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Abstract—We derive optimal memoryless relays using nonco-
herent modulation over additive white Gaussian noise (AWGN)
channels with or without fading. The derivation is flexible, as
it can be applied to any binary hypothesis test regarding the
observations at the relay. We investigate several channels, includ-
ing random phase and fading, and apply different modulation
schemes, namely on-off-keying (OOK) and orthogonal frequency-
shift-keying (FSK). We find that at low signal-to-noise ratio (SNR)
the relay censors its observation, as it only transmits at non-
zero energy if the observations seem reliable. Compared to the
known results that optimal memoryless relays using coherent
BPSK are combinations of soft-information and hard-limiter [1]–
[3], the noncoherent relays have considerably less emphasis on
soft-information and converge much faster to the hard-limiter.

I. I NTRODUCTION

We study a simple scenario, where a relay or sensor node
processes its observations to a sufficient statisticy, and then
forwardsU(y) to a receiver or fusion center, whereU(y) is
a non-linear function in general. We want to find the optimal
function U(y) that minimizes the probability of error at the
receiver, subject to an average transmission power constraint at
the relay. We find that the optimal function naturally follows
the chosen modulation on a single link, but with judicious
power usage depending on the quality of the measurements.
For example, if the carrier phase is not estimated at the
receiver, the optimalU(y) naturally follows as on-off-keying
(OOK), or if the instant channel gain is not known at the relay,
the fading statistics are accounted for in the optimalU(y) as
well. An overview of possible combinations of modulation and
channel fading is given in Table I, where the solutions will be
derived in the main body of this paper. Note that each solution
will be characterized by a nonlinear function that is applied
to process the data.

Our contributions in this paper are:
• We derive optimal memoryless relay functionsU(y),

which minimize the probability of error at the receiver
for different settings, including OOK and FSK in both
fading and nonfading channels.

• By applying the relay functionU(y) to a sufficient statis-
tic of the observations,y, our solution can be easily gen-
eralized to arbitrary observations, e.g., mean-shift with
arbitrary noise, variance change, multiple observations.

• We find that by minimizing the probability of error at
the receiver, the optimalU(y) automatically accounts for
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Fig. 1. The relay framework; the observationy at the relay includes some
approriate processing and the channel is AWGN with or without fading.

unknown phase and/or channel statistics, which has not
been considered in previous treatments of this topic.

• We find that there is a simple link between the SNR op-
timal and the error-performance optimal solutions, where
the latter consists of an additional nonlinear processing
to the former before transmission. Therefore a suitable
description of the probability of error optimal scheme is:
Estimate-Process-and-Forward (EPnF).

In our numerical examples we observe that compared to
coherent modulation, the optimal forwarding function for
noncoherent modulation has some distinct differences. While
for coherent modulation on an AWGN channel the optimal
forwarding function is the hyperbolic tangent (SNR opti-
mal) [2], [3], which clearly combines soft-information as in
Amplify-and-Forward (AnF) with a hard-limiter as in Decode-
and-Forward (DnF), the optimal function using noncoher-
ent modulation is different. Instead of soft-information for
low SNR, it shows that using noncoherent modulation it is
preferable to conserve energy and transmit nothing in case
of unreliable observations. Therefore there is considerable
less emphasis on soft-information and the forwarding function
converges much faster to a hard-limiter type like DnF. This is
also reflected in performance evaluation, as the optimal relay
function has little gain over the DnF. Other approaches, like the
SNR optimal Estimate-and-Forward (EnF), do not account for
channel statistics on the forward channel and show degraded
performance in most scenarios, as the decision statistic atthe
output of an energy detector has no apparent resemblance to
a Gaussian distribution.

The rest of this paper is organized as follows, in Section II



BPSK OOK FSK
Channel type non-fading fading fading non-fading fading non-fading
Non-linearity W (·) F1(·) [W (·)]−1 V (·)

√

(·) log (·)
Solution presented in [1, Eq.(3)] [4, Eq.(A.64)] (12) (20) (30)/(31) (33)/(34)

TABLE I
THE SOLUTIONS FOR THE OPTIMALU(y) DEPEND ON THE MODULATION AND CHANNEL; EACH CASE IS CHARACTERIZED BY A PARTICULAR

NON-LINEARITY THAT IS APPLIED TO THE MMSE ESTIMATE.

we derive the optimal forwarding functions using on-off-
keying (OOK) modulation. Next we derive optimal forwarding
functions for orthogonal frequency-shift-keying (FSK) inSec-
tion III. We analyze the results and compare it to other known
approaches in Section IV. Then we numerically evaluate the
performance in Section V. Last we conclude in Section VI.

II. ERROR-OPTIMAL FORWARDING USING

ON-OFF-KEYING

A. Preliminaries and Variational Approach

A relay observes a binary hypothesisH0/H1, processes its
observations to a sufficient statisticy, then forwardsy over
a (possibly fading) additive Gaussian noise (AWGN) channel
to a receiver, subject to an average-power constraint; Figure 1
shows the generic relay framework. Based upon the received
signalz, the receiver must make a decision regardingH0/H1.
We are interested in finding the memoryless, generally non-
linear forwarding functionU(y), which minimizes the prob-
ability of error at the receiver. The argumenty can be any
sufficient statistic of the observations made at the relay, but
for simpler presentation we choose the likelihood ratio (LR)
or a monotonic function thereof.

The conditional probability density functions (PDFs) of
y given H0 and H1, are abbreviated asf0(y) and f1(y)
respectively. When choosingy as the LR or a monotonic
transformation, we can assume w.l.o.g.f1(y) > f0(y) for
y > τ . For ease of presentation we will adopt several
assumptions:

Assumption 1 Due to the unknown carrier phase, the optimal
decision statistic at the receiver will be a function of the
received energy.

Assumption 2 We assume thatU(y) is a monotonic function
in y.

Assumption 3 The relay must obey the following average-
power constraint:

E
[

|U(y)|2
]

≤ P. (1)

Comments: Assumption 1 is justified, since if the carrier
phase is not estimated, the uncompensated phase of the signal
will be uniformly distributed; therefore the amplitude or power
are sufficient statistics. For Assumption 2 we can argue thatwe
would not expend more energy, if we were less sure. Finally
the energy-constraint in Assumption 3 is in the average sense,
as sensor networks usually mean to conserve battery life.

Combining Assumption 1 and Assumption 2, the optimal
decision at the receiver will be a threshold test on the received
signal power:

d(z) =

{

H1 |z|2 > Γ

H0 otherwise
(2)

With this the probability of a decision error at the receivercan
be expressed as

Pr(e) =
1

2

(

Pr
{

|z|2 > Γ
∣

∣H0

}

+ Pr
{

|z|2 < Γ
∣

∣H1

})

(3a)

=
1

2

(

Pr
{

|z|2 > Γ
∣

∣H0

}

+ 1 − Pr
{

|z|2 > Γ
∣

∣H1

})

,

(3b)

where we assume equally likely hypothesesH0/H1. We want
to find the optimal relay functionU(y), in the sense of
minimizing Pr(e) subject to the average power constraint in
Assumption 3.

To find the optimal relay function, we have to rewrite
Pr(e) as a function ofU(y). We achieve this by rewriting
the probability of exceeding the threshold at the receiver,
conditioned on the true hypothesis

Pr
(

|z|2 > Γ
∣

∣

∣
Hi

)

=

∫

Y

Pr
{

|z|2 > Γ
∣

∣

∣
U(y)

}

fi(y) dy, (4)

where we denote the support ofy as Y. Inserting this into
(3b) and defining the difference∆f (y) := f1(y) − f0(y) to
abbreviate notation,

Pr(e) =
1

2

(

1 −
∫

Y

Pr
{

|z|2 > Γ
∣

∣

∣
U(y)

}

∆f (y) dy

)

. (5)

Using this expression, we can define a Lagrangian functionL
to incorporate the average power constraint in (1),

L = Pr(e) + λ

∫

Y

(

|U(y)|2 − P
)

Σf (y) dy. (6)

where we now define the sumΣf (y) := f0(y) + f1(y). We
combine the integrals to

I(U, λ) = −1

2
Pr
{

|z|2 > Γ
∣

∣

∣
U(y)

}

∆f (y)

+ λ
(

|U(y)|2 − P
)

Σf (y), (7)

which can be minimized using a variational approach as
defined by calculus of variations, see e.g. [5]. This amountsto
taking the derivative ofI with respect toU to find a stationary
point as necessary condition,

∂I(U, λ)

∂U
= 0, (8)

then use (1) to solve forλ and check if the stationary point is
in fact a minimum using a sufficient condition.



B. Fading AWGN Channel

We define the Rayleigh fading AWGN channel as

z = hU(y) + w (9)

where h is a complex Gaussian fading coefficient of unit
norm andw is complex AWGN of powerN0. To express
the probability to exceed the threshold at the receiver as in
(4), we see that|z|2 given y is distributed exponentially with
mean|U(y)|2 + N0. Therefore, the probability of exceeding
the threshold, conditioned on a particulary, is

Pr
{

|z|2 > Γ
∣

∣

∣
U(y)

}

= exp

(

− Γ

|U(y)|2 + N0

)

. (10)

Inserting this into (7) and taking the derivative, we find

∂I

∂|U | = 2|U(y)|
[

λΣf (y)

− Γ∆f (y)

(|U(y)|2 + N0)
2 exp

(

− Γ

|U(y)|2 + N0

)

]

, (11)

where we took the derivative with respect to|U |, since (10)
does not depend on the phase ofU . We immediately find one
stationary point as|U(y)| = 0. After simplification, we find
another stationary point as:

|U(y)|2 = −Γ

2

[

W
(

−1

2

√

λΓ · Σf (y)

∆f (y)

)]−1

− N0 (12)

which is only defined for∆f (y)
Σf (y) ≥ λN2

0

Γ e
Γ

N0 , andW(·) refers
to the Lambert-W function; w.l.o.g. we defineU(y) as the
positive, real square root and assumeλ > 0 — for λ < 0 the
hypotheses are swapped. We refer the reader to [4] for details
of the justifications when which solution is optimal using a
sufficient condition and how the unknown decision threshold
Γ and power constraintλ can be efficiently determined.

C. Non-fading AWGN Channel with Random Carrier Phase

The non-fading AWGN channel is defined as,

z = ejφU(y) + w, (13)

with φ ∈ [0, 2π] the random carrier phase andw complex
Gaussian noise of powerN0. Accordingly, |z|2 conditioned
on a certainy will be non-central chi-square distributed with
non-centrality parameter|U(y)|2 and the phase ofz uniform
between zero and2π. Therefore we can write the probability
of |z|2 to exceed the threshold conditioned on a certain value
of U(y) as the complementary probability distribution function
of a non-central chi-squared random variable,

Pr
{

|z|2 > Γ
∣

∣

∣
U(y)

}

=

∫ ∞

Γ

1

N0
exp

(

−|U(y)|2 + ζ

N0

)

I0

(

√

|U(y)|2ζ
N0/2

)

dζ

= Q
(
√

|U(y)|2
N0/2

,

√

Γ

N0/2

)

, (14)

where Marcum’sQ-function is defined as [6]:

Q (a, b) =

∫ ∞

b

exp

(

−a2 + x2

2

)

xI0(ax) dx. (15)

Inserting this into (7) and taking the partial derivative with
respect to|U |:

∂I

∂|U | = −
√

Γ

N0
∆f (y)I1

(

√

|U(y)|2Γ
N0/2

)

× exp

(

−|U(y)|2 + Γ

N0

)

+ λ2|U(y)|Σf (y), (16)

where we use the following result of [7]:

∂Q(a, b)

∂a
= bI1(ab) exp

(

−a2 + b2

2

)

. (17)

Therefore we find one stationary point again as|U(y)| = 0,
sinceI1(0) = 0, and another as the solution to the following
equation:

N0/2
√

|U(y)|2Γ
I1

(

√

|U(y)|2Γ
N0/2

)

exp

(

−|U(y)|2 + Γ

N0

)

=
λN2

0

Γ

Σf (y)

∆f (y)
. (18)

We define the functionV(z, b) implicitly as

z =
1

bV(z, b)
I1 [bV(z, b)] exp

(

−V(z, b)2 + b2

2

)

, (19)

and with that the solution to (18) can be expressed as:

|U(y)|2 =
N0

2

[

V
(

λN2
0

Γ

Σf (y)

∆f (y)
,

√

2Γ

N0

)]2

(20)

which only exists for∆f (y)
Σf (y) ≥ 2λN2

0

Γ e
Γ

N0 , since the left-hand-
side of (18) takes its maximum for|U(y)| = 0.

III. E RROR-OPTIMAL FORWARDING USING ORTHOGONAL

FREQUENCY-SHIFT-KEYING

A. Modifications using Two Orthogonal Basis Functions

The system setup stays largely unchanged as in Fig. 1.
Assuming two orthogonal basis functions available, we extend
the previous notation to the vector case:U(y) → U(y),
w → w andz → z become two-dimensional vectors, e.g.,

U(y) = [U0(y), U1(y)]T (21)

and the same notation for the other vectors.
Since there are two basis functions, Assumption 1 implies

the optimal decision statistic is a comparison of the received
power on the different basis functions, c.f. [6]:

d(z) =

{

H0 |z0|2 > |z1|2
H1 otherwise

(22)



With this, the probability of a decision error at the receiver is
slightly different from (3b)

Pr(e) =
1

2

(

Pr
{

|z0|2 < |z1|2
∣

∣H0

}

+ Pr
{

|z0|2 > |z1|2
∣

∣H1

})

=
1

2

(

1 − Pr
{

|z0|2 > |z1|2
∣

∣H0

}

+ Pr
{

|z0|2 > |z1|2
∣

∣H1

})

.

To expressPr(e) as function ofU(y) we use

Pr
{

|z0|2 > |z1|2
∣

∣Hi

}

=

∫

Y

Pr
{

|z0|2 > |z1|2
∣

∣U(y)
}

fi(y) dy

(24)
which takes the place of (4). Otherwise the variational ap-
proach follows completely the same pattern as in Section II.
Defining a Lagrangian function, combining the integrals, we
arrive at the following gradient

∇I(U, λ) =
[

∂I(U,λ)
∂U0

∂I(U,λ)
∂U1

]T

= 0 (25)

to find a stationary point.

B. Fading AWGN Channel

The channel model for this scenario is an extension of that
in Section II-B,

z =

(

h1 0
0 h2

)

U(y) + w, (26)

whereh1 andh2 are independent Gaussian variances of zero
mean and unit variance, andw is additive white Gaussian
noise with covarianceN0I.

From Equation (26), it can be seen thatzi given y is dis-
tributed Gaussian with zero mean and variance|Ui(y)|2 +N0.
We calculate:

Pr
{

|z0|2 > |z1|2
∣

∣

∣
U(y)

}

=
|U0|2 + N0

|U0|2 + |U1|2 + 2N0
, (27)

where we temporarily dropped the arguments of theUi’s for
more compact notation. We calculate the partial derivatives of
the gradient:

∂I

∂|U0|
= 2|U0|

(

λΣf (y) + ∆f (y)
|U1|2 + N0

(|U0|2 + |U1|2 + 2N0)
2

)

∂I

∂|U1|
= 2|U1|

(

λΣf (y) − ∆f (y)
|U0|2 + N0

(|U0|2 + |U1|2 + 2N0)
2

)

Both partial derivatives have a common root|Ui| = 0 and a
second root determined by the following equations:

|U1|2 + N0

(|U0|2 + |U1|2 + 2N0)
2 = −λ

Σf (y)

∆f (y)
(28)

|U0|2 + N0

(|U0|2 + |U1|2 + 2N0)
2 = λ

Σf (y)

∆f (y)
(29)

We observe that the left-hand-side of (28)/(29) is always
positive, while the sign of the right-hand side depends on the
particulary. This leads to the conclusion that the equations do
not have a common solution. Therefore there are only three
posibble stationary points:

a) |U0| = |U1| = 0: Both outputs are zero.

b) |U1| = 0: Solving (28), we obtain|U0| as:

|U0(y)|2 =N0

(
√

max

{

− 1

λN0

∆f (y)

Σf (y)
, 4

}

− 2

)

(30)

c) |U0| = 0: Solving (29), we obtain|U1| as:

|U1(y)|2 =N0

(
√

max

{

1

λN0

∆f (y)

Σf (y)
, 4

}

− 2

)

(31)

C. Non-fading AWGN Channel with Random Carrier Phase

The constant AWGN channel for orthogonal FSK is a
straightforward extension of Section II-C to the vector case,

z =

(

ejφ1 0
0 ejφ2

)

U(y) + w (32)

whereφi ∈ [0, 2π] is the random carrier phase andw additive
white Gaussian noise with covarianceN0I.

To render this problem mathematically tractable, we adopt
the following assumption motivated by the result of the
previous section:

Assumption 4 The optimal relay functionU(y), mapping to
two orthogonal basis functions, has only one non-zero output
at any one time.

Given Assumption 4, the decision statistic at the receiver
compares a Rician to a Rayleigh distributed random variable,
depending on which component ofU(y) has non-zero energy.
This coincides with the probability of error for binary orthog-
onal FSK, which can be found in standard textbooks [6],

Pr
{

|z0|2 > |z1|2
∣

∣U
}

=







1 − 1
2 exp

(

− |U0|
2

2N0

)

, |U0|2 > 0

1
2 exp

(

− |U1|
2

2N0

)

, |U1|2 > 0

Taking the partial derivatives ofI using the above definition,
we find:

∂I

∂|U0|
= 2|U0(y)|

[

λΣf (y) +
∆f (y)

8N0
exp

(

−|U0(y)|2
2N0

)]

∂I

∂|U1|
= 2|U1(y)|

[

λΣf (y) − ∆f (y)

8N0
exp

(

−|U1(y)|2
2N0

)]

Again there are three posibble stationary points:

a) |U0| = |U1| = 0: Both outputs are zero.

b) |U1| = 0: We obtain the non-zero|U0| as:

|U0(y)|2 =2N0 log

(

max

{

− 1

8N0λ

∆f (y)

Σf (y)
, 1

})

(33)

c) |U0| = 0: We obtain the non-zero|U1| as:

|U1(y)|2 =2N0 log

(

max

{

1

8N0λ

∆f (y)

Σf (y)
, 1

})

(34)



IV. A NALYSIS AND COMPARISON OFRESULTS

A. Comparison with Other Relays

Other relays are usually specified in terms of the “signal in
noise” scenario; to come to a common notation we define a
binary signals according to the employed modulation, e.g., for
FSK thesi, i = 0, 1, are the basis vectors of the two channels
(see also Section V-B), for BPSK and OOKs reduces to a
scalar{±1} or {0, 1} respectively. This signals is observed
at the relay as

x = s + v, (35)

wherev is complex noise of power2σ2
v andy is accordingly

a function ofx. For ease of representation we also define:

γobs =
E
[

|s|2
]

2σ2
v

, γfwd =
P

N0
, (36)

which are the SNR’s on the sender-relay and relay-receiver
channel respectively.

Due to our variational approach, which directly minimizes
the probability of error, our work can be seen as an extension
of [1] to the case of noncoherent modulation. Other known
approaches for the coherent relay are:

• Decode-and-Forward(DnF) The relay decides on the
hypothesis that minimizes the probability of error at the
relay, and forwards this decision with constant power:

UDnF(x) = λŝ = λ arg max
s

f(x | s)

• Amplify-and-Forward(AnF) The relay amplifies the re-
ceived values by a constant factor:

UAnF(x) = λx

• Estimate-and-Forward(EnF) As described in [3], for-
warding the minimum mean-square error (MMSE) esti-
mate subject to the power constraint amounts to a linearly
scaled version of the conditional expectation:

UEnF(x) = λE [s | x]

As a comparison we plot realizations of all four forwarding
functions on the noncoherent fading channel for OOK modula-
tion, see Fig 2. Contrary to optimal forwarding functions using
coherent modulation, c.f., [1]–[3],U(y) is not a combination
of soft-information (AnF) and delimiter (DnF), but a delimiter
with a “cut-off” and a fairly short transition.

The optimal function is most similar to DnF, the only
other function that displays a similar “cut-off”. However,
the “cut-off” point of DnF is lower, expending energy more
often. This can be seen as a result of local decisions of DnF
minimizing the decision errorat the relay, without regard for
optimal energy usage. Instead the optimal function has a higher
threshold to expend energy, but can then allocate more power
when the observations seem significant.

Interestingly EnF shares the same transition with the optimal
function, but has no “cut-off”. Although for higher SNR,γfwd,
both EnF and the optimal function quickly converge to the
DnF delimiter function, for low SNR EnF shows an energy
inefficient behavior.
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Fig. 2. Plot of the OOK noncoherent forwarding function for the Rayleigh
fading AWGN channel as functions of a sufficient statisticy; γobs = 10 dB
andγfwd = 3 dB.

B. Estimate-Process-and-Forward

In the case of coherent modulation, wheresi = ±1, the
SNR optimal approach EnF reduces to

E [s | x] =
f1(y) − f0(y)

f1(y) + f0(y)
=

∆f (y)

Σf (y)
. (37)

Interestingly, not only the optimal functions derived in this
work use (37) as the input to a following non-linear function,
but a similar observation can be made in [1] for the coherent
case. Changing [1, Eq. (3)] to our notation, we have

|U(y)|2 =
N0

2
W
(

1

2π

(

1

λN0

∆f (y)

Σf(y)

)2
)

, (38)

which uses the MMSE estimateE [s | x] as its input.
With these observations we determine the difference be-

tween the SNR optimal and probability-of-error optimal relays
as an additional processing step using a non-linear function,
optimally mapping the MMSE estimate to the output modu-
lation. Using a similar expression we call the optimal relay
function Estimate-Process-and-Forward (EPnF).

V. NUMERICAL RESULTS

Due to space limitations, we will only consider the perfor-
mance of two cases, namely OOK over a fading channel (as
plotted in Fig. 2) and FSK over a non-fading channel. For
more detailed results we refer to [4].

A. On-Off Keying

The sender-relay channel model is defined analogously to
(9) as

x = hrs + v, s ∈ {0, 1} (39)

where hr is the unit variance, complex Gaussian channel
coefficient andv AWGN of power2σ2

v. As sufficient statistic
we choose the power ofx, y = |x|2. Accordingly y is
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Fig. 3. Performance of different forwarding functions for OOK modulation
over the Rayleigh fading AWGN channel;γfwd = 6 dB.

distributed exponentially with mean2σ2
v or 1 + 2σ2

v under
hypothesesH0/H1 respectively.

We compare the performance of the different forwarding
functions. We keep the SNR on the relay-receiver link constant
atγfwd = 6 dB and varyγobs. The probability of error is plotted
in Fig. 3; surprisingly DnF outperforms EnF and is generally
very close to the optimal performance. In fact EnF is even
worse than AnF for small SNR; going back to Fig. 2, we
see that EnF always expends energy, since there is always a
non-zero probability thatH1 was observed at the relay. When
reducingγfwd to 3 dB, the difference between DnF and the
optimal performance is larger, but the performance is very
limited due to the generally low performance of noncoherent
modulation.

B. Frequency Shift Keying

We start with the results from Section III-C, the channel
model is analogous to (32)

x =

(

ejθ1

ejθ2

)

s + v, s ∈
{[

1
0

]

,

[

0
1

]}

, (40)

whereθi is the random phase andv is the complex AWGN
as before. Accordingly the elements ofx = [x0, x1]

T are
distributed Rayleigh and Rician respectively and vice versa
depending ons. As sufficient statisticy we choose the log-
likelihood ratio, which can be simplified to the following [6],

y = log

[

f1(x0, x1)

f0(x0, x1)

]

= log

[

I0

(

|x1| /σ2
v

)

I0 (|x0| /σ2
v)

]

. (41)

Unfortunately the PDF of this random variable is non-trivial
to derive, and we have to evaluate the performance using a
two dimensional integral over(x0, x1).

We compare the performance of the different forwarding
functions, keeping the SNR on the relay-receiver link constant
at γfwd = 6 dB and varyingγobs. The error probabilities are
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Fig. 4. Performance of different forwarding functions overa constant AWGN
channel with random carrier phase using orthogonal FSK; forγfwd = 6 dB.

plotted in Fig. 4; the trends are as before, but we notice that
compared to Fig. 3 the differences in performance are much
larger for EnF and AnF, which shows a strongly inefficient
behavior.

VI. CONCLUSION

We investigated forwarding using different types of nonco-
herent modulation. We derived optimal memoryless forward-
ing functions and compared them to known forwarding func-
tions, namely Decode-and-Forward, Amplify-and-Forward and
Estimate-and-Forward. We found that Decode-and-Forward
performs very close to the optimal forwarding function for
any reasonable SNR, while both outperform Amplify-and-
Forward and Estimate-and-Forward. This fact that EnF does
not perform close to optimal can be explained by linking the
probability of error optimal formulation to EnF: there exists an
additional non-linear processing on top of the MMSE estimate.
While this additional processing step seems to be minor in
the coherent BPSK case, for noncoherent modulation it is
necessary to achieve efficient transmission.
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