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Abstract

High-speed monitoring of Internet traffic is an impor-
tant and challenging problem, with applications to real-
time attack detection and mitigation, traffic engineer-
ing, etc. However, packet-level monitoring requires fast
streaming algorithms that use very little memory and lit-
tle communication among collaborating network moni-
toring points.

In this paper, we consider the problem of detect-
ing superspreaders, which are sources that connect to
a large number of distinct destinations. We propose
new streaming algorithms for detecting superspread-
ers and prove guarantees on their accuracy and mem-
ory requirements. We also show experimental results
on real network traces. Our algorithms are substan-
tially more efficient (both theoretically and experimen-
tally) than previous approaches. We also extend our al-
gorithms to identify superspreaders in a distributed set-
ting, with sliding windows, and when deletions are al-
lowed in the stream (which lets us identify sources that
make a large number of failed connections to distinct
destinations).

More generally, our algorithms are applicable to any
problem that can be formulated as follows: given a
stream of (x, y) pairs, find all the x’s that are paired
with a large number of distinct y’s. We call this the
heavy distinct-hitters problem. There are many network
security applications of this general problem. This pa-
per discusses these applications and, for concreteness,
focuses on the superspreader problem.

1 Introduction

Internet attacks such as distributed denial-of-service
(DDoS) attacks and worm attacks are increasing in
severity. Network security monitoring can play an im-
portant role in defending against and mitigating such
large-scale Internet attacks – it can be used to detect

drastic traffic pattern changes that may indicate attacks
or, more actively, to identify misbehaving hosts or vic-
tims being attacked, in order to throttle attack traffic au-
tomatically.

For example, a compromised host doing fast scanning
for worm propagation often makes an unusually high
number of connections to distinct destinations within a
short time. The Slammer worm, for instance, caused
some infected hosts to send up to 26, 000 scans a sec-
ond [26]. We call such a host a superspreader. (Note
that a superspreader may also be known as a port scan-
ner in certain cases.) By identifying in real-time any
source IP address that makes an unusually high number
of distinct connections within a short time, a network
monitoring point can identify hosts that may be super-
spreaders and take appropriate action. For example, the
identified potential attackers (and victims) can be used to
trigger the network logging system to log attacker traf-
fic for detailed real-time and post-mortem analysis of
attacks, in order to throttle subsequent (similar) attack
traffic in real-time.

In this paper, we study the problem of identifying
superspreaders. A superspreader is defined to be a host
that contacts at least a given number of distinct destina-
tions within a short time period. Superspreaders could
be responsible for fast worm propagation, so detecting
them early is of paramount importance. Thus, given a
sequence of packets, we would like to design an effi-
cient monitoring algorithm to identify in real-time which
source IP addresses have contacted a high number of dis-
tinct hosts within a time window.

Note that a superspreader is different from the usual
definition of a heavy-hitter ([19, 8, 16, 25, 13, 24]). A
heavy-hitter might be a source that sends a lot of pack-
ets, and thus exceeds a certain threshold of the total traf-
fic. A superspreader, on the other hand, is a source that
contacts many distinct destinations. So, for instance, a
source that is involved in a few extremely large file trans-
fers may be a heavy-hitter, but is not a superspreader.
On the other hand, a source that sends a single packet
to many destinations might not create enough traffic to



(s1, d1), (s2, d2), (s1, d1), (s3, d3), (s1, d1), (s2, d3), (s4, d1), (s2, d4), (s1, d1), (s5, d4), (s6, d6)

Figure 1. Example stream of (source, destination) pairs, starting with (s1, d1) and ending with (s6, d6).

be a heavy-hitter, even if it is a superspreader – some
of the sources in our traces that are superspreaders cre-
ate less than 0.004% of the total traffic analyzed; heavy-
hitters typically involve a significantly higher fraction of
the traffic.

It is desirable to be able to do the monitoring on high-
speed links, for example, on a large enterprise network
or an ISP network for a large number of home users. A
major difficulty with detecting superspreaders on a high-
speed monitoring point is that the traffic volume on high
speed links can be tens of gigabits per second and can
contain millions of flows per minute. In addition, within
such a great number of flows and high volume of traffic,
most of the flows may be normal flows. The attack traf-
fic may be an extremely small portion of the total traffic.
Many traditional approaches require the network mon-
itoring points to maintain per-flow state. Keeping per-
flow state, however, often requires high memory storage,
and hence is not practical for high speed links. We need,
therefore, efficient algorithms to find superspreaders that
use memory sparingly.

The superspreader problem is an instance of a more
general problem that we term heavy distinct-hitters,
which may be formulated as follows: given a stream of
(x, y) pairs, find all the x’s that are paired with a large
number of distinct y’s. Figure 1, for example, depicts
a stream where source s2 is paired with three distinct
destinations, whereas all other sources in the stream are
paired with only one distinct destination; thus s2 is a
heavy distinct-hitter for this (short) stream.

An algorithm for the heavy distinct-hitters problem
has a wide range of applications. Clearly, we can
solve the dual of the superspreader problem – finding
the destinations which are contacted by a large number
of sources – and such destinations could be victims of
DDoS attacks. It can be used to identify which port has
a high number of distinct destinations or distinct source-
destination pairs without keeping per-port information
and thus aid in detection of attacks such as worm prop-
agation. Such a port is a heavy distinct-hitter in our set-
ting (x is the port and y is the destination or source-
destination pair). Such an algorithm can also be used
to identify which port has high ICMP traffic, which of-
ten indicates high scanning activity and scanning worm
propagation, without keeping per-port information. The
heavy distinct-hitters problem also has many network-
ing applications. For example, spammers often send the
same emails to many distinct destinations within a short
period, and we could identify potential spammers with-
out keeping information for every sender. An algorithm
for the heavy distinct-hitter problem may also be useful
in peer-to-peer networks, where it could be used to find

nodes that talk to a lot of other nodes without keeping
per-node information. For simplicity, in the rest of this
paper, we will describe our algorithms for identifying
superspreaders. The algorithms can be easily applied to
the other applications mentioned above.

To summarize, the contributions of this paper are the
following:

• We propose new streaming algorithms for identify-
ing superspreaders. Our algorithms are the first to
address this problem efficiently and provide proven
accuracy and performance bounds. The best previ-
ous approaches [17, 31] require a certain amount of
memory to be allocated for each source [17] or each
flow [31] within the time window; we do not keep
state for every source, and thus our algorithms scale
very well. We present two algorithms: the first,
a simpler one, which is already much better than
existing approaches, and which we use for base
comparison; and the second, a more complex two-
level filtering scheme, that is more space-efficient
on commonly-seen distributions. In addition, the
two-level filtering scheme may have other applica-
tions and be of independent interest.

• We also propose several extensions to enhance our
algorithms – we extend our algorithms to scenar-
ios when deletion is allowed in the stream (Sec-
tion 4.1), to the sliding window scenario (Sec-
tion 4.2), and we propose efficient distributed ver-
sions of our algorithms (Section 4.3). The dele-
tion scenario is especially well-motivated – it can
be used to find sources that have a large number of
distinct connection failures (this may be an indica-
tion of scanning behavior), rather than just sources
that contact a large number of distinct destinations.
That is, once the network monitoring point sees a
response from a destination for a connection from
a source, that source-destination pair gets deleted
from the count of the number of distinct connec-
tions a source makes.

• Our experimental results on traces with up to 10
million flows confirm our theoretical results. Fur-
ther, they show that the memory usage of our algo-
rithms is substantially smaller than alternative ap-
proaches. Finally, we study the effect of different
superspreader thresholds on the performance of the
algorithms, again confirming the theoretical analy-
sis.

Note that the contribution of this paper is in the pro-
posal of new streaming algorithms to enable efficient
network monitoring for attack detection and defense,



when given certain parameters. Selecting and testing the
correct parameters, however, is application-dependent
and outside of the scope of this paper.

Note that we cannot detect a malicious host that
spoofs IP addresses and contacts many destinations,
since the algorithms will only operate on the input
(src, dst) pairs. It is, however, difficult to engage in
TCP-based attacks with IP spoofing. Also, we may need
special care when identifying the connection direction.
We can handle this issue in TCP traffic by checking for
superspreaders only in the SYN packets. In UDP traf-
fic, though, this may not be possible, because we may
not be able to distinguish which of the two hosts sent
the first packet without extra storage. Thus, in UDP
traffic, we may not be able to distinguish between a su-
perspreader and a source that simply responds to many
clients. (In our abstraction, the latter is also a super-
spreader in case of UDP). In practice, though, we expect
that most sources that typically need to respond to many
clients will remain more or less constant over brief pe-
riods of time (e.g. web servers over a few days’ time),
and that it will be easy to identify these sources early,
and keep them on a separate list, so that they do not in-
terfere in network anomaly detection.

The rest of the paper is organized as follows. Sec-
tion 2 defines the superspreader problem and discusses
previous approaches. Section 3 presents and compares
two novel algorithms for the superspreader problem.
Section 4 presents our extensions to handle distributed
monitoring, deletions, and sliding windows. Section 5
presents our experimental results, and Section 6 presents
conclusions.

2 Problem Definition and Previous Ap-
proaches

In this section, we present a formal definition of the
problem and then discuss the deficiencies of previous
techniques in addressing the problem.

2.1 Problem Definition

We define a k-superspreader as a host which contacts
more than k unique destinations within a given window
of N source-destination pairs. In Figure 1, for example,
with k = 2, source s2 is the only k-superspreader. Note
that there may be as many as N/k k-superspreaders in a
given set of N packets, and reporting them would need
Ω(N/k) space. Thus, this gives us a lower bound on
the space bounds needed to find superspreaders. It also
follows from a lower bound in [1] that any deterministic
algorithm that accurately estimates (e.g., within 10%)
the number of unique destinations for a source needs
Ω(k) space. Because we are interested in small space
algorithms, we must consider instead randomized algo-
rithms.

N Total no. of packets in a given time interval
k A superspreader sends to more than k

distinct destinations
b A false positive is a source that contacts

less than k/b distinct destinations but is
reported as a superspreader

δ Probability that a given source becomes a
false negative or a false positive

W Sliding window size
s Source IP address
d Destination IP address

Table 1. Summary of notation

More formally, given a user-specified b > 1 and con-
fidence level 0 < δ < 1, we seek to report source IPs
such that a source IP which contacts more than k unique
destination IPs is reported with probability at least 1− δ
while a source IP with less than k/b distinct destinations
is (falsely) reported with probability at most δ. For ex-
ample, when k = 500, b = 2 and δ = 0.05, we want to
report any source that contacts at least 500 distinct des-
tinations and report no source that contacts less than 250
distinct destinations with probability 0.95.

We envision our algorithms to be useful in applica-
tions where it is acceptable to report sources whose dis-
tinct destination count is within a factor of 2 (or a factor
of 5, 10, etc.) of a superspreader. For example, if we
wish to identify sources involved in fast worm propaga-
tion and choose k = 500, it suffices to set b = 2, as we
do not expect to find many sources (in normal traffic)
that contact over 250 destinations within a short period.
When a much finer distinction needs to be made (when b
approaches 1), we will require a very high sampling rate,
and there will not be a substantial reduction in memory
usage or computational time.

Also, note that by our problem statement, a source
will be identified as a superspreader with high proba-
bility when it has contacted between k

b and k destina-
tions. Thus, we will expect to report the (potential) k-
superspreader before it has contacted k destinations, and
so our approach will not delay the identification of the
superspreader.

Table 1 summarizes the notation used in this paper.

2.2 Related Work and Previous Approaches

There has been a volume of work done in the area of
streaming algorithms (see the surveys in [2, 28]). How-
ever, none of this work addresses the problem of iden-
tifying superspreaders efficiently. Perhaps most closely
related is the problem of counting the number of distinct
values in a stream. It has been studied by a number of
papers (e.g., [1, 3, 4, 10, 12, 18, 20, 21, 17]). The semi-
nal algorithm by Flajolet and Martin [18] and its variant



due to Alon, Matias and Szegedy [1] estimate the num-
ber of distinct values in a stream up to a relative error of
ε>1. Cohen [9], Gibbons and Tirthapura [20], and Bar-
Yossef et al. [4] give distinct counting algorithms that
work for arbitrary relative error. More recently, Bar-
Yossef et al. [3] improve the space complexity of dis-
tinct values counting on a single stream, and Cormode
et al. [10] show how to compute the number of distinct
values in a single stream in the presence of additions and
deletions of items in the stream. Gibbons and Tirtha-
pura [21] give an (ε, δ)-approximation scheme for dis-
tinct values counting over a sliding window of the last
N items, using B = O( 1

ε2 log(1/δ) logN log R) mem-
ory bits. The algorithm extends to handle distributed
streams, where B bits are used for each stream.

Previous Approaches: We now discuss existing ap-
proaches that may be applied to find superspreaders and
their deficiencies.

• Approach 1: As a first approach, Snort [30] simply
keeps track of each source and the set of distinct
destinations it contacts within a specified time win-
dow. Thus, the memory required by Snort will be at
least the total number of distinct source-destination
pairs within the time window, which is impractical
for high-speed networks.

• Approach 2: Instead of keeping a list of distinct
destinations that a source contacts for each source,
an improved approach may be to use a (random-
ized) distinct counting algorithm to keep an ap-
proximate count of distinct destinations a source
contacts for each source [17]. Along these lines,
Estan et al. [17] propose using bitmaps to iden-
tify port-scans. The triggered bitmap construction
that they propose keeps a small bitmap for each
distinct source, and once the source contacts more
than 4 distinct destinations, expands the size of the
bitmap. Such an approach requires n · S space
where n is the total number of distinct sources
(which can be Ω(N)) and S is the amount of space
required for the distinct counting algorithm to es-
timate its count. These approaches are particularly
inefficient when the number of k-superspreaders is
small and many sources contact far fewer than k
destinations.

• Approach 3: The recent work by Weaver et
al. [31] proposes an interesting data structure for
finding scanning worms using Threshold Random
Walk [23]. This data structure may be adapted to
find superspreaders by tracking the number of dis-
tinct destinations contacted in the address cache. 1

1We refer the reader to [31] for an understanding of the data struc-
ture. Here, we just describe how to use it for detecting superspreaders

However, it may not scale well to high-speed links,
as it needs to keep some state for every flow for a
period of time (and thus, the memory usage could
be Ω(N)). We present a concrete example for the
parameters in [31]. The 1 MB connection cache
keeps per-flow details, and after seeing 1 million
flows (in one direction), fewer than 37% of new
flows (in the same direction) are expected to map
to an unused entry in the cache.2 When new flows
map into an existing entry in the connection cache,
the counter for the source does not get updated.
Thus, roughly 63% of superspreaders that appear
after these million flows will not be identified (in
expectation). With a time-out of 10 minutes, a rate
of 1700 flows a second will saturate the 1 MB con-
nection cache to this point. If we assume that these
million flows come from distinct sources, and we
need to find 1000-superspreaders with b = 2, and
error probability δ = 0.05, our two-level filtering
algorithm needs only an expected 24KB of space.
Thus, in this scenario, our algorithm is more ac-
curate and requires much less space. However,
their data structure is designed to find small scans
quickly, and in this case performance of our algo-
rithms will degrade.

• Approach 4: Another approach that has not been
previously considered is using a heavy-hitter algo-
rithm in conjunction with a distinct-counting algo-
rithm. We use a modified version of a heavy-hitter
algorithm to identify sources that send to many des-
tinations. Specifically, whereas heavy-hitters count
the number of destinations, we count (approxi-
mately) the number of distinct destinations. This
is done using a distinct counting algorithm. In our
experiments we compare with this approach, with
LossyCounting [25] as the heavy-hitter algorithm,
and the first algorithm from [3] as the distinct-
counting algorithm. The results show that our algo-
rithms use much less memory than this approach;
the details are in Section 5. For completeness, we
summarize LossyCounting and the distinct count-
ing algorithm we use in Appendix D.

Other Related Work: A number of papers have pro-
posed algorithms for related problems in network traf-
fic analysis. Estan and Varghese [16] propose two al-
gorithms to identify the large flows in network traffic,
and give an accurate estimate of their sizes. Estan et
al. [15] present an offline algorithm that computes the
multidimensional traffic clusters reflecting network us-
age patterns. Duffield et al. [14] show that the num-

and what the issues with doing so are.
2Theorems on occupancy problems give these numbers. For de-

tails, see [27].



ber and average length of flows may be inferred even
when some flows are not sampled, and compute the dis-
tribution of flow lengths. Golab et al. [22] present a
deterministic single-pass algorithm to identify frequent
items over sliding windows. Cormode and Muthukr-
ishnan [11] present sketch-based algorithms to identify
large changes in network traffic.

3 Algorithms for Finding Superspreaders

We now propose two efficient algorithms to find su-
perspreaders. We first propose a one-level filtering algo-
rithm, based on sampling from the set of distinct source-
destination pairs. We then present a more complex algo-
rithm based on a novel two-level filtering scheme, which
will be more space-efficient than the one-level filtering
algorithm for the distributions that (we expect) will be
more common.

3.1 One-level Filtering Algorithm

The intuition for our one-level filtering algorithm for
identifying k-superspreaders over a given interval of N
source-destination pairs is as follows.

We observe that if we sample the distinct source-
destination pairs in the packets such that each distinct
pair is included in the sample with probability p, then
any source with m distinct destinations is expected to
occur pm times in the sample. If p were 1

k , then any
k-superspreader (with its m ≥ k distinct destinations)
would be expected to occur at least once in the sample,
whereas sources that are not k-superspreaders would be
expected not to occur in the sample. In this way, we may
hope to use the sample to identify k-superspreaders3.

There are several difficulties with this approach.
First, the resulting sample would be a mixture of k-
superspreaders and other sources that got “lucky” to be
included in the sample. If there are no k-superspreaders,
for example, the sample will consist only of lucky
sources. To overcome this, we set p to be a constant
factor c1 larger than 1

k . Then, any k-superspreader
is expected to occur at least c1 times in the sample,
whereas lucky sources may occur a few times in the
sample but nowhere near c1 times. To minimize the
space used by the algorithm, we seek to make c1 as
small as possible while being sufficiently large to dis-
tinguish k-superspreaders from lucky sources. A sec-
ond, related difficulty is that there may be “unlucky”
k-superspreaders that fail to appear in the sample as
many times as expected. To overcome this, we have a

3Note that we are sampling from the set of distinct source-
destination pairs, not the set of packets we see; we perform a computa-
tion on every element in the stream – the “sampling” is at a conceptual
level. The lower bounds of sampling approaches on counting distinct
values [7] thus do not apply to our approach.
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Figure 2. The parameters c1 and r for the
one-level filtering scheme.

second parameter r < c1 and report a source as a k-
superspreader as long as it occurs at least r times in the
sample. A careful choice of c1 and r is required.

Finally, we need an approach for uniform sampling
from the distinct source-destination pairs. To accom-
plish this, we use a random hash function that maps
source-destination pairs to [0, 1) and include in the sam-
ple all distinct pairs that hash to [0, p). Thus each dis-
tinct pair has probability p of being included in the sam-
ple. Using a hash function ensures that the probability
of being included in the sample is not influenced by how
many times a particular pair occurs. On the other hand,
if a pair is selected for the sample, then all its duplicate
occurrences will also be selected. To fix this, our al-
gorithm checks for these subsequent duplicates and dis-
cards them.

Algorithm Description: Let srcIP and dstIP be the
source and destination IP addresses, respectively, in a
packet. Let h1 be a uniform random hash function that
maps (srcIP, dstIP) pairs to [0, 1), (that is, each input
is equally likely to map to any value in [0, 1) indepen-
dently of other inputs). At a high level, the algorithm is
as follows:

• Retain all distinct (srcIP, dstIP) pairs such that
h1(srcIP, dstIP) < c1

k , where c1 is given in Fig-
ure 2. This is determined by the analysis in Ap-
pendix B.

• Report all srcIPs with more than r retained, where
r is given by the equations in Figure 2(b).

We can implement the algorithm above using two
hash-tables (with c1N

k buckets each): the first one to de-
tect and discard duplicate pairs from the sample, and the
second one to count the number of distinct destinations
for each source in the sample.

In more detail, the above steps can be implemented as
follows. Our implementation has the desirable property



that each k-superspreader is reported as soon as it is de-
tected. We use two hash tables: one to detect and discard
duplicate pairs from the sample, and the other to count
the number of distinct destinations for each source in
the sample. This latter hash table uses a second uniform
random hash function h2 that maps srcIPs to [0, 1).

• Initially: Let T1 be a hash table with c1N/k entries,
where each entry contains an initially empty linked
list of (srcIP, dstIP) pairs. Let T2 be a hash table
with c1N/k entries, where each entry contains an
initially empty linked list of (srcIP, count) pairs.

• On arrival of a packet with srcIP s and dstIP d: If
h1(s, d) ≥ c1/k then ignore the packet. Otherwise:

1. Check entry c1N
k · h1(s, d) of T1, and insert

(s, d) into the list for this entry if it is not
present. Otherwise, it is a duplicate pair and
we ignore the packet.

2. At this point we know that d is a new destina-
tion for s, i.e., this is the first time (s, d) has
appeared in the interval. We use c1N

k · h2(s)
to look-up s in T2. If s is not found, insert
(s, 1) into the list for this entry, as this is the
first destination for s in the sample. On the
other hand, if s is found, then we increment
its count, i.e., we replace the pair (s, m) with
(s, m + 1). If the new count equals r + 1,
we report s. In this way, each declared k-
superspreader is reported exactly once.

Note that at the end of the interval, the counts in T2

can be used to provide a good estimate on the number of
distinct dstIPs for each reported srcIP (by scaling them
up by the inverse of the sampling rate, i.e., by a factor of
k/c1).

Analysis: The algorithm presented above will report
any k-superspreader, and will not report a source that
sends to less than k

b distinct destinations with probabil-
ity at least 1 − δ. The total space required in expecta-
tion is O(c1N/k) words, while the per-packet process-
ing time is constant with the hash-table implementation
sketched above. Thus, for the typical case where δ is
a constant and b ≥ 2, the algorithm requires space for
only O(N/k) memory words. We give the precise the-
orem statement and the overhead analysis for this algo-
rithm in Appendix B. We now give some examples to
illustrate the one-level filtering algorithm.

Example: In this example, we set k = 1000 and b =
2, which means we are interested in reporting all sources
that contact 1000 or more destinations within a given
time period, without reporting any source that contacts

less than 500 destinations within that time. Let N be
the total number of packets seen in this time period.4

For this, we find numerically that c1/k = 0.052, and
r = 39 suffice, when δ = 0.05. Note that this sampling
rate implies that in expectation, 94.8% of the packets
will simply require one computation (hashing to see if
the source-destination pair falls below c1/k), and 5.2%
of the packets will be selected for more processing. To
store the source-destination pairs with a hash-table of
0.052N , each of these selected packets will require (in
expectation) no more than a read and a write of two IP
addresses, which is a small computational overhead. To
count the number of distinct destinations for any source
in the first hash-table, we could use another hash-table
and have an additional overhead of (at most) 2 reads and
2 writes (an IP address and a counter) per stored packet.

Note that these quantities do not depend on the distri-
bution of the number of distinct destinations by source.
That is, even if nearly every source sent to exactly one
destination, the basic algorithm would have us store
5.2% of these sources, where the number 0.052 depends
on k, b, and N . We would like to reduce the memory
used in storing these non-superspreader sources. Fur-
ther, we expect that most traces will have a very large
number of sources that contact only a few distinct des-
tinations, and very few superspreaders. Can we track
the superspreaders accurately without tracking so many
non-superspreaders?

The difficulty here is that the one-level filtering algo-
rithm needs a certain minimum sampling rate in order
to distinguish between sources that send to k destina-
tions and k

b destinations. But sources that contact only
a few destinations also get sampled at this rate. In the
next section, we will effectively reduce the sampling rate
of these non-superspreader sources without compromis-
ing on the accuracy of the algorithm for detecting super-
spreaders.

3.2 Two-Level Filtering Algorithm

We now present another algorithm that uses two levels
of filters and is more memory-efficient than one-level fil-
tering in most cases. At a high level, the algorithm uses
two levels of filtering in the following manner: the first-
level filter effectively decides whether we should keep
more information about a particular source, while the
second-level filter effectively keeps a small digest that
can then be used to identify superspreaders. The first
level has a lower sampling rate than the second level.
Thus intuitively, the first level is a coarse filter that fil-
ters out sources that contact only a small number of dis-
tinct destinations, so that we do not need to allocate any
memory space for them. The second level is a more pre-
cise filter which uses more memory space, and we only

4In a real setting, N could be determined historically.



function Two-Level Filtering(s, d)
Level2(s, d); Level1(s, d);

function Level1(s, d)
if(h1(s,d) < r1) insert s into T1

function Level2(s, d)
if (h2(s, d) > r2) return;
if (s /∈ T1) return;
else compute p = h2(s,d)

r2

· γ and insert s
into T2,p.

function Output
output all sources that appear in more

than ω of the hash-tables T2,i.

Figure 3. Two-level filtering pseudocode,
where (s, d) represents a source-
destination pair.

use it for sources that pass the first filter.
Intuitively, the reason why the two-level filtering algo-

rithm is more space-efficient than the one-level filtering
algorithm is because the sampling rate for the first level
of two-level filtering algorithm is lower than the sam-
pling rate of the one-level filtering algorithm. (To com-
pensate, the sampling rate for the second level will need
to be a bit higher.) If a source contacts sufficiently many
destinations, it will be sampled (and thus, stored) in both
the one-level filtering algorithm and the two-level filter-
ing algorithm. But if a source contacts only a few desti-
nations, the probability that it is sampled (and tracked) in
the two-level filtering algorithm is much lower than the
probability that it is sampled (and tracked) in the one-
level filtering algorithm. Thus, the two-level filtering
algorithm will store fewer sources that contact very few
distinct destinations. It is therefore more space-efficient
when there are many sources that contact only a few dis-
tinct destinations.

This type of sampling at multiple levels is a new ap-
proach that may be of independent interest.

Algorithm Description: The algorithm takes
r1, r2, γ, ω as parameters, where r1 and r2 represent the
sampling rate in the first and second level respectively,
and ω is a threshold. Given the required values for k
and b, the values of r1, r2, γ, ω may be determined as in
the analysis of Theorem C.1.

We keep one hash-table T1 at the first level, and γ
hash-tables denoted T2,i at the second level. Let h1 and
h2 be uniform random hash functions that take a source-
destination pair and return a value in [0, 1) as described
in the previous section.
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Figure 4. The rate r2 required for k = 1000,
δ = 0.01, with varying b.

For each packet (s, d), the network monitor performs
the following operations as given in pseudocode in Fig-
ure 3:

• Step 1: First, we compute h2(s, d). If h2(s, d) is
greater than rate r2, we skip to step 2. Otherwise,
we check to see if the source s is present in the
hash-table T1. If s is not present in T1, then again,
we skip to step 2. Otherwise, we insert s into level
2 as follows: If h2(s, d) < r2 and s is present in T1,
we insert s into the level-2 hash-table T2,p, where

p = h2(s,d)
r2

· γ. Thus, we insert s into level 2 with
at most probability r2, and every source appearing
in level 2 appears in level 1.

• Step 2: If h1(s, d) is less than rate r1, we insert s
into T1.

Finally, we output all sources that appear in more than
ω of the tables T2,i.

Optimizations: Note that in the above description, we
use hash-tables to store the sampled elements for ease of
explanation. We can easily optimize the storage space
in the two-level sampling further by using Bloom filters
instead of hash-tables to store the sampled elements. A
discussion of Bloom filters may be found in [5, 6]. In
addition, in the above description, we chose the prob-
ability of inserting a sampled packet into any level-2
hash-table T2,i to be equal to 1/γ, for simpler descrip-
tion and analysis. We can easily generalize this to alter
the probability of inserting a sampled packet into any
level-2 hash-table to be non-uniform, e.g., an exponen-
tial distribution.

Analysis: We give a summary of the analysis results
here, and defer the theorem statement and details to Ap-
pendix C. When the parameters of the two-level fil-
tering algorithm are chosen appropriately (as shown in
the analysis of Theorem C.1), it reports srcIPs such that
any k-superspreader is reported with probability at least



1 − δ, while a srcIP with less than k/b distinct desti-
nations is (falsely) reported with probability less than
δ. Figure 4 shows how the required rate r2 varies with
b. (The figure is not meant to illustrate exact values
of r2 that would be used in experiments, but just to
give an intuition of how r2 varies with b for a fixed
k and δ.) The threshold ω and the number of hash-
tables γ vary similarly. The expected space required by
is O(r1N + r2N). Note that, for a fixed b ≥ 2, both
r1 and r2 are O( 1

k ln 1
δ ), and thus the space required is

O(N
k ln 1

δ ).5

We may make a similar statement when we use Bloom
filters rather than hash-tables to store sampled elements
as described in the optimization above. Using Bloom
filters does not affect the false negative rate, but only the
false positive rate. We can easily reduce the additional
false positive rate caused by the Bloom filter collision by
setting the correct parameters of the Bloom filters using
the theorems in [5].

We observe also that the accuracy of both algo-
rithms is independent of the input distribution of source-
destinations pairs, as long as the assumption of uniform
random hash function is obeyed. In addition, note that
it is important to pick secret hash functions at run-time
each time so that the attacker cannot generate an input
sequence that avoid certain hash values. Also, in prac-
tice, we optimize our choice of the parameters numer-
ically for both algorithms, since the bounds given by
the theorems may have larger constant factors than are
strictly necessary.

Example: In this example, we set k = 1000 and
b = 2, which means we are interested in reporting all
sources that contact 1000 or more destinations, without
reporting any source that contacts less than 500 desti-
nations. For this, we find numerically that r1 = 0.006,
r2 = 0.15 and γ = 100 suffice, when δ = 0.05. Note
that this sampling rate implies that 85% of the flows will
need only to be hashed once and incur no memory ac-
cesses, and 15% of the flows will have to be additionally
processed. The amount of computational overhead that
these selected flows incur will depend on the number of
distinct destinations that their respective source contacts,
so we will examine two specific cases:
Case 1: For the sources that contact exactly one distinct
destination each, in expectation, 0.6% of the packets will

5For the two-level filtering algorithm as stated here, the sampling
rates r1 and r2 may not always exist for a given k, b and δ. (The
possible values of k and b are a function of the confidence level δ; as δ
is decreased, sufficiently small k and k/b may not be distinguishable
in this algorithm.) To address this issue, one could modify the two-
level filtering algorithm by running it c times in parallel. However,
this issue does not come up for reasonable values of k, b and δ (and
this is also seen in our experiments), and so we omit further discussion
of this issue.

be entered into the first level, and require 1 read and 1
write (of one IP address), and 15% of the packets will
require exactly 1 read.
Case 2: For any particular superspreader, at most
15% of the distinct flows (corresponding to that super-
spreader) will require 2 distinct memory locations (1 in
level-1, 1 in level-2, of 1 IP address each, with 2 reads
and 1 write).
Note that if the trace contains only sources that contact
one destination each (the first case), the two-level filter-
ing algorithm has much less overhead than the one-level
filtering algorithm, and if the trace contains only super-
spreaders (the second case), two-level filtering algorithm
has about three times as much overhead as one-level fil-
tering algorithm. This gives an idea of the trade-off be-
tween the algorithms; we expect that most sources only
contact a few distinct destinations, and thus the traces
will resemble the first case far more than the second
case.

Using a Bloom filter in both levels will reduce the
memory storage required, but increase the number of
accesses that need to be made. If we use a Bloom fil-
ter with 8 independent hash functions at each of the two
levels, our memory storage will drop by a constant factor
of at least 2.5 (estimating conservatively to account for
additional false positives), and our computational over-
head will increase by a factor of 8 – since we will need
to make 8 memory accesses for every memory access of
the hash-table implementation.

Note that there could exist as many as N
k superspread-

ers; thus, for constant b, all our bounds are within a log 1
δ

factor of the asymptotically optimal values.

4 Extensions
In this section we show how to extend our algorithms

to handle deletions, and sliding windows and distributed
monitoring.

4.1 Superspreaders with Deletion

We can extend our algorithms to support streams that
include both newly arriving (srcIP, dstIP) pairs and the
deletion of earlier (srcIP, dstIP) pairs. Recall from Sec-
tion 1 that a motivating scenario for supporting such
deletions is finding source IP addresses that contact a
high number of distinct destinations and do not get legit-
imate replies from a high number of these destinations.
Each in-bound legitimate reply packet with source IP x
and destination IP y is viewed as a deletion of an ear-
lier request packet with source IP y and destination IP
x from the corresponding flow, so that the source y is
charged for only distinct destinations without legitimate
replies.

For the one-level filtering algorithm (Section 3.1), a
deletion of (s, d) is handled by first checking to see if



(s, d) is in the hash-table. If it is not, then d is already
not being accounted for in s’s distinct destination count,
so we can ignore the deletion. Otherwise, we delete
(s, d) from the hash-table. The precision, space, and
time bounds are the same as in the case without dele-
tions. Similarly, we can extend the hash-table imple-
mentation of the two-level filtering algorithm to handle
deletions as well.6

We can also use this approach to find those sources
which have more than k failures and fewer than k/b
successes. We could find these sources by computing
separately the sources that have at least k successes and
those that have at least k failures, and return the appro-
priate difference.

Note that the definition of a k-superspreader under
deletions is not a stable one. At any point in time, the
monitor may have just processed a packet, and have
no idea whether this pair will be subsequently deleted.
There may be a source right at the k-superspreader
threshold that exceeds the threshold unless the pair is
subsequently deleted. Our algorithms can be readily
adapted to handle a variety of ways of treating this is-
sue. For example, the one-level filtering algorithm can
report a source as a tentative k-superspreader when its
count in T2 reaches r + 1, and then report at the end
of the interval which sources (still) have counts greater
than r.

4.2 Superspreaders over Sliding Windows

In this section, we show how to extend our algorithms
to handle sliding windows. Our goal is to identify k-
superspreaders with respect to the most recent W pack-
ets, i.e., hosts which contact more than k unique desti-
nations in the last W packets. Our goal is to use far less
space than the space needed to hold all the pairs in the
current window.

Figure 5 gives an example of a stream subject to a slid-
ing window of size W = 4. The top row shows the pack-
ets in the sliding window after the arrival of (s1, d3).
The middle row shows that on the arrival of (s2, d3), the
window includes this pair but drops (s1, d1). The bot-
tom row shows that on the arrival of (s2, d1), the win-
dow adds this pair but drops (s1, d2).

What makes the sliding window setting more difficult
than the standard setting is that a packet is dropped from
the window at each step, but we do not have the space to
hold on to the packet until it is time to drop it. This is in
contrast to the deletions setting described in Section 4.1
where we are given at the time of deletion the source-
destination pair to delete.

6Technically, we need a slight modification of the algorithm de-
scribed earlier; we need to store the destinations as well at each level-2
hash-table; this may increase the memory required by at most a factor
of 2.

(s1, d1), (s1, d2), (s2, d2), (s1, d3)
(s1, d2), (s2, d2), (s1, d3), (s2, d3)

(s2, d2), (s1, d3), (s2, d3), (s2, d1)

Figure 5. Example stream, showing three
steps of a sliding window of size W = 4.
The top row shows the packets in the slid-
ing window after the arrival of (s1, d3). The
middle row shows that on the arrival of
(s2, d3), the window includes this pair but
drops (s1, d1). The bottom row shows that
on the arrival of (s2, d1), the window adds
this pair but drops (s1, d2).

In the sliding window setting, a source may transition
between being a k-superspreader and not, as the win-
dow slides. In Figure 5, for example, suppose that the
threshold for being a k-superspreader is having at least
3 distinct destinations (e.g., k = 3). Then source s1 is a
superspreader in the first window, but not the second or
third windows.

We show how to adapt one-level filtering algorithm to
handle sliding windows. the approach for two-level fil-
tering algorithm is similar. We keep a running counter
of packets that is used to associate each packet with its
stream sequence number (seqNum). Thus if the counter
is currently x, the sliding window contains packets with
sequence numbers x−W +1, . . . , x. At a high level, the
algorithm works by (1) maintaining the pairs in our sam-
ple sorted by sequence number, in order to find in O(1)
time sample points that drop out of the sliding window,
and (2) keeping track of the largest sequence number for
each pair in our sample, in order to determine in O(1)
time whether there is at least one occurrence of the pair
still in the window.

In further detail, the steps of the algorithm are as fol-
lows.

• Initially: Let L be an initially empty linked list of
(srcIP, dstIP, seqNum) triples, sorted by increasing
seqNum. Let T1 and T2 be as in the original one-
level filtering algorithm, except that T1 now con-
tains (srcIP, dstIP, seqNum) triples.

• On arrival of a packet with srcIP s and dstIP d: Let
x be its assigned sequence number.

1. Account for a pair dropping out of the win-
dow, if any: If the tail of L is a triple (s, d, n)
such that n = x − W , then remove the triple
from L and check to see if the triple exists
in entry c1N

k · h1(s, d) of T1. If the triple ex-
ists, then because T1 holds the latest sequence
numbers for each source-destination pair in
the sample, we know that (s, d) will not exist



in the window after dropping (s, d, n). Ac-
cordingly, we perform the following steps:

(a) Remove the triple from T1.
(b) Use c1N

k · h2(s) to look-up s in T2, and
decrement the count of this entry in T2,
i.e., replace the pair (s, m) with (s, m −
1).

(c) If the new count equals 0, we know that
the source no longer appears in the sam-
ple and we remove the pair from T2.

On the other hand, if the triple does not ex-
ist, then there is some other triple (s, d, n′)
corresponding to a more recent occurrence of
(s, d) in the stream (n < n′). Thus dropping
(s, d, n) changes neither the sampled pairs
nor the source counts, so we simply proceed
to the next step.

2. Account for the new pair being included in
the window: If h1(s, d) ≥ c1/k ignore the
packet. Else:

(a) Check entry c1N
k · h1(s, d) of T1 for a

triple with s and d. If such an entry ex-
ists, replace it with (s, d, x), maintaining
the invariant that the entry has the lat-
est sequence number, and return to pro-
cess the next packet. Otherwise, insert
(s, d, x) into the list for this entry.

(b) At this point we know that d is a new des-
tination for s, i.e., this is the first time
(s, d) has appeared in the window. We
use c1N

k · h2(s) to look-up s in T2. If
s is not found, insert (s, 1) into the list
for this entry, as this is the first destina-
tion for s in the sample. On the other
hand, if s is found, then we increment
its count, i.e., we replace the pair (s, m)
with (s, m + 1). If the new count equals
r + 1, we report s.

The precision, time and space bounds are the same as
in one-level filtering algorithm of Section 3.1 with W
substituted for N .

Note that the algorithm is readily modified to han-
dle sliding windows based on time, e.g., over the last
60 minutes, by using timestamps instead of sequence
numbers. The precision, time and space bounds are un-
changed, except that the time is now an amortized time
bound instead of an expected one. This is because mul-
tiple pairs can drop out of the window during the time
between consecutive arrivals of new pairs. If more than
a constant number of pairs drop out, then the algorithm
requires more than a constant amount of time to process
them. However, each arriving pair can drop out only
once, so the amortized per-arrival cost is constant.

Stream 1: (s1, d1), (s2, d2), (s3, d3), (s4, d4)
Stream 2: (s2, d3), (s1, d1), (s1, d1), (s3, d2)
Stream 3: (s4, d2), (s4, d4), (s2, d4), (s4, d3)

Figure 6. Example streams at 3 monitoring
points

4.3 Distributed Superspreaders

In the distributed setting, we would like to iden-
tify source IP addresses that contact a large number of
unique hosts in the union of the streams monitored by a
set of distributed monitoring points. Consider for exam-
ple, the three streams in Figure 6 and k = 3. Sources
s1, s2, s3, and s4 contact 1, 3, 2, and 3 distinct destina-
tions, respectively. Thus for the total of N = 12 source-
destination pairs, only s2 and s4 are k-superspreaders.

Note that a source IP address may contact a large num-
ber of hosts overall, but only a small number of hosts
in any one stream. Source s2 in Figure 6 is an exam-
ple of this. A key challenge is to enable this distributed
identification while having only limited communication
between the monitoring points.

We describe how to modify our one-level filtering al-
gorithm to work in a distributed setting. First, each net-
work monitor runs the algorithm as described in Section
3.1 (all using the same hash function, and with appropri-
ately sized hash-tables, say c1N/kj if each of the j mon-
itors expects to see N/j packets). The monitor reports
any locally detected superspreader. Next, at the end of
the stream, each monitor sends its hash-table of (s, d)
pairs to the central monitor. Finally, the central monitor
treats these hash-tables as a stream of (s, d) pairs, and
using the same hash function, runs the algorithm on this
stream, and reports any superspreader found.

The overall space and time overhead of first step
above summed over all the monitors is the same as if one
monitor monitors the union of the streams. The second
step requires a total amount of communication equal to
the sum of the space for the hash-tables, i.e., an expected
O(c1N/k) memory words. Accounting for the last step
increases the total space and time by at most a factor
of 2. Note that the algorithm does not require that all
streams use an interval of N/j packets. As long as there
are exactly N packets in all, the algorithm achieves the
precision bounds given in Theorem B.1. Thus our dis-
tributed one-level filtering algorithm uses little memory
and little communication. On the other hand, a similar
extension to the two-level filtering algorithm results in
more communication in the distributed setting – specif-
ically, at each step, the monitors would need to have ac-
cess to all the (individual) first-level hash-tables, which
results in significant increase in communication between



monitors.

5 Experimental Results

We implemented our algorithms for finding super-
spreaders, and we evaluated them on network traces
taken from the NLANR archive [29], after they were in-
jected with appropriate superspreaders as needed. All
of our experiments were run on an Intel Pentium IV,
1.8GHz. We use the OPENSSL implementation of the
SHA1 hash function, picking a random key during each
run, so that the attacker cannot predict the hashing val-
ues. For a real implementation, one can use a more ef-
ficient hash function. Both algorithms are implemented
so that the superspreaders get output at the end of the
run, once all the packets have been processed. We ran
our experiments on several traces and obtained similar
results. Our results show that our algorithms are fast,
have high precision, and use a small amount of mem-
ory. On average, the algorithms take on the order of a
few seconds for a hundred thousand to a million packets
(with a non-optimized implementation).

In this section, we first examine the precision of the
algorithms experimentally, then examine the memory
used as k, b and N change, and finally compare with
the alternate approach proposed in Section 2.2.

5.1 Experimental evaluation of precision

To illustrate the precision of the algorithms, we show
a set of experimental results below. To the base trace 1
(see Figure 8), we inserted various attack packets where
some sources contacted a high number of distinct desti-
nations. That is, for given parameters k and b, we added
100 sources that send to k destinations each, and 100
sources that send to just under k/b destinations each.
This was done in order to test if our algorithms do in-
deed distinguish between sources that send to more than
k destinations and fewer than k/b destinations.

We set δ = 0.05. In Figure 7, we show the results of
our experiments, with regards to precision of the algo-
rithms. We examine the correctness of our algorithm by
comparing it against an exact calculation of the number
of distinct destinations each source contacts. We opti-
mize our choice of the other parameters numerically for
both algorithms (in a manner suggested by the analysis
of the theorems), since the bounds given by the theo-
rems may have larger constant factors than are strictly
necessary.

We observe that the accuracy of both algorithms is
comparable and bounded by δ, which confirms our theo-
retical results. Note that using a smaller value of δ would
produce a smaller false positive rate and false negative
rate. We note that the false positive rate is much lower
than the false negative rate. Our sampling rates are cho-
sen to distinguish sources that send to k destinations

k b False Positives False Negatives
1-Level 2-Level 1-Level 2-Level

500 2 8.1e-5 6.3e-5 0 0
500 5 1.13e-4 1.13e-4 0 0
500 10 1.35e-4 8.1e-5 0.01 0

1000 2 4.95e-5 1.13e-4 0.02 0
1000 5 1.62e-4 0 0.02 0.02
1000 10 1.13e-4 9.45e-5 0 0.03
5000 2 8.1e-5 0 0 0
5000 5 4.95e-5 1.62e-5 0 0
5000 10 3.19e-5 1.62e-5 0 0.01

10000 2 1.62e-4 0 0.02 0
10000 5 3.2e-5 0 0.01 0
10000 10 1.62e-5 3.2e-5 0.04 0

Figure 7. Evaluation of the precision of
one-level filtering and two-level filtering al-
gorithms over various settings for k and b,
with δ = 0.05.

from sources that send to k/b destinations with error rate
δ. When a source sends to a very small number of des-
tinations (much smaller than k/b), the probability that
it becomes a false positive is significantly lower than δ.
Likewise, when a source sends to a very large number
of destinations (� k), the probability that it becomes a
false negative is much less than δ. Through the construc-
tion of our traces, there are only a 100 possible sources
that may be false negatives, and all of them send to just
over k destinations. There are many more sources that
could be false positives, and only a 100 of these sources
send to nearly k/b destinations. Thus, the false positive
rate that is seen is much less than the set δ. Further, all
of the false positives in our experiments come from the
sources at the threshold that we added, not the original
trace itself. The false positive rate is typically of much
more importance than the false negative rate, since there
are usually many more sources that could be false pos-
itives than sources that could be false negatives. Thus,
it is very useful to verify that the false positive rate is
much lower than the stated δ in real traces, and that the
false positives observed do come only from the inserted
traffic at the threshold.

5.2 Memory usage on long traces

We now examine memory used on very long traces by
one-level filtering algorithm (Section 3.1) and the hash-
table and Bloom-filter implementations of the two-level
filtering algorithm (Section 3.2). To distinguish the two
implementations of the two-level filtering algorithm, we
will refer to the hash-table implementation as 2LF-T,
and the Bloom-filter implementation as 2LF-B. We will



Length No. distinct No. distinct N (no. of
(in sec) sources src-dst pairs packets)

1 65 59,862 194,060 2.88e6
2 154 282,484 416,730 3.09e6
3 207 1.21e6 1.35e6 4.02e6
4 269 2.12e6 2.29e6 4.49e6

Figure 8. Base traces used for experiments

use 1LF to refer to the one-level filtering algorithm. We
examine the memory used as the parameters k, b and
N are allowed to vary. The memory usage reported is
the number of elements actually stored, which is always
very close to the size of the hash-tables. (The size of
each hash-table set to be the expected number of ele-
ments that will be inserted, based on the sampling rates
and N .) For the bloom filter implementation, we use 8
independent hash functions.

The traces used for this section are constructed by tak-
ing four base traces of varying lengths, and adding to
each of them a hundred sources that send to k destina-
tions, and a hundred sources that send to k/b destina-
tions. The details of the base traces are shown in Fig-
ure 8. We observe that, with the largest of these traces, a
source that sends to 200 distinct destinations contributes
just about 0.004% to the total traffic analyzed. The
memory used is the number of words (or IP addresses)
that need to be stored.

The graphs in Figure 9 show the total memory used
by each algorithm plotted against the number of distinct
sources in the trace, at different values of b. Notice that
through our trace construction procedure, the traces in
Figure 9(a), 9(b), and 9(c) contain the same number of
distinct sources, even though the value of b differs.

We observe that the memory used by the two algo-
rithms is strongly correlated with b, as pointed out by
our theoretical analysis. For both algorithms, the mem-
ory required decreases sharply as b increases from 2 to
5, and then decreases more slowly. This can also be seen
(for 2LF) from Figure 4, in section 3.2.

Another observation is that, as expected, the memory
used by 1LF eventually exceeds the memory used by
2LF-T & 2LF-B, for every value of b. The number of
sources at which the memory used by 1LF exceeds the
memory used by 2LF-T & 2LF-B also depends on b. We
also note that, as expected, the memory used by 2LF-B
is much less than the memory used by 2LF-T and 1LF .

We next examine the memory usage as k changes,
which is shown in Figures 10 and 11. We observe
that the total memory used drops sharply as k increases,
as expected: in 10(a), at k = 500, the memory used
ranges from 20, 000 to 200, 000 IP addresses; in 10(c),
at k = 5000, it ranges from 10, 000 to 55, 000 IP ad-
dresses. Even though the number of source-destination
pairs increases when k increases, we can afford to sam-

ple much less frequently. This in turn decreases the
number of sources stored that have very few destina-
tions, and thus the total memory used decreases.

Also, for every k, as the number of packets N in-
creases, the memory used by 1LF eventually exceeds
the memory used by 2LF-T & 2LF-B. This is because of
the two-level sampling scheme. Since the first sampling
rate r1 is much smaller than c1/k in 1LF , the number
of non-superspreader sources stored in 2LF-T & 2LF-B
(r1N in expectation) is much less than in 1LF . The ac-
tual number of sources at which this occurs depends on
k. As k increases, the number of sources at which the
memory used by 1LF exceeds the memory used by 2LF-
T (and 2LF-B) also increases, since the sampling rates
for both algorithms decrease in the same way. We also
observe that, once again, the memory used by 2LF-B is
significantly lower than 1LF and 2LF-T.

The graphs in Figure 11 show the memory used per
source plotted against the number of distinct sources,
for various k – as k increases, the total memory used
drops. We observe that each algorithm has a similar de-
pendence on k, though the absolute memory usage is
different, as discussed.

Lastly, we tested both 1LF and 2LF-T on a trace
with 10 million sources that contacted a few destinations
each. At k = 1000 and b = 2, the memory usage of 1LF
and 2LF-T were about 1.04 million and 60,100 IP ad-
dresses respectively. Thus, we see that our algorithms
do indeed scale well as the number of flows increases.

5.3 Comparison with an Alternate Approach

We now show results comparing our approach to the
Approach 4 described in Section 2.2: we count the num-
ber of distinct destinations that a source sends to us-
ing LossyCounting [25], replacing the regular counter
with a distinct-element counter. The details are in Ap-
pendix D. We do not show experimental comparisons
with the other approaches as they all keep per-flow state,
and so, it is clear that they need far more space than our
algorithms.

We chose the parameters for LossyCounting and the
distinct counting algorithm so that (a) the memory us-
age was minimized for each b and (b) they produced the
false positive rates similar to our algorithms over 10 it-
erations. We show experimental results with two vari-
ants of the approach: (1) use one distinct counter per
source (this is Alt I), and (2) use log 1

δ distinct counters
per source, and use their median for the estimate of the
number of distinct elements is used (this is Alt II). The
memory used is reported as the maximum of the total
number of hash values stored for all the sources at any
particular time.

Figure 12 shows the result of the comparison of mem-
ory usage at k = 1000, for b = 2, 5 and 10, on Trace
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Figure 9. Total memory used by the algorithms in words (i.e., IP addresses) vs number of distinct
sources, for b = 2, 5 and 10, at k = 200.
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Figure 10. Total memory used by the algorithms in words (i.e., IP addresses) vs number of distinct
sources, for k = 500, 1000 and 5000, at b = 2.
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Figure 11. Memory used per source vs number of distinct sources, for all k, by 1LF , 2LF-T, & 2LF-B
at b = 2.



b 1LF 2LF-T 2LF-B Alt I Alt II
Trace 1

2 37610 16234 7223 49063 105589
5 9563 3241 1377 20746 48424

10 5685 2698 1136 16839 36823
Trace 2

2 71852 17536 7711 133988 273101
5 19298 4543 1865 76543 168256

10 12030 4000 1624 67007 135540

Figure 12. Comparisons of total memory
used with traces 1 & 2 for k = 1000 and
varying b.

1 & Trace 2. Note that all our algorithms show better
performance than Alt I and Alt II on Traces 1 & 2. The
results for Trace 3 & Trace 4 are similar, except that Alt
I uses less memory than 1LF when b = 2. We explain
why Alt I is better than Alt II in Appendix D.

6 Conclusion

In this paper, we have described new streaming algo-
rithms for identifying superspreaders on high-speed net-
works. Our algorithms give proven guarantees on the ac-
curacy and the memory requirements. Compared to pre-
vious approaches, our algorithms are substantially more
efficient, both theoretically and experimentally. We also
provide several extensions to our algorithms – we can
identify superspreaders in a distributed setting, over the
sliding windows, and when deletions are allowed in the
stream (which lets us identify sources that make a large
number of failed connections to distinct destinations).
Our algorithms have many important networking and se-
curity applications. We also hope that our algorithms
will shed new light on developing new fast streaming
algorithms for high-speed network monitoring.
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A Analysis background
In the analysis of our algorithms, we will use the fol-

lowing Chernoff bounds.
Fact A.1. Let X be the sum of n independent Bernoulli
random variables with success probability p. Then for
all β > 1,

Pr[X ≥ βnp] ≤ e(1−1/β−lnβ)βnp (3)

Moreover, for any ε, 0 < ε < 1,

Pr[X ≥ (1 + ε)pn] ≤ e−ε2np/3 (4)

and

Pr[X ≤ (1 − ε)pn] ≤ e−ε2np/2 (5)

B Proof for Theorem B.1

Accuracy Analysis: Our analysis yields the following
theorem for precision:
Theorem B.1. For any given b > 1, positive δ < 1,
and t such that b < k < 1, the above algorithm reports
srcIPs such that any k-superspreader is reported with
probability at least 1− δ, while a srcIP with at most k/b
distinct destinations is (falsely) reported with probabil-
ity at most δ.

A proof follows the discussion of the overhead analy-
sis.

Overhead Analysis: The total space is an expected
O(c1N/k) memory words. The choice of c1 de-
pends on b. By equation 2, we have that c1 =
O(ln(1/δ)( b

b−1 )2) = O((1 + 1
(b−1)2 ) ln(1/δ)) for b ≤

3. For 3 < b < 2e2, b is a constant, so c1 =
O(ln(1/δ)). For larger b, c1 = O(ln(1/δ)). Thus
across the entire range for b, we have c1 = O((1 +

1
(b−1)2 ) ln(1/δ)). This implies that the total space is an

expected O
(

N
k ln 1

δ (1 + 1
(b−1)2 )

)

bits. For the typical

case where δ is a constant and b ≥ 2, the algorithm re-
quires space for only O(N/k) memory words.

As for the per-packet processing time, note that
each hash table is expected to hold O(c1N/k) entries
throughout the course of the algorithm. Thus each hash
table look-up takes constant expected time, and hence
each packet is processed in constant expected time.

Proof. Each distinct (srcIP, dstIP) pair occuring during
the interval is retained according to a Bernoulli trial with
success probability c1

tN . The probability of a srcIP being
reported increases monotonically with its number of dis-
tinct destinations. Thus it suffices to show that

P1. False negatives: the probability that a srcIP s1 with
tN distinct destinations has less than r successes is
less than δ, and

P2. False positives: the probability that a srcIP s2 with
tN/b distinct destinations has at least r successes
is less than δ.

We seek to achieve P1 and P2 while keeping c1 small.
Let X1 be the number of successes for s1 and let X2

be the number of successes for s2. Let k = tN . We
consider each of the three ranges for b in turn.

Consider the case when b ≤ 3. By equation 5, we have
Pr[X1 ≤ (1 − ε1)(c1/k)k] ≤ e−ε2

1
k(c1/k)/2 for any ε1

between 0 and 1. Setting e−ε2
1
c1/2 = δ and solving for

ε1, we get ε1 =
√

2
c1

ln(1/δ). Because δ < 1, we have

that ln(1/δ) > 0. Thus as long as c1 > 2 ln(1/δ), we
have 0 < ε1 < 1. By equation 4, we have Pr[X2 ≥ (1+



ε2)(c1/k)(k/b)] ≤ e−ε2
2
(k/b)(c1/k)/3 for any ε2 between

0 and 1. Setting e−ε2
2
c1/(3b) = δ and solving for ε2, we

get ε2 =
√

3b
c1

ln(1/δ). As long as c1 > 3b ln(1/δ), we

have 0 < ε2 < 1.
Because the same cut-off r is used for s1 and s2, we

require that r = (1 − ε1)c1 = (1 + ε2)(c1/b), i.e.,

that b
(

1 −
√

2
c1

ln(1/δ)
)

= 1 +
√

3b
c1

ln(1/δ). Thus,

b
√

c1 − b
√

2 ln(1/δ) =
√

c1 +
√

3b ln(1/δ). Solving
for c1, we get

√
c1 =

√

ln(1/δ)(
√

3b + b
√

2)/(b − 1),
and hence

c1 = ln(1/δ)

(

3b + 2b
√

6b + 2b2

(b − 1)2

)

when b ≤ 3 (6)

This is the smallest c1 that works for both s1 and s2,
when applying the above Chernoff bounds (equations 4
and 5). Because b > 1 and 2b2/(b − 1)2 > 2, we have
that c1 > 2 ln(1/δ). To show that c1 > 3b ln(1/δ) when
b ≤ 3, we must show that 3b+2b

√
6b+2b2 > 3b(b−1)2,

i.e., 3 + 2
√

6b + 2b > 3b2 − 6b + 3, i.e., 2
√

6 > (3b −
8)
√

b. Now when b ≤ 3, we have 3b − 8 ≤ 1 < 2
and

√
b <

√
6, and hence c1 > 3b ln(1/δ). It follows

that for the c1 in equation 6, P1 and P2 hold when r =

(1 + ε2)(c1/b) = c1

b +
√

3c1

b ln(1/δ).

Next consider the case when 3 < b < 2e2. As ar-
gued above, P1 holds with ε1 =

√

2
c1

ln(1/δ), as long

as c1 > 2 ln(1/δ). (This analysis did not depend on
b.) On the other hand, note that we cannot use the same
analysis as in the previous case to show P2 holds be-
cause for example, when b = 4, the c1 in equation 6
is less than 3b ln(1/δ). Instead, we apply equation 3
with β = e: Pr[X2 ≥ ec1/b] ≤ e(1−1/e−1)ec1/b =
e−c1/b. We require that r = ec1/b = (1 − ε1)c1, i.e.,

ε1 = 1 − e/b =
√

2
c1

ln(1/δ). Solving for c1, we get

c1 = 2 ln(1/δ)/(1 − e
b )2. Moreover, P1 holds for all

c1 ≥ 2 ln(1/δ)/(1 − e
b )2.

Similarly, setting e−c1/b = δ and solving for c1, we
get that c1 = b ln(1/δ) and moreover, P2 holds for all
c1 ≥ b ln(1/δ). Thus selecting c1 such that

c1 = ln(1/δ) · max(b, 2/(1− e/b)2)

when 3 < b < 2e2 (7)

implies both P1 and P2 hold when r = ec1/b. (Note
that 0 < (1 − e/b)2 < 1 and hence c1 > 2 ln(1/δ), as
required for P1.)

Finally, consider the case when b ≥ 2e2. Note that
the c1 from equation 7 grows linearly in b. Thus for
large b, we seek a modified analysis in which c1 does
not grow asymptotically with b. First we apply equa-
tion 3 with β = b/2: Pr[X2 ≥ (b/2)(c1/b)] ≤

e(1−2/b−ln(b/2))c1/2 < e−c1/2 because b ≥ 2e2 implies
ln(b/2) ≥ 2 implies 1 − 2/b − ln(b/2) < −1. Thus
r = c1/2 = (1−ε1)c1, i.e. ε1 = 1/2. By equation 5, we
have Pr[X1 ≤ r] ≤ e−(1/2)2c1/2 = e−c1/8. It follows
that selecting c1 = 8 ln(1/δ) when b ≥ 2e2 implies that
both P1 and P2 hold when r = c1/2.

C Two-level Filtering Algorithm: Analysis

For ease of explanation, we present an analysis of a
simpler version of the two-level filtering algorithm in
Section 3.2. In this version, every time a source must
be inserted into level-2, we let each hash-table decides
independently whether the source gets inserted in that
table. Using the notation of Section 3.2, here is step 1
the algorithm: each level-2 hash-table T2,i has a hash
function h3,i associated with it. if h2(s, d) < r2 and s
is present in T1, we consider inserting s into each level
2 hash-tables T2,i separately. For each T2,i, we check if
h3,i(s, d) is less than 1/γ. If h3,i(s, d) < 1/γ, we insert
s into T2,i. Note that, thus, we may insert s into multiple
level-2 hash-tables, but we expect to insert into exactly
one level-2 hash-table.

The following proof for the algorithm above can be
adapted to the two-level filtering algorithm in Section
3.2 by using martingale tail bounds on occupancy prob-
lems [27] instead of Chernoff bounds.
Theorem C.1. Given k, N, b > 1 such that k/b > 1 and
0 < δ < 1. Let z = max( 2b

b−1 , 5). Let r1 = z
k log 2

δ ,
and r2 be minimal value that satisfies the following
constraints:

r2 ≥ 2 ln 2/δ

k(1 − e−(z−1)/z)ε21
,

r2 ≥ ln 1/δ

k(1 − e−2/b)((1 + ε2) ln(1 + ε2) − ε2)
,

where ε1 = 1 − 1 − e−2/b

1 − 1/e−(z−1)/z
(1 + ε2),

ε2 > 0, and 0 < ε1 < 1.

Also, r2 ≤ 1.

Let ε′1 be the value of ε1 when r2 is minimized in the
above constraints. Let γ = r2k, and ω = (1− ε′1)γ(1−
1
e ).

Thus, for any given b > 1, positive δ < 1, and k
such that k/b > 1, if r2 exists satisfying above con-
straints, Algorithm II reports srcIPs such that any k-
superspreader is reported with probability at least 1−δ,
while a srcIP with less than k/b distinct destinations is
(falsely) reported with probability less than δ.

We begin our analysis by making an observation. Our
sampling is done by hashing source-destination pairs;
therefore, if the same source-destination pair appears



multiple times, its chances of being sampled do not
change. Thus, hashing effectively reduces all the pack-
ets in the stream to a set of distinct source-destination
pairs, and in this transformed set, a superspreader ap-
pears at least k = tN times. Effectively, we sample only
from this transformed set. Therefore, we analyze the
algorithm in this transformed set, in which all source-
destination pairs are distinct.

Proof. We consider Algorithm II in Section 3.2, under
the parameters given by the theorem. We will first ana-
lyze the false negatives, and then the false positives.

All logarithms in the proof are base e.

False negatives. We analyze the false negative error in
two parts. For a source i with ni > k, we first show that
the source is inserted into T1, with probability 1 − δ

2 , in
the first 1/z fraction of its total pairs. Then, we show
that it is inserted into at least ω of the tables T2,i over
the rest of its pairs, with probability 1 − δ

2 , conditioned
on its presence in T1. Together, these two parts ensure
that, with probability at least 1− δ, the source is present
in ω of the tables T2,i, after all the distinct destinations
for that source are seen.

For the first part of the false negative analysis, we need
to set the rate of sampling r1 so that any source that ap-
pears more than k times in the sampled set will be sam-
pled with a probability of 1− δ

2 , within its first 1
z fraction

of packets. This is equivalent to saying that any source s
with k

z packets is present in T1 with probability at least
1 − δ

2 . Equivalently, 1 − Pr[s ∈ T1|ns ≥ k/z] =

(1 − r1)
k
z which needs to be bounded by δ

2 . Therefore,

r1 ≥ z

k
log

2

δ
.

This gives us a lower bound on r1. We want r1 to be
as small as possible to minimize the memory needed, so
we set r1 to its lower bound.

Now we analyze the second part of the false negative
error. By setting r1 as specified, we know that the source
will be present in T1 with probability 1 − δ

2 in the first
k
z packets. So, in the remaining k(1 − 1

z ) packets, we
examine the probability that the source will fall into ω
tables in the second step, conditioned on the event that
the source is already present in T1.

Let Xij be the indicator variable for the event that
source i is put into the jth table, T2,j , when the source
is already present in T1. The expected number of ta-
bles T2,j that will contain source i is the sum Sj =
∑γ

j=1 Xij .
Let k′ = k(1 − 1

z ). For a source i with ni ≥ k′:

Pr[Xij = 1] = 1 − Pr[Xij = 0] ≥ 1 − (1 − r2

γ )k′

which is at least 1 − e−r2k′/γ .

Therefore, for a source i with ni ≥ k′, we
can write the expected value of tables set E[Si] =
∑γ

j=1 E[Xij ] ≥ γ(1− e−r2k′/γ). Let µ1 = E[Si]. The
random variable Si is equivalently the result of sampling
γ coins of bias Pr[Xij = 1], so we can use the Chernoff
bounds to get a lower bound on Si, with with probabil-
ity at least 1 − δ

2 .That is, for ε1 ∈ (0, 1), by Chernoff

bounds: Pr[Si ≤ (1 − ε1)µ1] ≤ e
−µ1ε2

1

2 .
Let ω1 = (1 − ε1)µ1. We need to have Pr[Si ≤

(1−ε1)µ1] ≤ δ
2 . We can get this by setting e

−µ1ε2
1

2 ≤ δ
2 .

Therefore, µ1 ≥ 2
ε2
1

log 2
δ . Since µ1 ≥ γ(1−e

−r2k′

γ ) we

need to have γ(1−e−r2k′/γ) ≥ 2
ε2
1

log 2
δ . Since γ = r2k,

r2k(1 − e−k′/k) ≥ 2
ε2
1

log 2
δ . Therefore,

r2 ≥ 2

kε21(1 − e−k′/k)
log

2

δ
.

Thus, we get the first constraint in the optimization
problem in Theorem C.1.

False positives. Now we analyze the false positive er-
ror. A source i is a false positive if ni < k/b, but it is
still identified as a superspreader by our algorithm. To
bound this error, it is enough to show that the source is
present in ω of the tables T2,i with sufficiently low prob-
ability. Therefore, we compute a constraint on the rate
of sampling r2, so that, with probability at least 1−δ, no
more than ω tables will contain the source. We note that
the probability of being a false positive is maximized
when ni is as large as possible, so we assume now that
ni = k/b.

As in our analysis for the false negatives, let Xij be
the indicator variable for the event that the source i is
put into the jth table in T2: Xij is 1 if the source is put
into the jth table, and 0 otherwise. Once again, we can
compute the probability that source i gets put into the
jth table T2,j as follows: Pr[Xij = 1] = 1−Pr[Xij =
0] ≤ 1 − e−2r2k/bγ .7

Therefore, the expected number of tables contain-
ing source i with ni = k

b can be written as E[Si] =
∑γ

j=1 E[Xij ] ≤ γ(1 − e−2r2k/bγ). Substituting for γ,

we get E[Si] ≤ r2k(1 − e−2/b).
Let µ2 = E[Si]. Once again, with Chernoff bounds,

we can get, for ε2 > 0, Pr[Si ≥ (1 + ε2)µ2] ≤ e−cµ2 ,
where c = − log eε2(1 + ε2)

−(1+ε2)

Let ω2 = (1 + ε2)µ2. Since we want to bound
Pr[Si ≥ (1 + ε2)µ2] by δ, this becomes δ ≥
e−µ2((1+ε2) log(1+ε2)−ε2). Substituting for µ2, we get

7The constant 2 can be changed depending on our assumption on
the relationship between r2 and γ. Here, for simplicity, we only as-
sume r2 < γ, which is true when k > 1.



log 1
δ ≤ r2k(1 − e−2/b)((1 + ε2) log(1 + ε2) − ε2).

Thus,

r2 ≥ 1

k(1 − e−2/b)

1

((1 + ε2) log(1 + ε2) − ε2)
log

1

δ
.

Thus, we have the second constraint for r2.
We finally have to establish the relationship between

ε1 and ε2. This we get by equating the definitions of ω1

and ω2, since the algorithm uses only one threshold ω8:

µ1(1 − ε1) = µ2(1 + ε2)

(1 − e−k′/k)(1 − ε1) = (1 − e−
2

b )(1 + ε2)

ε1 = 1 − 1 − e−2/b

1 − e−k′/k
(1 + ε2).

Thus, we get the last relation in the problem.
We wish to minimize r2, subject to these constraints,

because the expected memory is O(r1N +r2N). There-
fore, the solution to the problem in Theorem C.1, gives
us a sampling rate r2 such that a source with k distinct
destinations will be in at least ω tables, and a source
sending to less than k distinct destinations will not be in
ω tables, with probability at least 1 − δ.

D LossyCounting and Distinct Counting
Algorithm

The following is a summary of LossyCounting and the
distinct counting algorithms that we use in our experi-
mental comparisons in Section 5.3.

• LossyCounting: The stream of elements is divided
into epochs, where each epoch contains 1

ε ele-
ments; thus, for an input stream of N elements, we
will have εN epochs. Each epoch has two phases:
in the first phase, the incoming elements are sim-
ply stored, and if already present, their frequency is
updated; in the second phase, the algorithm looks
over all elements, and discards those with a low
frequency count. It can be shown that the final fre-
quency count of the elements is at most ε lower than
the true frequency count, and clearly, it cannot be
larger than the true frequency count.

• Distinct Counting: Every element in the input
stream is hashed (uniformly) between (0, 1), and
the t lowest hash values are stored. At the end, the
algorithm reports t/mint as the number of distinct
elements in the stream, where mint is the value of
the tth smallest hash value. In order to get an (ε, δ)-
approximate answer, the authors show that t needs
to be no larger than 96/ε2, when O(log 1

δ ) copies
of the algorithm are run in parallel.

8Alternately, we could use a constraint ω1 > ω2, and set ω to be
some value between ω1 and ω2.

• Putting them together: In order to find superspread-
ers using LossyCounting, we need to replace the
regular frequency counter in LossyCounting with
a distinct counter. Therefore, when a source-
destination pair is examined, the source and des-
tination is hashed, and the t smallest hash values
(of any particular source) are stored. At the end of
each epoch, all the sources whose counts of distinct
destinations are below the threshold set by Lossy-
Counting are discarded. We need to run O(log 1

δ )
copies of the distinct counter per source, and use
the median value of the multiple copies. At the end,
all sources whose threshold exceeds k/b+ ε are re-
turned, where ε comes from the error in distinct-
counting. The tolerable error in LossyCounting
determines the number of epochs (and therefore,
space required), and we set these error parameters
so that the expected memory usage is minimized.

We show experimental results with two algorithms
based on this approach: (1) use one distinct counter
per source (Alt I), and (2) use log 1

δ distinct counters
per source, and use their median for counting approxi-
mately the number of distinct elements (Alt II). The dis-
tinct counting algorithm requires O(log 1

δ ) parallel runs
for its guarantees. However, Alt I is always better than
Alt II in our experiments. This is because many sources
send packets to only a few destinations, and for those
sources, there is log 1

δ factor increase in the memory us-
age, even though the actual constant t decreases.


