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Abstract

This paper deals with Dynamic MAP Inference, where the goal is to solve an in-
stance of the MAP problem given that we have already solved a related instance
of the problem. We propose an algorithm for Dynamic MAP Inference in planar
Ising models, called Dynamic Planar-Cuts. As an application of our proposed ap-
proach, we show that we can extend the MAP inference algorithm of Schraudolph
and Kamenetsky [14] to efficiently compute min-marginals for all variables in the
same time complexity as the MAP inference algorithm, which is anO(n) speedup
over a naı̈ve approach.

1 Introduction

One of the classical examples of discrete optimization problems found in machine learning is that of
maximum a posteriori (MAP) estimation in undirected graphical models. Specifically, we consider
a set of discrete random variables X = {X1, X2, . . . , Xn}, where each variable Xi takes values in
some label space L = {1, 2, . . . , k}. Without loss of generality, we may assume a pairwise Markov
Random Field (MRF), given by a graph G = (V, E), where each variable is represented by a node
(V = {1, 2, . . . , n}), and the edge-set (E) is the union of the Markov blanket of each Xi. The goal
of MAP inference is to minimize a real-valued energy function associated with this graph, i.e.:

X ∗ = argmin
X∈L

E(X ) (1a)

= argmin
X∈L

∑
i∈V

Ei(Xi) +
∑

(i,j)∈E

Eij(Xi, Xj), (1b)

where the first term Ei is called the node/unary energy, and the second term Eij is called the
edge/pairwise energy.

In general, this problem is known to be NP-hard [15]. However, certain subclasses are known where
exact efficient inference is possible. Trees and polytrees [13] were the first known efficient struc-
tures. For 2-class problems (k = 2), Kolmogorov and Zabih [11] showed that exact inference can
be performed in polynomial time if the energy functions are sumodular. More recently, Schraudolph
and Kamenetsky (SK) [14] showed that exact inference can be performed efficiently in planar Ising
models, which are equivalent to general outer-planar models (i.e., models where energy is given by
(1b) and G is an outer-planar graph).

Contributions. This paper deals with “Dynamic” MAP Inference in planar Ising models, where
the goal is to solve an instance of the problem given that we have already solved a related instance of
the problem. Specifically, if we already minimized one such energy function, and only a few energy
terms in Eqn. 1b change, we show how we can re-use the computations from the planar-cut algorithm
of SK [14] to compute the new solution. As an application of our algorithm, we consider the problem
of computing min-marginals (described in Sec. 3). We show that we can extend the MAP inference
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algorithm of SK [14] to efficiently compute exact min-marginals for all variables in the same time
complexity as the MAP algorithm. Specifically, a naı̈ve extension would compute min-marginals
via 2n-min-cuts in a constructed graph (discussed next). On the other hand, our algorithm performs
1-min-cut computation followed by n-update steps, each of which is significantly (O(n)) faster than
computing a min-cut “from scratch”.

Applications. The motivation for Dynamic MAP Inference may come from a variety of appli-
cations that have a sequence of related problems as input. We discuss a few from the field of
computer vision. Kohli and colleagues applied dynamic inference for object-background segmenta-
tion in video [7] and human pose estimation and segmentation [6]. Similarly, min-marginals have
been used for a variety of tasks. Glocker et al. [4] used min-marginals for optical-flow estimation.
Kohli et al. [8] used min-marginals for a parameter learning scheme and as a confidence measure
with interactive image segmentation.

Relations to previous work. We note that Kohli et al. [8] have also developed dynamic algorithms
for s-t min-cut based MAP inference in submodular energy functions. While the high level goal of
our paper is similar to theirs, the techniques developed in these two papers are completely different.
Their min-cut algorithm is based on max-flow computations, while ours is based on perfect match-
ings in expanded planar-dual graphs, and unfortunately, none of their techniques are applicable here.

Organization. The rest of this paper is organized as follows: Section 2 recalls the construction of
SK [14] to show how MAP inference in planar Ising models can be formulated as a min-cut problem
in a planar graph; Section 3 presents our proposed approach of Dynamic Planar-Cuts; Section 4
presents a timing comparison of Dynamic Planar-Cuts vs. naı̈ve computation of min-marginals;
Finally, Section 5 concludes with discussions.

2 MAP as Min-Cut in a Planar Graph

We now recall the construction of Schraudolph and Kamenetsky [14] for planar Ising models.

Planar Ising Models. Ising models have a rich history in statistical physics [1] and are defined by
an energy function (over boolean variables) with the following form:

Ẽ(X ) =
∑

(i,j)∈E

[[Xi 6= Xj ]] Ẽij , (2)

where [[·]] is the indicator function. While this energy (Ẽ) seems much more restrictive (no node
terms, symmetric edge terms) than the general one in (1b), the following theorem (from [14]) shows
that they are in fact equivalent.

Theorem 1 Every energy function of the form (1b) over n boolean variables is equivalent to an
Ising energy function (2) over n+ 1 boolean variables with the additional variable held constant.

As a consequence of this theorem, we can establish the equivalence between planar Ising models
and outer-planar general models.

Corollary 1 Every outer-planar energy function of the form (1b) over n boolean variables is equiv-
alent to a planar Ising energy function (2) over n+ 1 boolean variables with the additional variable
held constant.

Definition. Outer-planar graphs are a sub-class of planar graphs – they allow a planar embedding in
which all nodes lie on a common external unbounded face. An alternate definition is more helpful for
our purpose. A graph G = (V, E) is outer-planar iff the modified graph Gc = (V ∪{o}, E ∪{(o, i) :
i ∈ V}) formed by adding an extra node v and connecting it to all nodes in G is planar.

From this point on our discussion assumes that we are given an outer-planar model (G = (V, E))
with energy function given by (1b).

Construction 1. It can be shown [14] that MAP inference (1a) with boolean variables is equivalent
to finding a min-cut in a graph (Gc = (V ∪ {o}, E ∪ {(o, i) : i ∈ V})) constructed as follows:

1. For each node energy Ei(Xi), we set the edge weight on (o, i) as w(o,i) = Ei(1)− Ei(0).
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2. For each edge energy function Eij(Xi, Xj), add the three edges weights:

w(o,i) +=
1
2

[Eij(1, 0) + Eij(1, 1)− Eij(0, 1)− Eij(0, 0)] (3a)

w(o,j) +=
1
2

[Eij(0, 1) + Eij(1, 1)− Eij(0, 0)− Eij(1, 0)] (3b)

w(i,j) =
1
2

[Eij(1, 0) + Eij(0, 1)− Eij(0, 0)− Eij(1, 1)] (3c)

Claim 1 There exists a bijection between labellings and cuts. Every labelling X ∈ {0, 1}n induces
a cut C in Gc s.t. C = {(i, j) ∈ Ec : Xi 6= Xj} (where node o is held at label 0, i.e. Xo = 0).

Claim 2 The energy of a labelling X is equal to the cost of its induced cut C (plus a constant):
E(X ) = w(C) + E(0) (where 0 is a the zero labelling, Xu = 0∀u).

Proof See [14].

Thus, this construction allows us to find the MAP state by computing the min-cut in this constructed
graph Gc. We note that this construction is related to the one proposed by Kolmogorov and Zabih
(KZ) [11], however there are two key differences. First, this is an undirected graph characterization
while KZ presented a directed graph representation of energy functions. Second (and more impor-
tantly), this construction makes no assumption of submodularity. This implies that the edge weights
wij may be negative and thus max-flow based algorithms cannot be used to compute this min-cut.
This inapplicability of max-flow algorithms is not just for lack of some clever trick. There is a more
fundamental barrier at play here. The general min-cut problem with both positive and negative edge-
weights is just as hard as the max-cut problem, which is NP-complete. Fortunately, planar graphs
are a special subclass for which max-cut (and thus min-cut) can be computed in polynomial time via
max-weight perfect matching in an expanded planar dual graph. Due to lack of space, only a brief
description, necessary for understanding our contribution, is provided below. For details the reader
is referred to [5, 12, 14].

2.1 Min-cut via Perfect-matching in Expanded Dual

A planar dual graph G∗ = (V∗, E∗) is constructed by transforming faces in Gc to nodes in G∗.
Specifically, G∗ has a vertex corresponding to each face in Gc and two vertices in G∗ are joined by
an edge if their corresponding faces share an edge. An expanded dual graph Gex = (Vex, Eex) is
constructed by replacing each node v in G∗ by a d(v)-clique (where d(v) is the degree of v). There
is a natural 1-1 correspondence between the edge-sets of Gc and G∗ (Ec ⇔ E∗), which leads to an
injective mapping between Ec and Eex (i.e., nothing maps onto the edges in Eex created due to the
introduction of cliques). Let’s call this injective mapping F . We copy the edge-weights from Gc

over to their corresponding edges in Gex (i.e., wF(e) = we, ∀e ∈ Ec) and clique edges have zero
weights. An example is shown in Fig. 1.

Now, it is known [12,14] that we can establish the following correspondence between perfect match-
ings in Gex and cuts in Gc:

Theorem 2 Every perfect matching P in Gex of weight M corresponds to cut C in Gc = (Vc, Ec)
of weight

∑
(i,j)∈Ec

w(i,j) −M . In addition, an edge e of Gc is part of C, iff its corresponding edge
f in Gex is not part of P , i.e., e ∈ C ⇐⇒ F(e) /∈ P (∀e ∈ Ec).

Thus the min-cut in Gc can be found by looking for the max-weight perfect matching in Gex. Max-
weight perfect matching is a well studied problem, first solved by the Blossom algorithm of Ed-
monds [3]. It has a long history of improvements and efficient implementations [2,10], and the best
known algorithm is O(n(m+ log n)). We use the BlossomV implementation of Kolmogorov [10],
which although is asymptotically slower O(n2m), but very efficient in practice and able to handle
hundreds of thousands of nodes. For the purpose of understanding this paper, it is sufficient to re-
call that the “vanilla” Blossom algorithm of Edmonds [3] is an iterative algorithm that maintains a
matching (of cardinality < n/2) and at each step updates this matching by finding an augmenting
path so that the cardinality of this matching increases by 1 (till it reaches n/2). The fact that Blossom
requires n/2 augmentations will be useful in understanding our contribution.
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(a) G (b) Gc (c) G∗ (d) Gex

Figure 1: MAP in Outer-Planar Models: (a) shows an outer-planar graph G; (b) shows the result of Construc-
tion 1: Gc; (c) shows the planar dual graph G∗ overlaid on Gc. Notice that there is a natural 1-1 correspondence
between the edges sets of Gc and G∗; (d) shows the expanded planar dual Gex overlaid on Gc. Each node v
in G∗ has been replaced by a d(v)-clique. A perfect matching in Gex corresponds to a cut in Gc, which
corresponds to a labelling in G.

3 Dynamic Planar-Cuts for Min-marginals

We now present our proposed approach of Dynamic Planar-Cuts. As we discussed earlier, a lot of
applications have a natural dynamic nature, i.e., they have a sequence of related inputs, and it makes
sense to re-use computation from one solved instance to solve the next. To explain our algorithm
in detail, we focus on the problem of computing min-marginals. However, we note that the ideas
described in this paper are general enough to applied to any of the applications mentioned before.

Min-marginals. A min-marginal is a function that describes the energy function under certain
constraints. Specifically, it is the minimum value of the energy function when the state for a single
node is specified. Following the notation of Kolmogorov [9], we write min-marginals as:

Φi(xi) = min
X ,Xi=xi

E(X ) ∀i ∈ V, xi ∈ L (4)

We note that the max-marginals produced as messages in max-product belief propagation algorithms
are related to min-marginals as:

µi(xi) = max
X ,Xi=xi

Pr(X ) = max
X ,Xi=xi

1
Z

exp (−E(X )) =
1
Z

exp(−Φi(xi)) (5)

So how would we compute these min-marginals for boolean outer-planar models? First, we note
that these min-marginals may be represented by a 2 × n matrix Φ = [Φ1 Φ2 . . .Φn], where each
column represents the min-marginal function for a node. The naı̈ve way to compute the elements
of this matrix is to loop through nodes, force a node Xi to take a particular state xi and compute
the MAP state and energy using the construction described above. We note that a node Xi can be
forced to take state 0(1) by setting the weight for (o, i) edge as −∞(+∞). Clearly, this requires
2n-min-cuts. To be fair, this naı̈ve approach can be slightly improved to (n + 1)-min-cuts by first
computing the MAP energy (1-min-cut) and using that to fill n out of the 2n entries in this matrix.
This as shown in Alg. 1.

Input: Gc: Output of Construction 1, and Gex: Expanded planar dual graph.
Output: Φ: Min-marginals.
Find min-cut in Gc (via max-wt perfect matching in Gex) to get MAP state X ∗ and energy ε.
for i = 1 to n do

Φi(X∗i )←− ε;
G

(i)
c ←− Gc; G(i)

ex ←− Gex;
In G(i)

c , set edge-weight w(o,i) ←− (2X∗i − 1) · (∞); Update G(i)
ex ;

Find min-cut in updated G(i)
c and compute energy (εi) corresponding to this cut;

Φi(1−X∗i )←− εi;
end

Algorithm 1: Naı̈ve computation of min-marginals.

We note that this naı̈ve algorithm (Alg. 1), repeatedly solves n very similar problems in a loop. In
fact, there is a rich structure to these problems – each successive problem differs from the previous
one in only 2 edge-weights (w(o,i−1) and w(o,i)), and all other edge-weights are exactly the same.

4



Clearly, we should be able to exploit this structure, and solve each problem faster than solving “from
scratch”. Indeed, as we show next it is possible to solve all n of these problems in the same time as
1-min-cut (O(n2m)), thus bringing the complexity of computing min-marginals to the same level
as computing the MAP solution.

The key insight in achieving this is to notice that a solution to the problem at iteration (i − 1) isn’t
very far (in a combinatorial sense) from the solution to the next problem (iteration i). The trick
though, is to look at the right entity. Specifically, let C(i) be the min-cut in G(i)

c and P(i) be the
corresponding max-weight perfect-matching in G(i)

ex at iteration (i). Now, the two successive min-
cuts C(i−1) and C(i) may be arbitrarily different, however the two perfect-matchings P(i−1) and P(i)

are not too far away from each other, in the sense of augmenting paths.

We claim that an adjusted version of P(i−1) is at most 2 augmenting operations away from P(i).
Specifically, P(i−1) is also an n/2 sized matching in G(i)

ex , however we need to adjust for the edge
F(e), where e = (o, i). If the updated weight we is−∞, i.e., e is forced to be in C(i) and thus forced
to not be in P(i), and P(i−1) contains F(e), then we can just delete F(e) from P(i−1), resulting in
an n/2− 1 sized matching. Alternatively, if the updated weight we is +∞, i.e., F(e) forced to be in
P(i), and P(i−1) does not contains F(e), we can just delete the two matching edges covering nodes
o and i in P(i−1), resulting in a matching of size n/2− 2.

It is precisely the above observation that allows us to efficiently compute min-marginals by re-using
the perfect matching solution from the previous iteration. At each iteration, we need to simply per-
form at most two augmentation steps, as opposed to n/2 augmentations required in solving from
scratch, thus giving us a speedup by a factor of O(n). Additionally, it can be shown that each aug-
mentation step takes at most O(nm) time (see for example, the discussion in Sec. 2.3 in [10]). Thus
each update step in our algorithm takes O(nm), and the total time for computing all min-marginal
is O(n2m), which is precisely the complexity of a single perfect-matching/min-cut computation.
Thus, using our approach, the extension from a single MAP solution to all min-marginals only adds
a constant-factor overhead. This is summarized in Alg. 2.

Input: Gc: Output of Construction 1, and Gex: Expanded planar dual graph.
Output: Φ: Min-marginals.
Find min-cut in Gc (max-wt perfect matching P in Gex) to get MAP state X ∗ and energy ε.
Set P(0) ←− P;
for i = 1 to n do

Φi(X∗i )←− ε; G(i)
c ←− Gc; G(i)

ex ←− Gex;
In G(i)

c , set edge-weight w(o,i) ←− (2X∗i − 1) · (∞); Update G(i)
ex ;

Adjust P(i−1): if (X∗i == 0) then
P(i−1) ←− P(i−1) −F((o, i));

else
P(i−1) ←− P(i−1) − {f1, f2 ∈ P(i−1) : o ∈ f1, i ∈ f2};

end
Augment P(i−1) to find P(i) and compute energy (εi) corresponding to C(i);
Φi(1−X∗i )←− εi;

end
Algorithm 2: Dynamic Planar-Cuts.

4 Experiments
We now describe a timing comparison of the naı̈ve approach (Alg. 1) vs. our approach of Dynamic
Planar-Cuts (Alg. 2). We worked with a 2 × n sized grid graph, which is guaranteed to be outer-
planar. Following the setup of Kolmogorov [9], we created artificial energy functions for this graph
by randomly sampling from Gaussians: Ei(0), Ei(1) ∼ N (0, 1). Pairwise energies were set as:
Eij(0, 0) = Eij(1, 1) = 0; Eij(0, 1), Eij(1, 0) ∼ N (0, 1). Fig. 2 shows the time taken to compute
the min-marginals for these energies. We can see that our approach is able to compute min-marginals
significantly faster than the naı̈ve approach. In fact, as the size of the graph increase the naı̈ve
approach becomes prohibitively slow. We point out that our approach is not an approximation, it
computes exact min-marginals.
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Figure 2: Time taken to compute min-marginals for a 2× n grid graph.

5 Discussions
To summarize, this paper proposed an algorithm for Dynamic MAP Inference in outer-planar mod-
els, where the goal is to solve an instance of the problem given that we have already solved a related
instance of the problem. As an application of our Dynamic Planar-Cut algorithm, we showed that
we can extend the MAP inference algorithm of SK [14] to efficiently and exactly compute all min-
marginals, with a constant-factor overhead, which is O(n) speedup over a naı̈ve approach.

Extensions. Even though the details of our algorithm are discussed for computing min-marginals,
we note that the ideas described in this paper are general enough to applied to any of the dynamic
applications mentioned in the introduction. In addition, while our algorithm only shows how to com-
pute node min-marginals, it can be easily extended to compute edge min-marginals, i.e., minimum
value of the energy function when the states for a pair of nodes is specified.
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