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ABSTRACT
As an emerging technology, sensor networks provide the abil-
ity to accurately monitor the characteristics of wide geo-
graphical areas over long periods of time. The lifetime of
individual nodes in a sensor network depends strongly on
the leakage power that the nodes dissipate in the idle state,
especially for low-throughput applications. With the intro-
duction of advanced low power design techniques, such as
sub-threshold voltage design styles, and the migration of
fabrication processes to smaller technology generations, vari-
ability in leakage power dissipation of the sensor nodes will
lead to increased variability in their lifetimes. In this pa-
per, we analyze how this increased variability in the lifetime
of individual sensor nodes affects the performance and life-
time of the network as a whole. We demonstrate how sensor
network designers can use the proposed analysis framework
to trade-off the cost of a sensor network deployment with
the performance it offers. Our results indicate that up to
37% improvement in the critical lifetime of a sensor network
(defined as the expected time at which the sensor network
becomes disconnected) can be obtained over a baseline de-
sign with a 20% increase in the cost of the individual sensor
nodes.
Categories and Subject Descriptors: B.8.2 [Hardware]:
Performance and Reliability-Performance Analysis and De-
sign Aids

General Terms: Design, Performance, Reliability

Keywords: Sensor networks,
manufacturing process variations, leakage power variability,
lifetime

1. INTRODUCTION
Wireless sensor networks are an emerging technology that

combine the advantages of the small form-factor computing,
communication and sensing resources that have been made
possible by advances in micro-electro-mechanical systems
(MEMS) and semiconductor technologies. A sensor network
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typically consists of a large number of sensor nodes, each of
which possess local, although limited, sensing, communica-
tion and computation resources. Sensor networks are thus
able to sense the characteristics of the environment within
which they are embedded over wide geographical areas and
over large time scales. Sensor network applications typically
have low real-time requirements; i.e., the rate at which they
need to sample the characteristics of the surrounding envi-
ronment is typically much smaller than the time required
to sample, process and communicate the data. As a result,
sensor nodes tend to spend a majority of their time in idle
mode.

One of the primary design criteria for a sensor network
is the ability to provide guaranteed quality-of-service over a
time period which is in the order of months or even years.
Furthermore, since the individual sensor network nodes need
to be placed unobtrusively in the sensed environment, they
must be powered by on-board batteries with limited battery
capacity or equipped with energy harvesting systems. As
a result, the energy efficiency of the sensor network nodes
becomes a primary design concern. Since sensor nodes spend
a significant portion of their life-time idling, sensor node
implementations typically consist of components that can
be put in one of several low-power states (also called sleep
states) while the node is idling. Though the power dissipated
in these sleep states can be orders of magnitude smaller than
the power dissipated in the active state, its contribution
to the overall energy budget of a sensor node cannot be
neglected. This is especially true for sensor networks that
are designed to sense rare or ephemeral events such as forest
fires or the presence of chemical pollutants [4].

The power dissipation of a sensor node in sleep state is
dominated by the leakage power of the components of the
sensor node that cannot be turned off. These include seg-
ments of the on-board or on-chip memory that hold per-
sistent data (the code segment for example) and the logic
that is required to wake up the sleeping components when
an event occurs or after a pre-specified time-out interval.
As sensor network nodes move toward more aggressive tech-
nology generations, primarily to reduce the form-factor and
cost of the sensor nodes (technology scaling has enabled a
29% reduction in cost per function of the manufactured die
every year [1]), the leakage power dissipation of the digi-
tal components of the nodes will increase exponentially. In
[7], the authors demonstrate that the move toward smaller
feature sizes will only be feasible if explicit leakage power
management features such as supply gating and adaptive
body biasing are provided.
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In this work, we consider the impact of another key con-
cern in advanced CMOS technologies, manufacturing pro-
cess variability, on sensor network design. Manufacturing
process variations lead to variations in both the performance
and power dissipation of the fabricated die. Specifically,
in [2], the authors demonstrate that even at the 180 nm

technology node, a 20X variation in leakage power is ob-
served due to manufacturing process variations. Further-
more, sub-threshold processor designs, especially tailored for
sensor network applications, show inherently high sensitiv-
ity to process variations due to their low supply voltages [6].
While there exists a significant body of prior research that
proposes analytic techniques to determine the impact of pro-
cess variations on the leakage power dissipation of a digital
IC (this research can be directly used to compute the leak-
age power variability for sensor network nodes), our goal is
to evaluate how inter-node leakage power variability affects
the characteristics of the sensor network as a whole. Intu-
itively, leakage power variations will cause greater variability
between the lifetimes of the individual nodes in a sensor net-
work. However, how this increased variability in individual
node lifetimes impacts the lifetime of the sensor network as
a whole has been an unexplored topic so far. To this end,
we consider two metrics that are closely related to the life-
time of a sensor network: (1) The evolution of the number
of blind spots in the network as a function of time (blind
spots are nodes that are disconnected from the network be-
cause all the other nodes within their transmission radius
are dead) and (2) The connectivity of the sensor network,
or more precisely the expected time at which the network
graph becomes disconnected. Our results can be used by
sensor network processor designers to determine how much
effort they need to spend on reducing the impact of process
variability on their designs and by sensor network design-
ers to evaluate trade-offs between the deployment cost of a
sensor network and its lifetime.

2. RELATED WORK
Since energy and power dissipation are first-class design

concerns in sensor network design, there exists a significant
body of research that aims to analyze the power dissipa-
tion in sensor networks, typically from a node perspective.
In [11], the authors develop a detailed low-level simulation
infrastructure to estimate the lifetime of a sensor network
node. In [7], the authors consider the impact of technology
scaling on the power dissipation of a sensor network proces-
sor, but do not consider the impact of leakage variability.
In contrast to these works, we use high-level power models
to determine the lifetime of sensor nodes and analytical re-
sults to relate the node lifetimes to the performance of the
network as a whole, with a specific focus on the impact of
leakage power variations. Finally, the power/performance
impact of manufacturing process variations is a well stud-
ied topic in the computer-aided design (CAD) and digital
circuits community [8]. We leverage this body of work to
develop our leakage variability models.

Compared to the prior work in this area, in this paper
we make the following novel contributions: First, we pro-
vide a high-level modeling framework to evaluate the impact
of leakage power variations on sensor network deployments
with a specific focus on network performance as opposed
to node performance. To the best of our knowledge, ex-
isting work has not addressed the importance or effect of

manufacturing process variations on sensor network perfor-
mance. Second, we propose a simple technique based on
leakage power thresholding that designers can use to allevi-
ate the impact of leakage power variability on their sensor
network deployments, in return for an increased deployment
cost. Finally, we demonstrate how designers can precisely
quantify the cost-performance trade-off of a sensor network
deployed using the proposed leakage thresholding technique.

3. PRELIMINARIES AND ASSUMPTIONS
We consider the case of low throughput sensor networks

for surveillance or environmental monitoring applications.
Furthermore, since the nodes of a low throughput sensor
networks spend a majority of their time idling, we assume
that the nodes can be placed in a low-power sleep state dur-
ing the idle periods to save energy. When the nodes are per-
forming sensing, computation or communication tasks they
are assumed to be in active state.

We consider a sensor network consisting of N sensor nodes
that are randomly located within the geographic area that
needs to be sensed. This is typically the case for sensor
networks deployed to cover large geographic areas where it
may be to expensive to place the nodes in a regular topology
[4]. Each node has a pre-specified transmission radius rn

and the nodes communicate via a multi-hop routing protocol
[10]. Furthermore, each node can communicate to any other
node within its transmission radius.

The nodes are assumed to possess limited on-board bat-
tery capacity. Once a node’s energy dissipation exceeds its
battery capacity, it is assumed to be dead and cannot per-
form any further sensing, computation or communication
tasks. Furthermore, we assume that the only way a node
can die is if its on-board capacity battery is exhausted; i.e.
we ignore random failures of sensor nodes due to causes such
as accidental destruction.

Finally, to model the impact of manufacturing process
variations on leakage power variability, we consider only die-
to-die (D2D) variations in gate length (Lg). While within-
die (WID) variations in gate length and threshold voltage
also contribute to leakage power variability, their effect is
averaged out due to their uncorrelated nature and can be
ignored with respect to the impact of D2D variability. We
would like to note that, even though process variations also
impact the operating frequency of the die, the clock fre-
quency of chips fabricated for sensor network applications
will most likely be provisioned for the worst case scenario.
Therefore, we do not consider the impact of process varia-
tions on the operating frequency/performance of the sensor
network nodes.

Before proceeding further, we briefly discuss the relevance
of the two measures of network lifetime that we consider in
this work. As mentioned before, blind spots are nodes in
the network that still have remaining battery capacity, but
cannot communicate with the rest of the network because
all the nodes in their neighborhood, i.e., within the trans-
mission radius of the node rn, are dead. Since we assume
that nodes communicate via multi-hop routing protocols to
save energy, these “blind spot nodes”are rendered effectively
useless since they cannot transmit their sensed data to the
data aggregation centers for further processing. Therefore,
at any given point of time, the number of useful nodes in the
network depends not only on the nodes that are not already
dead, but also on those that are not blind spots.
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Figure 1: Two state Markov Chain used for appli-
cation modeling. State a refers to the active state
and state s refers to the sleep state.

However, the occurrence of blind spots does not fully cap-
ture the impact of the limited node lifetimes on the life-
time of the network. Specifically, it is also possible that the
death of some nodes in the network causes it to become dis-
connected. As a result, the network gets partitioned into
groups of nodes that can communicate within the groups,
but cannot communicate across groups. This can have se-
rious implications on the performance of a sensor network
since it may mean that parts of the network that are oth-
erwise functional cannot reach the data aggregation center.
To take into account this phenomenon, we consider, as a
second metric of sensor network lifetime, the expected time
at which a sensor network becomes disconnected.

4. APPLICATION MODELING
Since we are primarily interested in analyzing the power

dissipation characteristics of the sensor nodes, we model the
application behavior as a series of events that transition the
sensor node between sleep state and active state. Specifi-
cally, we model the sensor node as a two state Markov Chain
with states a (representing active state) and s (representing
sleep state). The transition probabilities between the states
are given by (paa, pas, psa, pss), where pij (i, j ∈ {a, s}) rep-
resents the probability of moving from state i to state j at a
particular time step. We note that two recent works, [3] and
[14], use similar models to characterize node behavior in sen-
sor network applications. In [14], the authors use a two state
Markov Chain to model a network of cameras deployed for
security and surveillance applications. In their implemen-
tation, nodes time-out from active state into sleep state if
they do not sense any motion in the captured video for a
pre-determined amount of time. Nodes are woken up from
sleep state either after pre-specified intervals or by neighbor-
ing nodes that detect motion in their captured frames. In
[3], the authors model data dissemination in sensor networks
using a three state Markov Chain for each sensor node. The
transition probabilities between states are computed using
collected application traces from live sensor network deploy-
ments.

Figure 1 shows the application model with the transition
probabilities marked on the edges. To ensure that this model
is representative of real applications, we need to ensure that:

paa >> pas (1)

and

pss >> psa (2)

These conditions ensure that Markov Chain does not gener-
ate behavior patterns where the node toggles between sleep

and active states without spending sufficient time in either
state. Besides being uncharacteristic of real applications,
such a behavior would be inherently undesirable due to the
additional power costs of transitioning between states. If Ta

is a random variable that represents the time (measured in
the number of discrete step of the Markov Chain) spent by
the node in state a, we can compute the average time spent
by the node in active state, E(Ta) as [9]:

E(Ta) =
paa

1 − paa

(3)

and, similarly, the average time spent in state s, E(Ts) as
[9]:

E(Ts) =
pss

1 − pss

(4)

Finally, if we define the duty cycle, D, as the fraction of time
the sensor node spends, on average, in active state, we can
write:

D =
E(Ta)

E(Ta) + E(Ts)
(5)

5. POWER AND VARIABILITY MODELING
Having modeled the application characteristics, we can

now model the power and energy dissipation of each sensor
node. Specifically, we assume that the average power that
the sensor node dissipates in active state is P a and the av-
erage power it dissipates in sleep state is P s. These values
can be derived from measurements from real hardware or
from detailed power/energy simulators such as Powertossim
[11]. The energy consumed by an application in a particular
time interval can then be computed as the sum of the ac-
tive and sleep state power values weighted by the fraction of
time within the specified time interval spent in each of these
states, respectively. Finally, a particular node is assumed
dead at the time instant when its energy consumed becomes
greater than the battery capacity of that node.

To model the impact of manufacturing process variation,
we write the active state power of a node, P a as the sum of
its dynamic (P a

d ) and leakage components (P a
l ):

P
a = P

a
d + P

a
l (6)

where the P a
l component is subject to manufacturing process

variations. Finally, the sleep state power is assumed to be a
fraction of the leakage power in active mode, i.e.,

P
s = αP

a
l (7)

where α represents the fraction of the leakage power that still
exists in the sleep state due to the modules that cannot be
power gated. The effect of manufacturing process variability
can now be modeled by writing the leakage power dissipation
as a function of the process parameters that are subject to
variability (as explained in Section 4, we only model D2D
variations in the gate length Lg):

P
a
l = P

a
l,0e

γi∆Lg+γ2∆Lg
2

(8)

where P a
l,0 is the nominal value of the active state leakage

power dissipation and ∆Lg is the deviation of gate length
from its nominal value. ∆Lg is assumed to be a zero mean
normal distribution with standard deviation σg. The pa-
rameters γ1 and γ2 are obtained from simulating the leak-
age current of an inverter in SPICE for a given technology
library.
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Figure 2: The node lifetime distribution qf (t) for
a sensor node for values of σg = (0%, 2.5%, 5%, 7.5%)
of the nominal gate length Lg. The application is
modeled using transition probabilities paa = 0.99 and
pss = 0.9995. The time scale on the x-axis is normal-
ized to the average lifetime of a sensor node without
considering the impact of variability.

Finally, if Tf is a random variable that represents the life-
time of a sensor node, i.e., the time when it just runs out of
battery capacity, we define qf (t) to be the probability that
Tf ≤ t, i.e., P (Tf ≤ t) = qf (t). qf (t) is also called the life-
time distribution of a sensor node and can be obtained using
Monte Carlo simulations of the Markov Chain representing
the given application. In order to illustrate the impact of
manufacturing process variability, in Figure 2, we plot qf (t)
for increasing values of variability in gate length, Lg, by ob-
taining qf (t) for σg = (0, 0.025Lg , 0.05Lg , 0.075Lg ). Recall
that σg is the standard deviation of variability in gate length;
therefore, σg = 0 corresponds to the nominal case in which
the impact of manufacturing process variations is ignored
and σg = 0.075Lg corresponds to the greatest variability in
process parameters. From Figure 2, it is clear that manufac-
turing process variations can lead to significant variations in
node lifetime compared to the nominal case, and that as the
variability in process parameters increases due to technology
scaling, the variations in the lifetimes of sensor nodes will
only increase further. More precisely, the standard deviation
of node lifetime, Tf , increases by 7.7%, 50.84% and 148.43%
over the baseline without any process variations for σg equal
to 2.5%, 5% and 7.5% of the gate length respectively.

6. LIFETIME METRICS
Having characterized the lifetime distributions of the in-

dividual sensor nodes in a sensor network deployment, we
now consider the network lifetime metrics that we use to
quantify the impact of manufacturing process variations. To
do so, we build upon prior graph theoretic results that have
been proved for random networks with specified node failure
probabilities. We extend these results to model a scenario in
which the node failure probabilities are time-variant and are
derived from the node lifetime distribution, qf (t), described
in the previous Section.

In [13], the authors show that the average number of useful
node Nu (recall that a useful node is one that is still alive
and has at least one active neighbor) in a network with N

nodes that are distributed randomly within a unit square

(or a unit circle) with transmission radius rn can be written
as:

Nu = Npe
−πr2

np (9)

where each node is alive or dead with probability p and 1−p

respectively. In our case, the probability of a node failing
due to limited battery capacity is a time varying function as
described the lifetime distribution qf (t). Therefore, the evo-
lution of the average number of useful nodes in the network
with time can be written as:

Nu(t) = N(1 − qf (t))(e−πr2

n(1−qf (t))) (10)

Finally, in [5], the authors prove that the random network
of N nodes with transmission radius rn is fully connected
with high probability (whp) if:

rn ≥

�
log(N)

N
(11)

This implies that as the number of useful nodes in the net-
work decreases, the network will lose its probabilistic guar-
antees on connectivity at time tc (which we call the critical
lifetime of the sensor network) that satisfies the following
equation:

rn = � log(Nu(tc))

Nu(tc)
(12)

which was derived by observing that a network starts loos-
ing connectivity when Equation 11 is just satisfied (i.e., by
enforcing the equality in the Equation 11) and that at any
given time, only the useful nodes in the network can partic-
ipate in network formation. As it can be seen, for a given
random network consisting of N nodes and transmission ra-
dius rn, the critical lifetime of the network can be computed
as a function of the lifetime distribution of the individual
sensor nodes, qf (t).

7. COST-PERFORMANCE TRADE-OFFS
One technique that sensor network designers could use to

alleviate the impact of process variations on their designs is
to tune the behavior of each node based on its power dis-
sipation; therefore, nodes that have high power dissipation
may be tuned to spend more time in sleep state as opposed
to nodes with lower leakage power. However, as mentioned
in [4], manually programming a large number of sensor net-
works nodes individually is impossible. An automated so-
lution would require on-chip test circuitry to measure the
leakage power dissipation of each sensor node before appro-
priately tuning the parameters of the firmware running on
it. More importantly, the on-chip power measurement cir-
cuits will add to the cost, power dissipation and form-factor
of the sensor nodes, neither of which is desirable.

As an alternative solution, we assume a scenario in which
sensor network designers could purchase sensor nodes from
node manufacturers with specific guarantees on the leakage
power dissipation of the sensor nodes; i.e., the node man-
ufacturer guarantees that every sensor node has a leakage
power lower than a specified value, called a leakage thresh-
old. For the rest of this paper, we will assume that the
leakage threshold is specified as a multiple, βt, of the nom-
inal leakage power of a sensor node. Therefore a leakage
threshold of βt implies that every sensor node is guaranteed
have an active state leakage power lower than βtP

a
l,0, where
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P a
l,0 is the nominal value of the active state leakage power

(this automatically sets a threshold on the sleep state active
power also). Clearly, as the value of βt is reduced, a sensor
network designer can be assured of better network lifetime
and quality of service. However, designers will have to trade-
off the improved network performance with a higher cost of
deployment, since nodes with stricter guarantees on leakage
power will cost more. To model this trade-off, we introduce a
monotonically decreasing cost function of the leakage thresh-
old, c(βt). c(βt) is assumed to be inversely proportional to
the yield that a sensor node manufacturer would obtain with
the specified leakage threshold, βt. Therefore,

c(βt) =
1

P (P a
l ≤ βtP a

l,0)
(13)

This particular choice for the cost function is explained as
follows: hypothetically, one way for a sensor network de-
signer to obtain N sensor nodes with a leakage threshold
of βt is to purchase more than N nodes and select from
these the N that fall within the specified leakage threshold
(assuming, of course, that there are actually N such nodes
that fall within the threshold). It can be shown that on av-
erage, a designer needs to purchase c(βt)N nodes to ensure
that at least N of these nodes satisfy the leakage threshold
βt. We note that though the cost function will, in general,
be decided by the sensor node manufacturers, we chose a
cost function that makes intuitive sense for the sake of hav-
ing meaningful results. Our methodology, however, does not
hinge on a specific choice of cost function.

8. EXPERIMENTAL RESULTS
Since our model requires a number of parameters as input,

we first indicate the parameters that we use uniformly for
all our experiments. We assume that nominal active state
leakage power (P a

l,0) is 5% of the total active state power
(P a), which is typical of nodes fabricated in a 130 nm pro-
cess. Furthermore, we assume that the transition from the
active state to the sleep state leads to a 10X reduction in
leakage power dissipation (i.e., α = 0.1, as in Equation 7),
which implies that the nominal sleep state power dissipation
is only 0.5% of the total active state power dissipation. The
standard deviation of gate length variation, σg, is assumed
to be 5% of the nominal value of gate length [2, 12]. Finally,
we assume that N = 100, i.e., the sensor network consists
of 100 nodes, and that the transmission radius of the nodes,
rn, is always greater than the threshold required to ensure
that the network will be fully connected whp.

We first characterize the evolution of the number of useful
nodes in the sensor network, Nu(t). To model the applica-
tion characteristics, we use two sets of transition probabili-
ties corresponding to high (10%) and realistic (1%) duty cy-
cles respectively. The transition probability values for both
these cases were obtained from measured data on a sensor
network deployed for security and surveillance purposes [14].
Finally, the transmission radius, rn, is set to be equal to its

minimum value, i.e., rn = � log(N)
N

. Figure 3 shows the

evolution of the number of useful nodes in the network as a
function of time (normalized to the average node lifetime of
sensor nodes without any leakage power variability) for the
high and realistic duty cycles respectively. Each graph plots
three curves corresponding to network deployment costs of
c(βt) = (1, 1.5, 2). From the graphs it is clear that applica-

Figure 3: Number of useful nodes in the network
as a function of time and the cost of the network
deployment. The time on the x-axis is normalized
to the average lifetime of a sensor node with nominal
gate length. The results are shown for (a) realistic
duty cycle of 1% and (b) high duty cycle of 10%.

tions with low duty cycles are the most affected by variabil-
ity in leakage power dissipation, while those with high duty
cycles do not show much sensitivity to leakage power varia-
tions. For the realistic duty cycle case (Figure 3 (a)), a 50%
increase in deployment cost increases the number of useful
sensor nodes in the network by 56% compared to the time in-
stant when the baseline design without leakage thresholding
has 50 remaining useful nodes. Similarly, a 100% increase
in deployment cost increases the number of useful sensors
to 93% at the same time instant. The improvements for the
high duty cycle case (Figure 3 (b)) are much lower- in this
case, a 50% increase in deployment costs only affords a 27%
increase in the number of remaining useful nodes at the time
instant when the baseline design has 50 useful nodes left.

In the next set of experiments, we characterize the im-
pact of leakage variability on the critical lifetime tc of a
sensor network. Since we have already ascertained that
high duty cycle applications are not significantly impacted
by variability, we only focus on the realistic duty cycle of
1%. Furthermore, to ensure that the network has some in-
herent fault-tolerance we overprovision the transmission ra-

dius, i.e., we set rn = (1 + ζ) � log(N)
N

and experiment with

values of ζ = (0.02, 0.1, 0.2). In Figure 4, we plot the in-
crease in the critical lifetime of the sensor network for the
three cases as a function of the deployment cost of the net-
work. For ζ = 0.02, we observe that a 20% increase in
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Figure 4: Critical network lifetime (tc) as a function
of the deployment cost c(βt) for values of transmit
radius over provisioning, ζ = (0.02, 0.1, 0.2). The crit-
ical lifetimes are normalized to the critical lifetime
at c(βt) = 1.

deployment cost yields a 37% improvement in critical net-
work lifetime. As the deployment cost increases, however,
the percentage increase in critical lifetime levels off. Fur-
thermore, it is evident that larger values of transmission
radius provide a smaller percentage increase in critical net-
work lifetime as the deployment cost is increased. This is
not surprising since larger transmission radii provide greater
fault tolerance which helps avoid the loss of connectivity in
the network even when a number of nodes fail early due
to higher leakage power dissipation than the nominal value.
We note, however, that increasing the transmission radius
of a sensor node can have a significant impact on the node
power dissipation.

9. CONCLUSION
In this paper we provide a high-level modeling framework

to analyze the impact of leakage power variability on the on
the lifetime of a sensor network using two important metrics
of network performance: the evolution of the number of use-
ful nodes in the network with time and the expected time
at which the network becomes disconnected. Our results
indicate that variations in the leakage power dissipation of
the individual sensor nodes can have a significant impact on
both metrics of sensor network performance, especially for
low throughput applications.

The proposed modeling framework can be used by sensor
network processor designers to determine the how much de-
sign effort they need to expend to reduce the sensitivity of
their designs to manufacturing process variations. Further-
more, the techniques proposed in this paper can also be used
by sensor network designers to explore trade-offs between
the cost of the network deployment and the performance of
the deployed network.
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