
Hardware Based Frequency/Voltage Control of Voltage
Frequency Island Systems

∗

Puru Choudhary
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

puru@cmu.edu

Diana Marculescu
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

dianam@ece.cmu.edu

ABSTRACT

The ability to do fine grain power management via local volt-
age selection has shown much promise via the use of Voltage/
Frequency Islands (VFIs). VFI-based designs combine the
advantages of using fine-grain speed and voltage control for
reducing energy requirements, while allowing for maintain-
ing performance constraints. We propose a hardware based
technique to dynamically change the clock frequencies and
potentially voltages of a VFI system driven by the dynamic
workload. This technique tries to change the frequency of a
synchronous island such that it will have efficient power uti-
lization while satisfying performance constraints. We propose
a hardware design that can be used to change the frequen-
cies of various synchronous islands interconnected together by
mixed-clock/mixed-voltage FIFO interfaces. Results show up
to 65% power savings for the set of benchmarks considered
with no loss in throughput.

Categories and Subject Descriptors: B.7.m [Logic De-
sign]: Miscellaneous

General Terms: Performance, Design

Keywords: voltage-frequency islands, globally asynchronous
locally synchronous, dynamic frequency and voltage scaling,
mixed-clock fifos, throughput

1. INTRODUCTION

One of the main long-term system-level design challenges
(as mentioned in the 2005 ITRS [3]), is the prohibitively
costly global, on-chip synchronization due to process variabil-
ity, power dissipation, and multi-cycle cross-chip signaling.
Indeed, with increasing clock speeds and shrinking technolo-
gies, distributing a single global clock signal throughout a
chip is becoming a difficult and challenging proposition. A
Globally Asynchronous, Locally Synchronous design (GALS)
is considered a promising technique for achieving low power
consumption and modularity in design. As one other long-
term system-level design challenge is on-chip power manage-
ment, such an organization fits nicely with the concept of
voltage islands, which can be effectively used as a means for
achieving fine-grain system-level power management.

Voltage-Frequency Islands (VFIs) enable the design of sys-
tems that use a clock for local synchronization of data, but
communication between different blocks is handled asynchro-
nously. This not only helps to reduce the power consumed by
the clock network due to reduced number of buffers that are
used to meet the skew, but also helps in reducing the overall

∗
This research has been supported in part by Semiconductor Re-

search Corporation contracts 2004-HJ-1189 and 2005-HJ-1314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1595933700/06/0010 ...$5.00.

power significantly by using voltage scaling.
Most systems are overdesigned to meet the performance

requirement of the worst case scenario. Such systems con-
stantly operate at peak performance consuming peak power
all the time. However, cooling and battery technology are
not able to keep up and meet the power requirements of
those designs. It, therefore, becomes necessary to make these
systems more power and energy aware such that they use
just enough power to meet the performance requirements of
the given workload. Dynamic Voltage and Frequency Scaling
(DVFS) schemes have become a common-place solution for
adapting the power/energy consumption of a system based
on a dynamically changing workload. While DVFS schemes
have been applied mostly at application and system level by
exploiting available slack in task scheduling for minimizing
dynamic power with little or no performance hit, the case of
hardware-based DVFS for VFI systems has received less at-
tention. The goal of this paper is to provide a solution for dy-
namic voltage-frequency selection by using a fully hardware-
based control scheme driven by the workload variations.

The rest of the paper is organized as follows: Related work
and contribution of this paper are presented in Section 2.
Section 3 discusses the problem formulation and assumptions
made in this paper. In Section 4, we present the theoretical
basis for our method and how it can be used to configure an
entire system for low power. Our proposed architecture to
enable DVFS in a system is discussed in Section 5. Section
6 discusses the Topology Generation Tool, while in Section
7, we provide the experimental results for software radio and
MPEG-2 encoder benchmarks. Final conclusion with direc-
tions for future research are provided in Section 8.

2. RELATED WORK AND PAPER

CONTRIBUTION

Previous approaches based on availability of channel in
multiple clock systems (e.g., [4]), only gate the clock to the
synchronous module. While this approach can reduce total
power consumption, voltage scaling is not used as each syn-
chronous module still operates at a fixed frequency. Also, too
many pauses in the clock produce sharp variations in power
consumption, potentially degrading the battery performance
[14]. Our approach changes the clock frequency to minimize
the idle time spent waiting for FIFOs (either for read or write
of data).

There have been several proposals to implement VFIs in
modern systems such as a Multiple Clock Domain proces-
sors [15][16]. Such architectures allow a system designer to
implement local DVFS algorithms [17], but most of these ap-
proaches assume hardware control is done via FIFO occu-
pancy monitoring which can provide incorrect decisions, as it
will be seen in the sequel. Some of the on-line algorithms are
inherently non-linear [17] requiring detailed analysis of queue
behavior before an actual hardware could be implemented.
Our method provides a flexible hardware platform that can
be used to enable DVFS for VFI systems with simple data
patterns while also providing methods to support more com-

plicated workloads. The problem of voltage/speed selection
in VFI systems has been addressed before [13] via providing
an off-line algorithm and a dynamic on-line algorithm with
limited efficiency. DVFS schemes for applications such as
MPEG decoder [7] look at the overall rate and latency re-
quirements, but do not consider the possible power/energy
savings with a VFI based architecture. In our approach, the
benefits of DVFS are exploited at finer granularity level, while
maintaining the possibility of global configuration.

The main contributions of this paper are two-fold:
• First, it provides an online, hardware-based control mech-

anism for dynamically selecting the operating speed and
voltages for individual VFIs in a VFI-based system. As
opposed to existing schemes that monitor only FIFO
occupancy to determine scaling factors [15][10][16], our
approach takes into account the workload dynamics and
relies on a combination of producer/consumer stall and
FIFO occupancy monitoring. In addition, the approach
is cost minimal as it relies on counters associated with
stall events, as opposed to complex schemes relying on
control theoretic approaches (e.g., PID controllers [17]).

• Second, we provide a framework that enables any appli-
cation specified in TGFF format [1] to be automatically
converted into a Verilog description of the VFI system
including both computation and FIFO-based communi-
cation.

3. PRELIMINARIES AND ASSUMPTIONS

Without loss of generality, we consider the case of systems
comprised of a number of synchronous cores, IPs or processing
elements (PEs) (homogeneous or heterogeneous). In the case
of VFI-based systems, PEs can only be assigned to a single
VFI (in other words, cores cannot belong to more than one
VFI).

A VFI might consist of a single PE or, depending on the
physical or design considerations, may include a group of PEs.
We assume that power in the case of VFI systems is supplied
by an off- or on-chip source and can be controlled indepen-
dently for a VFI. This may be achieved by using either on-
chip voltage regulators or multiple power grids [2]. Since each
VFI is locally synchronous, it is assumed to be clocked using
a ring oscillator controlled by the intra-island supply volt-
age using a digital phased lock loop [12][11]. Communication
is implemented via a modified version of mixed-clock FIFOs
[6] that also allows for voltage level conversion. We assume
that the allocation and mapping of various processes or com-
putational kernels of the application to PEs, as well as the
number and types of the communication links and PEs have
already been determined. We also assume that the processes
have already been scheduled on their respective processing
elements. For VFI systems, a bounded number of storage
cells is available in the mixed-clock FIFOs used between two
communicating PEs. To this end, the system comprised of
communication cores is modeled using a component graph. In
a component graph G(V, E), cores are modeled as communi-
cating processes (nodes) that have associated communication
channels between them (edges).

We will assume the following, without loss of generality:
• The component graph G(V, E) is characterized by the

set of nodes represented as V = {1, 2, ...,n} and edges
represented as E={(i,j) | i precedes j}.

• Although the underlying component graph model may
include feedback paths, in the initial theoretical treat-
ment we restrict ourselves to directed acyclic graphs
(DAGs). General graphs have been shown to be re-
ducible to acyclic component graphs by lumping strongly
connected components (SCCs) including feedback loops
into supernodes [13],[8]. As shown in [8], the process-
ing rates of these supernodes (and thus, their latencies

Figure 1: A VFI-based component graph as in [13] with

cores (PEs) characterized by local speeds/voltages

emptyfull

write read
Producer Consumer

din dout

FIFO

Write Clock Domain Read Clock Domain

Figure 2: The Producer Consumer model

in cycle counts) can be found by averaging across all
nodes in the SCC. However, the case of feedback loops
is addressed and discussed in Section 5.3.

• The component graph includes a single source node (s)
and a single sink node (S). Graphs including multiple
sinks or source nodes can be reduced to this case by
adding dummy, zero-latency source (sink) nodes feeding
into (from) the actual source (sink) nodes.

4. THE COMMUNICATION ARCHITECTURE

In this section, we describe the use of mixed-clock FIFO as
a point-to-point communication architecture for connecting
synchronous islands in a GALS system.

4.1 The ProducerConsumer Model

In a VFI design, a mixed-clock/mixed-voltage FIFO pro-
vides a communication channel between two VFIs. One of the
VFIs (producer) writes data into the FIFO while the other
one (consumer) reads data from the FIFO [6]. For proper op-
eration of design, it is required that a producer does not write
data into the FIFO if it is full. Similarly, a consumer should
not read data from a FIFO if it is empty. The producer and
half of the mixed-clock FIFO share a clock (producer clock)
while the consumer and other half of the mixed-clock FIFO
share the other clock (consumer clock). Such a clock domain
partition is shown in Figure 2.

4.2 Rate Matching

Considering a simple producer-consumer model of a mixed-
clock FIFO, the behavior for ideal frequency of operation can
be derived based on the read and write data rates.

The time interval between any two write operations by the
producer can be written as, Tp = ap/fp, where ap is the num-
ber of clock cycles between any two write operations by the
producer and fp is the frequency of operation of the producer.
Similarly, the time interval between any two read operations
by the consumer can be written as, Tc = ac/fc, where ac is
the number of clock cycles between any two read operations
by the consumer and fc is the frequency of operation of the
consumer.

If Tp is equal to Tc, then the FIFO utilization will be con-
stant most of the time. However, if Tp<Tc, the FIFO will
tend to become full. Hence once the FIFO is full, the pro-
ducer will have to wait until the consumer has taken at least
one data item out of the FIFO. Therefore we can write,

Tc = Tp + Tw (1)

where Tw is the time spent by the producer waiting for an
empty slot in the FIFO. To operate the system near optimal
operating point, this time Tw should be minimized and made
zero in an ideal case. For such a case, we can write,

Tc = Tpi ⇒
ac

fc

=
ap

fpi

⇒ fpi =
ap

ac

fc ⇒ fpi =
ap

ac

kfp (2)

where Tpi is the ideal time interval between any two write
operations by the producer while fpi is the ideal clock fre-
quency of the producer. k is the ratio of consumer clock fre-
quency to producer clock frequency. Thus, we can also write
ideal clock frequency of the producer as follows: fpi = Sfp,
where S = (ap/ac)/k is the Frequency Step factor by which
the producer frequency should be scaled so that the wasted
power is minimized. The choice of the new clock freqeuncy
should be made conservatively, such that there is no drop
in overall throughput. For example, if ap = 2, ac = 6 and
fp = fc, the ideal speed of the producer should be fpi =
(1/3)fp. The optimal available frequency should be chosen
such that it is the closest, largest value available such that
no throughput loss is experienced. E.g., in this case, if a
value of favail = fp/2 is available, the producer will still
be slow enough to reduce waiting time Tw, but fast enough
to not decrease the throughput. If, however, ap = 2 and
ac = 3, the ideal producer speed would be fpi = (2/3)fp and
a favail = fp/2 available frequency will not guarantee the
throughput constraint. Hence it is always necessary to have
fpi < favail. This analysis can be similarly applied to the
case of Tp>Tc, where the FIFO will tend to become empty.
In this case, the frequency of the consumer should be kept
just enough to operate the FIFO near empty state, without
having to experience any throughput reduction.

4.3 Problem Formulation

The goal of the work presented in this paper is to reduce
the total energy consumption as well as power consumption of
a system represented by a component graph G(V, E) subject
to rate or throughput constraints.

The energy consumption per sample for every processing
element in the component graph G(V, E) is given by:

Ei(Vi) = Ci ∗ Ni ∗ Vi
2 + ci ∗ ni ∗ Vi ∗ exp(−Vt/k) (3)

where the first term corresponds to dynamic power and the
second term corresponds to static (leakage) power consumed
while core PEi is not actively executing a process. Ci is
proportional to the switched capacitance of PEi, Ni is the
number of active execution cycles for PEi, ci is proportional
to the number of off-devices in PEi, ni is the number of idle
cycles for processing a sample, k is a technology dependent
constant, while Vi and Vt are the voltage supply and threshold
voltage for PEi, respectively [5].

The cycle time for the PEi core in G(V, E) can be written
as:

τi(Vi) = Ki ∗
Vi

(Vi − Vt)α
(4)

where Ki and α are design and technology dependent pa-
rameters [9]. Thus from (4), we get the worst case execution
time of a process on PEi at voltage Vi as (Wi is the worst
case number of cycles for the process mapped on PEi):

WCETi(Vi) = Wi ∗ τi(Vi) = (Wi ∗ Ki ∗ Vi)/(Vi − Vt)
α (5)

For a system to operate as per the requirements of an ap-
plication workload, it is needed that,

WCETi(Vi) ≤ Ti (6)

where Ti is the required time period of every VFI core. Most
of the modern systems are not only designed for worst case

Figure 3: Comparison between Full and Stall signal for

Frequency prediction

workload conditions, but also operate at peak performance
all the time to be able to handle the worst case workload. As
a result, for an average workload we get WCETi(Vi) << Ti.
This results in smaller τi(Vi) and hence larger Vi which leads
to higher energy consumption. To reduce the amount of the
wasted energy, WCETi(Vi) should be as close as possible to
Ti, i.e.

Minimize(Ti − WCETi(Vi)) (7)

By taking WCETi(Vi) closer to Ti, the amount of time
wasted Tw (1) waiting for the communication channel is min-
imized. The reverse is also true i.e. Tw → 0 ⇒ (Ti −
WCETi(Vi)) → 0. Operating each PE at its ideal frequency/
voltage, the amount of time wasted Tw is minimized resulting
in minimum energy and power consumption. However, based
on the available system configuration settings of a real sys-
tem (for example, number of available frequency and voltage
levels), the optimal achievable solution will be close, but not
identical to the ideal one. Our hardware based approach tries
to find this optimal solution based on dynamically changing
speeds/voltages driven by the workload.

5. THE FIFO LINK ARCHITECTURE

The derivations shown in Section 4 can be used to calculate
the ideal frequencies of the producer and the consumer un-
der dynamically changing workload. However, in a complex
system, the values of ap and ac are likely to change due to
varying workload conditions. Also, the overhead of computa-
tions to find the value of the Frequency Step factor (Section
4) is likely to be significant. We propose an architecture that
can predict the value of the Frequency Step factor (and hence
the ideal frequency) on the fly.

5.1 Proposed Architecture

To implement such a logic for estimating the optimal op-
erating frequency, we take advantage of the fact that when
the producer (or consumer) is not operating at the ideal fre-
quency, the FIFO will always operate near full (or empty)
state. We call these mostly full and mostly empty condi-
tions. A simple way to monitor the FIFO utilization is to
check the full and empty signals and measure the amount of
time they are asserted: the larger the time of assertion of
any one of these signals, the greater the deviation of the fre-
quencies of producer (or consumer) from the ideal frequency.
However, full and empty signals do not accurately represent
the need for scaling up or down the speed/voltage of a VFI.
It can happen that even though the full signal is asserted,
the producer/consumer does not have any data to write/read
into/from the FIFO. Thus, taking the decision to slow down
a VFI only based on the FIFO occupancy can prove to be
incorrect.

Figure 3 shows an example of a producer writing data into
a FIFO. For the time interval between t1 and t5, the full sig-
nal is asserted for time period (t4 − t2). However, the time
period where producer is actually waiting for the FIFO to
have an empty slot is (t4 − t3). If the Frequency Step fac-
tor is calculated based on the full signal alone, it is likely

emptyfull

write read

Sf

Tsample
clk_A

Se

Tsample
clk_B

Module A

dvfs_en_cons
dvfs_en_prod

Se

Tsample
Tsample

Sf

FIFO

Clock Control A Stall MonitorStall Monitor Clock Control B

Consumer Producer ProducerConsumer

Module B

din dout

stall stall

dvfs_en_prod
dvfs_en_cons

synchronizer
synchronizer

Figure 4: Dynamic Frequency Scaling Architecture

to overestimate the frequency decrease and can potentially
reduce the throughput of the system. A similar argument ap-
plies to the empty signal. A more accurate estimation can be
achieved if a signal (called stall signal) generated by a pro-
ducer/consumer is used to estimate the ideal frequency. This
signal is asserted whenever the producer/consumer has data
to write/read to/from the FIFO, but the FIFO is full/empty.
Figure 4 shows the architecture that can predict the ideal fre-
quency based on this method. The stall monitors count the
number of clock cycles (Sf -for the producer part or Se-for
the consumer part) the stall signal from producer/consumer
is asserted in a sampling window Tsample. The Frequency Step
factor can then be calculated based on the non-zero values of
Se and Sf . While in steady-state it is impossible to have both
Se and Sf non-zero (i.e., both consumer and producer of a
FIFO link stalling at the same time), when cumulative stalls
are accounted for, this could happen, e.g., for bursty traffic:
the producer might stall during the beginning of the sample
interval Tsample, while the consumer might stall during the
last part of it. In such a case, if the amount of stalling is the
same on both ends, scaling the speeds of producer/consumer
will not remove this problem. On the other hand, usually, in
a sampling interval it is always the case that either the pro-
ducer stalls due to a full FIFO or a consumer stalls due to an
empty FIFO. To capture both of these cases, the Frequency
Step factor can be calculated as S = 1−|Se −Sf |/Tsample. If
only one of producer or consumer stalls, then the scaling fac-
tor is computed according to Sf or Se, respectively. If both
stall at different times during the sampling interval, then the
difference is used to smooth out any differences between the
two rates. For a producer, if Sf > Se ≥ 0, then

fnew = fcurr ∗ S (8)

where fnew is the new frequency while fcurr is the current
frequency. However, if Se > Sf ≥ 0, then

fnew = fcurr/S (9)

as in this case, the consumer is experiencing stalls and pro-
ducer needs to increase the frequency. The reverse (i.e., chang-
ing division to multiplication and vice-versa) is true for con-
sumer. However, for each FIFO link, only one of the producer
or consumer modules will be scaled up or down to keep the
throughput constraint, while minimizing wasted power during
stalls. This approach is described next.

5.2 Throughput Constraint and Scaling State

In general, throughput constrained systems require an out-
put rate to be satisfied for correct operation. For exam-
ple, in the case of the system in Figure 1, the sink node S
needs to have a certain rate of generating data items. Ex-
amples of throughput constrained applications include most
media processing, data communication systems, digital-to-
analog converters, etc. However, many times, the constraint
is given at the input - that is, the incoming data items must
be processed at a certain rate to ensure correct operation.
Such an example is an analog-to-digital converter. Irrespec-
tive of where the rate constraint is specified (source s or sink

Figure 5: A VFI-based component graph with FIFO con-

figuration

S in Figure 1), based on it, we can determine how each pro-
ducer/consumer port can be configured for possible scaling
up or down of the corresponding VFI, as described in Section
5.1. Let us consider the more common case of output rate
constrained systems depicted in Figure 5. For the producer
port of the sink node S, there is no FIFO link associated with
it, but a stall monitor can be used to determine if the data is
produced at the required rate. If not, a corresponding scaling
factor can be associated with the sink: SS = TS observed/TS

where TS observed is the observed period between data items
being produced and TS is the required value. For the rest of
the nodes we need to consider all incoming and outgoing ports
associated with each FIFO link. Intuitively, if throughput
constraints are propagated from the outputs to the inputs,
we need to maintain required throughput in the downstream
VFIs while allowing only producers to be scaled (up or down),
while the consumer port is assumed to be fixed. We call this
state associated with the producer port dvfs en prod, and the
one associated with the consumer fixed since it is not allowed
to change speeds/voltages based on stall information related
to that FIFO link.

In Figure 5, the assignment of port states for VFIs 4, 5, 6
and S is shown (similar for the other nodes 1, 2, 3, and s)
for an output rate constrained system. Similarly, for an input
rate constrained system, each consumer in a FIFO link would
be in a state of dvfs en cons (consumer is allowed to scale)
and each producer would be in a fixed state (no scaling).

5.3 Functionality of Clock Control Logic

We are now ready to determine what is the correct scaling
factor for each VFI, given the constraints on the output (or
input) rate and given that multiple scaling factors may be de-
termined from multiple incoming/outgoing FIFOs. We need
to keep in mind that the FIFO link architecture depicted in
Figure 4 might be replicated many times, for each producer-
consumer channel. More precisely, the Clock Control Logic
gets the prediction value from both stall monitors associated
with the FIFO. As described previously (Eqn. 8 and Eqn.
9), in the case of the producer, the stall information from the
consumer is used to increase the frequency of that domain
if the current frequency is not able to meet the throughput
requirements of the design (similar for the consumer).

For each VFI, there might be multiple producer and con-
sumer ports as data may be coming from multiple sources
or distributed to multiple sinks. In addition, for each VFI,
there are as many stall monitors, associated with producer
ports, as there are outgoing FIFOs, and as many stall mon-
itors, associated with consumer ports, as there are incoming
FIFOs. Figure 4 shows a single one-to-one FIFO link, hence
there is only one stall monitor on each side of the FIFO.
Since the Clock Control Logic module controls the frequency
and voltage of a single VFI, there are as many Clock Con-
trol Logic blocks as VFIs in the system, but they will have
to receive as many Sf and Se signals as there are stall mon-
itors for each FIFO link interface of that VFI. The decision
as to what the prevailing scaling factor is for a given VFI
when multiple incoming/outgoing FIFO links dictate differ-

ent scaling factors is taken conservatively. To ensure that the
throughput is not reduced, the highest frequency/voltage is
considered. Each VFI can have multiple producer or con-
sumer ports, but out of these, only a subset are configured in
dvfs en prod (or dvfs en cons) state. Only these ports and the
scaling factor associated with their stall monitors are consid-
ered in determining the prevailing scaling factor by taking the
maximum resulting speed among these. For example, in the
example depicted in Figure 5, the new speed/voltage for node
5 depends on the resulting speeds/voltages determined by the
FIFO links (5, S) and (5, 6). Assuming that based on Eqn. 8
and Eqn. 9, fnew,5(5, S) and fnew,5(5, 6) are the new potential
clock speeds, the final clock speed (and associated voltage) is
taken such that fnew,5 = max(fnew,5(5, S), fnew,5(5, 6)). For
all the other nodes (VFIs), there is only one port configured
as dvfs en prod, and based on it and its associated new clock
speed, the final speed/voltage is assigned. Based on these
observations, the detailed algorithm for the speed/voltage se-
lection of an output (input) rate constrained VFI system is
described in Figure 6.

Figure 6: Algorithm for Dynamic Speed/Voltage Selection
Inputs: Component Graph G; Sink rate R = 1/TS or source
rate r = 1/Ts; Discrete speed/voltage levels (f1, V1), ..., (fs, Vs);
Outputs: Speed/voltage assignment (f1, V1), ..., (fn, Vn)

∀i ∈ G at time t
1. Let (fi, Vi) = (f, V) ∀i ∈ G where f = maxi(fi),

V = maxi(Vi)
2. For all FIFO links (i, j)

If system is sink constrained then
state prod(i, j) = dvfs en prod; state cons(i, j) = fixed;

else //source constrained
state prod(i, j) = fixed; state cons(i, j) = dvfs en cons;

3. Repeat every Tsample cycles
If system is sink constrained then

SS = TS observed/TS ; fS = fS/SS ;
set corresponding VS ;

else //source constrained
Ss = Ts observed/Ts; fs = fs/Ss;
set corresponding Vs;

For all FIFO links (i, j)
Si,j = 1 − |Se i,j − Sf i,j |/Tsample;
If Se i,j < Sf i,j then Si,j = 1/Si,j ;

If system is sink constrained
For all nodes i with successors j
and state prod(i, j) = dvfs en prod

fi = maxj(fi/Si,j); set corresponding Vi

Else // system is source constrained
For all nodes j with predecessors i
and state cons(i, j) = dvfs en cons

fj = maxi(fj ∗ Si,j); set corresponding Vj

4. until (source is idle)

6. TOPOLOGY GENERATION TOOL

Embedded applications can be very effectively partitioned
into tasks with various, but well defined functionalities. With
clearly defined computational boundaries, they are very good
candidates for being mapped onto a VFI system. Most of
these applications can be represented as task graphs. Em-
bedded Systems Synthesis Benchmarks Suite (E3S) based on
benchmarks from The Embedded Microprocessor Benchmark
Consortium contains a set of task graphs representing var-
ious applications including, but not limited to automotive,
consumer, networking, etc. The task graphs available in E3S
benchmark suite contain the information about the applica-
tions, constraints and various processors that can be used to
map the various tasks.

We created a tool (Topology Generation Tool), that can
convert task graphs into behavioral Verilog. As shown in
Figure 7, this program takes .tgff files [1] as inputs and con-
verts all the tasks to behavioral Verilog models of producer/
consumer while all the edges are converted to FIFO links.
The tool uses the processor information from the task graphs
to assign the delays of each of the producer/consumer. With
the help of this tool, a designer can test many types of appli-

Figure 7: Flow of Topology Generation Tool

cations just by specifying high level description in the form
of task graphs. The generated Verilog can be simulated us-
ing any Verilog simulator and is also well documented to help
manual changes.

Figure 8: Sample TGFF file
@TASK GRAPH 0 {
PERIOD 0.001
TASK src TYPE 45
TASK ac1 TYPE 21
TASK ce1 TYPE 24
TASK sink TYPE 45
ARC a0 0 FROM src TO ac1 TYPE 0
ARC a0 1 FROM ac1 TO sink TYPE 1
ARC a0 2 FROM ac1 TO ce1 TYPE 1
ARC a0 3 FROM ce1 TO sink TYPE 2
HARD DEADLINE d0 0 ON sink AT 0.001
SOFT DEADLINE d0 1 ON sink AT 0.0001
}

Figure 8 shows a sample TGFF file that can be used as
an input to the Topology Generation Tool. Each of the tasks
are indicated by TASK while the edges are indicated by ARC.
PERIOD, HARD DEADLINE and SOFT DEADLINE are also specified
in the TGFF file and are used by Topology Generation Tool
to parameterize the FIFO system. Topology Generation Tool
is implemented in Perl.

7. EXPERIMENTAL RESULTS

To test our proposed DVFS architecture of a FIFO link,
we used Software Defined Radio and MPEG-2 Encoder as
driver applications. These applications were represented as
task graphs to be used by the Topology Generation Tool for
generation of behavioral Verilog models which were used to
determine the benefits of the online voltage/frequency scaling
for each module. Tsample was set to 5000 clock cycles for each
of these benchmarks.

7.1 Software Radio

Software defined radio application can basically be parti-
tioned into five components - namely source, low pass fil-
ter (LPF), demodulator, equalizer (EQ) and sink (Figure 9).
Each of these nodes can be represented as a producer con-
sumer model. Samples are generated at a fixed rate by the
source which therefore defines the throughput constraint. The
samples pass through various blocks finally reaching the sink
node.

Table 1: Cycles/packet for Software Defined Radio

LPF Demod Equalizer(10) Sink
61494 33086 463193 32736

A base configuration of Hitachi SH3 cores running at the
clock frequency of 60MHz and supply voltage of 3.3V along
with an off-line algorithm [13] (with six levels of voltage and
frequency) was used for comparison purposes. The six voltage-
frequency pairs (in V, MHZ) chosen were (3.3,60), (2.9,52),
(2.5,45), (2.1,38), (1.7,31), and (1.3,23). The results were ob-
tained for a required sample rate of 1kHz. As it can be seen
from Figure 10, some of the modules like Demod, Equalizer
and Sink show significant savings in power, while the second
instance of the pipelined LPF modules, which is the bottle-
neck in the system, shows no improvement at all. However,

SINKSRC LPF DEMOD EQ
EQ
EQ
EQ

LPF
LPF
LPF
LPF

Figure 9: Partitioned Software Radio

Figure 10: Power consumption in Software Radio

the overall improvement is still around 50% and compares
well with the off-line method. When there are infinite lev-
els of frequency and voltage levels available, the power saving
are greater than those with finite levels (six frequency-voltage
pairs) as expected (up to 55% power savings).

7.2 MPEG2 Encoder

The MPEG-2 Encoder is broken down into six components
namely the motion estimator (ME), motion predictor (Pred),
DCT and quantization block, IDCT and inverse quantiza-
tion block, the variable length encoding (VLC) block and the
sink. For MPEG-2 Encoder, a base configuration with ARM

Table 2: Cycles/macroblock for MPEG-2 Encoder

ME Pred DCT VLC IDCT Sink
101282 16722 370060 43222 351259 3188

cores running at a clock frequency of 133MHz and supply
voltage of 1.6V was chosen. The same off-line algorithm [13]
was used for comparison purposes (with six voltage-frequency
pairs). The six voltage-frequency pairs (in V, MHZ) chosen
were (1.6,133), (1.4,117), (1.2,100), (1.0,83), (0.85,70), and
(0.65,54). The results were obtained for frame processing
rate of 3.5f/s with 99 macroblocks per frame. Figure 12
shows that all blocks, except DCT and IDCT, show a large
improvement in power consumption. DCT being the bot-
tleneck of the system, operates at highest available frequency
and voltage. For IDCT, our proposed method performs better
than the off-line method due to precise detection of workload
behavior, providing additional 30-40% power savings locally
and 8% additional power savings globally. The overall savings
in power are close to 65% for all the three cases with infinite
frequency-voltage levels showing more improvement over the
finite case (six frequency-voltage pairs).

8. CONCLUSION

In this paper, we proposed a hardware based architecture
that can be used as a basic building block to build VFI sys-
tems and support Dynamic Voltage and Frequency Scaling
schemes. The logic to predict the optimal frequency of opera-
tion is also presented. A method to propagate the throughput
constraint through the entire system is also discussed. We in-
troduced a tool to automatically generate behavioral Verilog
from task graphs that can enable and automate analysis of
such VFI systems. Future work in this direction can include
modification of the FIFO link architecture to address latency
constraints, in addition to rate constraints.

SinkSource
Motion

Estimation
Pred DCT VLC

IDCT

Figure 11: Partitioned MPEG-2 Encoder

Figure 12: Power consumption in MPEG-2 Encoder

9. REFERENCES
[1] Embedded systems synthesis benchmarks suite (e3s).

http://www.ece.northwestern.edu/∼dickrp/e3s/.
[2] Ibm blue logic cu-08 voltage islands.

http://www.ibm.com/chips/products/asics/products/
v island.html.

[3] International technology roadmap for semiconductors.
http://public.itrs.net.

[4] A. Agiwal and M. Singh. An architecture and wrapper
synthesis for multi-clock latency-insensitive systems. Proc. of
IEEE/ACM Intl. Conf. on Computer-Aided Design
(ICCAD), page 1006, November 2005.

[5] J. Butts and G. Sohi. A static power model for architects.
Proc. of International Symposium on Microarchitecture,
December 2000.

[6] T. Chelcea and S. Nowick. A low latency fifo for mixed-clock
systems. Proc. of IEEE Computer Society Workshop on
VLSI, April 2000.

[7] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram.
Frame-based dynamic voltage and frequency scaling for a
mpeg decoder. Proc. of IEEE/ACM Intl. Conf. on
Computer-Aided Design (ICCAD), Nov. 2002.

[8] A. Dasdan. Rate analysis of embedded systems. Ph.D.
thesis, University of Illinois at Urbana Champagne, 1998.

[9] C. Hu. Devices and Technology Impact on Low Power
Electronics, Low Power Design Methodolgies. Kluwer
Academic Publishers, 1996.

[10] A. Iyer and D. Marculescu. Power efficiency of multiple
clock, multiple voltage cores. Proc. of IEEE/ACM Intl.
Conference on Computer-Aided Design (ICCAD) San Jose,
CA, Nov. 2002.

[11] J. Muttersbach, T. Villiger, and W. Fichtner. Practical
design of globally asynchronous locally synchronous systems.
Proc. Intl Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), April 2000.

[12] L. Nielson, C. Niessen, J. Sparso, , and K. Berkel. Low-power
operation using self timed circuits and adaptive scaling of
the supply voltage. IEEE Transactions on Very large Scale
Integration (VLSI) Systems, page 391397, Dec. 1994.

[13] K. Niyogi and D. Marculescu. Speed and voltage selection
for gals systems based on voltage/frequency islands. Proc.
ACM/IEEE Asian-South Pacific Design Automation
Conference (ASPDAC), January 2005.

[14] R. Rao, S. Vrudhula, and N. Chang. Battery optimization
vs. energy optimization: Which to choose and when. Proc.
of IEEE/ACM Intl. Conf. on Computer-Aided Design
(ICCAD), page 439, November 2005.

[15] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
and M. L. Scott. Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency
scaling. Proc. of the International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2002.

[16] E. Talpes and D. Marculescu. A critical analysis of
application-adaptive multiple clock processors. Proc.
ACM/IEEE Intl. Symposium on Low Power Electronics and
Design (ISLPED), Seoul, Korea, August 2003.

[17] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal
online methods for voltage/frequency control in multiple
clock domain microprocessors. Proc. of International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2004.

