. Such a design would allow
reusing all the work performed in the front-end of the pipeline,
offering significant energy reductions at the expense of a small
decrease in performance. However, as shown in this paper,
such a design can be beneficial for both energy and
performance if used in a properly designed architecture.

As shown by Palacharla et al. [2], a large Issue Queue is
likely to become a problem for both clock speed increase and
wider pipelines. Several solutions to deal with it have been
proposed. A straightforward approach is to pipeline the issue
logic by splitting the Wake-Up and Select phases into two
separate pipeline stages and using Speculative Wake-Up to
compensate for the loss in IPC [7]. As instructions are waken
up using tags that have not been selected yet, the Select stage
is removed from the critical loop leaving the Wake-Up
circuitry alone to dictate the clock speed. While IPC is only
slightly affected if the processor has enough execution
resources, this solution does not address the issue of quadratic
increase in the Wake-Up latency. As this latency starts
dominating the Issue Window speed, this solution loses its
efficiency. In addition, the energy-performance operating point
for this design is inferior to the one proposed in this paper as it
targets only performance, without regard to power efficiency.

Other solutions focus on reducing the complexity of the
Issue Queue through limiting the number of instructions that
must be woken-up simultaneously. Thus, Palacharla et al. [2]
proposed to implement the scheduling mechanism as a
collection of dependency queues in which only the topmost
instruction in every such queue is woken-up. Hrishikesh et al.
[1] proposed to organize the Issue Queue into multiple stages
and forward results to only one stage during each clock cycle.

Instead of reducing the complexity (and implicitly its
effectiveness) of the Issue Window, our microarchitecture
aims at limiting its influence in the overall performance. Using
the parallelism exposed by a large Issue Window, but without
having to settle for the limited clock speed imposed by it, we
are effectively removing it as a bottleneck for future
scalability.

7. Conclusions
As transistors become smaller and faster, a large Issue

Queue is likely to become a bottleneck for both clock speed
increases and more parallel designs. First, its latency is
quadratically dependent on the number of in-flight
instructions. Second, the Wake-Up delay is dominated by

interconnections, so it will not scale well with future process
technologies. Considering that the rest of the pipeline is likely
to scale better with future process technologies and increasing
parallelism, methods that circumvent this limitation will
become more and more important.

In this paper, we proposed a method for circumventing the
traditional tradeoff between parallelism and clock speed. Our
microarchitecture can benefit from the potentially higher clock
speeds achievable in the front-end of the pipeline and in the
execution core. While still using a large and slow scheduling
mechanism, the proposed design effectively limits its
importance in the overall performance.

Our analytic estimates (based on Cacti) show that
significant clock speed increase can be expected during next
process technologies, for both the front-end and back-end
execution core. Based on these estimations, our results show
that the Flywheel microarchitecture will scale very well, with
performance increase surpassing the increase in clock
frequency. For a 50% clock speed increase, our
microarchitecture shows a 56% performance increase at the
expense of only 9% increase in power. In terms of total
energy, the Flywheel microarchitecture is more efficient than
its equivalent superscalar, out of order counterpart, providing
up to 30% energy reduction across various benchmarks.

8. References
[1] M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Keckler, K. I.

Farkas, and P. Shivakumar, "The optimal logic depth per
pipeline stage is 6 to 8 fo4 inverter delays," in Proc. of the 29th
International Symposium on Computer architecture, May 2002.

[2] S. Palacharla, N. P. Jouppi, and J. E. Smith, "Complexity-
effective superscalar processors," in Proc. of the 24th
International Symposium on Computer Architecture, June 1997.

[3] E. Talpes and D. Marculescu, “Power Reduction Through Work
Reuse,” in Proc. of International Symposium on Low Power
Design, August 2001.

[4] S. Wilton, and N. Jouppi, “CACTI: An enhanced cache access
and cycle time model,” in IEEE Journal of Solid-State Circuits,
vol. 31, nr. 5, pages 677-688, May 1996.

[5] S. McFarling, “Combining branch predictors,” Technical Report
DEC WRL Technical Note TN-36, DEC Western Research
Laboratory, 1993.

[6] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,”
in Proc. of the International Symposium on Microarchitecture,
April, 1996.

[7] J. Stark, M. D. Brown, and Y. N. Patt, “On pipelining dynamic
instruction scheduling logic,” in Proc. of the 33th International
Symposium on Microarchitecture, December 2000.

[8] F. Theeuwen, E. Seelen – “Power Reduction through Clock
Gating by Symbolic Manipulation” - Workshop on Logic and
Architecture Synthesis, 1996.

[9] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W.
Gould, and J. M. Cohn, “Managing Power and Performance for
System-on-Chip Designs using Voltage Islands,” in Proc. of the
International Conference on Computer-Aided Design, Nov 2002.

[10] R. W. Brodersen, M. A. Horowitz, D. Markovic, B. Nikolic, and
V. Stojanovic, “Methods for True Power Minimization,” in Proc.
of ICCAD, November 2002.

[11] V. S. Rapaka, E. Talpes, and D. Marculescu, “Mixed-Clock Issue
Queue Design for Energy Aware High-Performance Cores,” in
Proc. of the Asia and South Pacific Design Automation
Conference, January 2004.

[12] E. Talpes and D. Marculescu, “Design Space Exploration for
Execution Cache-based Microarchitectures,” in Proc. of
International Symposium on Low Power Design, August 2004.

[13] D. Burger, T. Austin, and S. Bennet, “Evaluating Future
Microprocessors: the SimpleScalar Tool Set,” Technical Report
1308, University of Wisconsin, Madison, July 1996.

[14] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations," in
Proc. of the International Symposium on Computer Architecture,
June 2000.

[15] J. A. Butts, and G. S. Sohi, “A Static Power Model for
Architects,” in Proc. of the International Symposium on
Microarchitecture, pages 191–201, December 2000.

[16] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg, D.
Lindqvist, H. Tenhunen, and A. Postula, “Evaluating benefits of
Globally Asynchronous Locally Synchronous VLSI
architecture,” in Proc. of the 16th Norchip, November 1998.

[17] A. Iyer and D. Marculescu, “Power and Performance Evaluation
of Globally Asynchronous Locally Synchronous Processors,” in
Proc. of the International Symposium on Computer Architecture,
May 2002.

[18] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S.
Dwarkadas, and M. L. Scott, “Energy-Efficient Processor
Design Using Multiple Clock Domains with Dynamic Voltage
and Frequency Scaling,” in Proc. of the Symposium on High
Performance Computer Architecture, February 2002.

[19] R. Nair and M. Hopkins, “Exploiting Instruction Level Parallel-
ism in Processors by Caching Scheduled Groups,” in Proc. of
International Symposium on Computer Architecture, June 1997.

[20] S. Banerjia, S. Sathaye, N. Menezes and T. Conte, “MPS: Miss-
path Scheduling for Multiple-issue Processors,” IEEE Trans-
actions on Computers, Vol. 47, No. 12, December 1998.

[21] E. Rotenberg, S. Bennett, and J.E.Smith, “A trace Cache
Microarchitecture and Evaluation,” in IEEE Transactions on
Computers, Vol. 48, No. 2, February 1999.

[22] S. J. Patel, D. H. Friendly, and Yale N. Patt, “Evaluation of
Design Options for the Trace Cache Fetch Mechanism,” in IEEE
Transactions on Computers, February 1999.

[23] B. Black, B. Rychlik, and J. P. Shen, “The Block-based Trace
Cache,” in Proc. of the International Symposium on Computer
Architecture, May 1999.

[24] B. Black and J. P. Shen, “Turboscalar: A High Frequency, High
IPC Microarchitecture,” in Proc. of the International
Symposium on Computer Architecture, June 2000.

[25] B. Solomon, A. Mendelson, D. Orenstein, Y. Almog, and R.
Ronen, “Micro-Operation Cache: A Power Aware Frontend for
Variable Instruction Length ISA,” in Proc. of International
Symposium on Low Power Electronics and Design, August
2001.

[26] R. Rosner, A. Mendelson, and R. Ronen, “Filtering Techniques
to Improve Trace-Cache Efficiency,” in Proc. of the International
Conference on Parallel Architectures and Compilation
Techniques, September 2001.

[27] E. Sprangle, and D. Carmean, “Increasing Processor
Performance by Implementing Deeper Pipelines,” in Proc. of the
International Symposium on Computer Architecture, May 2002.

[28] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, and P. Rousel, “The Microarchitecture of the Pentium 4
Processor,” in INTEL Technology Journal, 2001.

	Introduction
	Motivation
	Design exploration framework
	Pipeline organization
	Fine grain dynamic voltage scaling
	Pre-scheduled execution
	Associative register file
	Direct access register file

	Experimental setup
	Experimental results
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

