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ABSTRACT

Recently, significant attention in compressed sensing has been
focused on Basis Pursuit, exchanging the cardinality operator
with the l1-norm, which leads to a linear formulation. Here,
we want to look beyond using thel1-norm in two ways: inves-
tigating non-linear solutions of higher complexity, but closer
to the original problem for one, and improving known low
complexity solutions based on Matching Pursuit using rollout
concepts. Our simulation results concur with previous find-
ings that oncex is “sparse enough”, many algorithms find the
correct solution, but for averagely sparse problems we find
that thel1-norm often does not converge to the correct solu-
tion – in fact being outperformed by Matching Pursuit based
algorithms at lower complexity. The non-linear algorithm we
suggest has increased complexity, but shows superior perfor-
mance in this setting.

Index Terms— Compressed sensing, sparse estimation,
non-linear programming, rollout.

1. INTRODUCTION

In sparse estimation, a signalx ∈ C
n is estimated from a

limited set of measurements. These measurements are linear
projections of the formy = Ax ∈ C

m, onto a known set of,
generally dependent, vectors inA. The interesting aspect of
this problem appears whenm < n and one is interested in the
minimum number of measurements necessary to reconstruct
the original signal. This problem only has a well-defined solu-
tion, when we can assume the signalx to be sparse in nature,
i.e., the number of non-zero elements ofx, k = card(x), is
small – necessarily smaller than the number of measurements.
Since we can’t know which elements ofx are non-zero, this
generally leads to an intractable combinatorial optimization
problem.

Different versions ofMatching Pursuit had been applied
in signal processing as greedy solutions, see e.g. [1, 2]; lately
significant research has been focused onBasis Pursuit, see
e.g. [3, 4, 5] and references therein. The new focus of this
research, besides feasible complexity solutions, is the theo-
retical relationship between the minimum number of needed
measurements, the sparseness of the solution and the proper-
ties of the measurement matrixA. The interest inBasis Pur-
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suit was triggered by the observation that replacing the ex-
plicit sparseness constraint onx with its l1-norm often leads
to the same solution. This in turn enables a convex prob-
lem formulation, which can be solved efficiently using inte-
rior point methods, see e.g. [6].

Although there are some established results characteriz-
ing when the true sparseness constraint can be replaced with
the l1-norm [3], they are not tight in the sense that in many
cases not covered by the cited results, the solution can still
be found. Also interestingly, the condition developed in [3]
applies equally to greedy algorithms (Orthogonal Matching
Pursuit) as well as to thel1-norm formulation. This gives rise
to the impression that once the problem is “sparse-enough”,
the solution is fairly robust and can be found by different al-
gorithms.

We in this work want to focus on algorithms that push
the frontier of solvable problems, i.e., we are interested in al-
gorithms that can find the optimal solution with a minimum
number of measurements for only averagely sparse problems.
We want to compare different algorithms, reducing the num-
ber of measurements and/or the degree of sparseness inx, to
find the threshold when each algorithm “breaks” from the op-
timal solution. In this context, we are interested in two types
of algorithms:

1. We want to find a problem formulation, which replaces
the sparseness card(x) with an approximation different
from thel1-norm, leading to a closer approximation of
the original problem.

2. We want to improve existing greedy algorithms based
on Matching Pursuit.

The rest of this paper is organized as follows: in Section 2,
we present our new solutions; in Section 3, we discuss imple-
mentation and numerical results. Finally, we conclude the
paper in Section 4.

2. PROPOSED SOLUTIONS

2.1. Problem Formulation

We want to solve the following problem

x̂ = arg min
x

card(x) subj. to|Ax − y|2 ≤ ε (1)



wherex ∈ C
n, y ∈ C

m, A ∈ C
m×n andm < n. The

uniqueness of the solution is connected tok := card(x) � n,
i.e., the sparseness condition onx.

2.2. Implementation via Lagrangian Relaxation

The difficulty in the original problem is that the cardinality
operator

card(x) =

n
∑

i=1

card(xi), card(xi) =

{

1, xi 6= 0
0, xi = 0

(2)

is non-differentiable. The interpretation of the cardinality op-
erator as a “zero-norm” is one approach,

lim
p→0

|x|p = lim
p→0

n
∑

i=1

|xi|
p

= card(x), (3)

wherep = 1, i.e., thel1-norm, is the norm with the smallest
p which is convex.

We formulate the problem by using a new constraint:

x̂ = arg min
x,z

n
∑

i=1

zi (4)

subj. to xi(1 − zi) = 0 ∀i (5)

|Ax − y|2 < ε (6)

wherezi ∈ {0, 1}. Applying Lagrangian relaxation, we get

min J(x, z) = min
x,z

n
∑

i=1

zi +
n
∑

i=1

λixi(1 − zi)

= min
x

[

min
z

(

n
∑

i=1

zi(1 − λixi)

)

+

n
∑

i=1

λixi

]

. (7)

Evidently the minimization overz yields

zi =

{

1, λixi > 1
0, λixi ≤ 1

(8)

Inserting this solution back into (7)

min J̃(x,λ) = min
x

[

n
∑

i=1

min {1 − λixi, 0} +

n
∑

i=1

λixi

]

= min
x

n
∑

i=1

min {1, λixi} (9)

where now we have an additional maximization overλ. Ex-
amining the plot of this objective function in Fig 1, we can
note several things:

• If we maximize overλ, this function is equivalent to
the cardinality operator.

• For λ = sign(x), the l1-norm is the convex extension
of this function.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

m
in

{1
, λ

 x
}

λ = 1
λ = 2
λ = −2
λ = −1

Fig. 1. The plot ofmin{1, λx} shows that with concurrent
maximization overλ, this objective function is equivalent to
the cardinality operator.

2.3. Approximating the Cardinality Operator

The objective function in (9) is still not completely differen-
tiable and we have to update a vector of Lagrangian multipli-
ersλ. Instead we suggest a continuously differentiable ap-
proximation in the form of the hyperbolic tangent,

Jc(x) =

n
∑

i=1

tanh
(

c |xi|
2

)

. (10)

In Fig. 2 we can see that asc → ∞, this function converges
to the cardinality operator. Use of the new objective function
Jc leads to the following problem formulation consisting of a
series of non-linear optimization problems:

lim
c→∞

min
x

Jc(x) subj. to|Ax − y|2 ≤ ε. (11)

We have the following derivatives ofJc,

∂Jc

∂xk

=
2cxk

[

cosh
(

c |xk|
2

)]2
(12)

∂2Jc

∂xk∂xl

=
2c
[

1 − 4c|xk|
2 tanh

(

c |xk|
2

)]

[

cosh
(

c |xk|
2

)]2
δkl (13)

whereδkl is the Kronecker delta. Accordingly the gradient is
well defined and the Hessian matrix has a diagonal structure.
The Hessian is not positive definite, but due to the diagonal
structure we can easily approximate it with a positive definite
matrix to calculate a pseudo-Newton direction.

For eachc this non-linear optimization problem converges
to a well-defined (local) maximum. To solve, we use standard
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Fig. 2. tanh(c|x|2) is a continiously differentiable function,
which converges to the cardinality operator, whenc → ∞.

methods of non-linear programming [7]. We start with a fea-
sible solution, e.g., the least-squares solution, and solve for
some smallc initially. When increasingc, we use the previous
solution for initializing the new problem; and if we increasec
slowly, the algorithm converges to a final solution. In practice,
we will not solve each subproblem exactly, but only execute
a few iterations, possibly just one, to save computation.

2.4. Improving Greedy Solutions with Rollout Concepts

Rollout algorithms were first proposed for the approximate
solution of dynamic programming recursions by Bertsekas et
al. in [7]. They are a class of suboptimal solution methods
inspired by the policy iteration of dynamic programming and
the approximate policy iteration of neuro-dynamic program-
ming. The rollout algorithm, combined with base heuristics
(e.g., Basis Pursuit,...), can solve combinatorial optimization
problems such as that here with a higher computational ef-
ficiency than the optimal strategies, while being superior to
those using the base algorithms only.

2.5. Reducing Complexity of Greedy Algorithms

The Order-Recursive LS MP algorithm is a variant of Match-
ing Pursuit (MP), where the next greedy choice is based on
reducing the actual fitting error. This is a sensible metric,
but leads to high complexity. To reduce this complexity, we
suggest an efficient implementation. In the case of orthog-
onal columns, maximizing the reduction in the fitting error
is equivalent to choosing the maximum projection as in the
usual MP algorithm. Therefore we suggest calculating or-
thogonal basis vectors of the space spanned by the selected
columns ofA, via the Gram-Schmidt procedure. When a
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Fig. 3. Probability of error detecting the non-zero compo-
nents ofx; 103 simulation runs,n = 512, m = 64.

new column is selected, we subtract its component from the
columns so far not selected. This way we can add one orthog-
onal vector to the basis at each iteration without recalculating
the previous basis-vectors.

3. IMPLEMENTATION AND NUMERICAL RESULTS

3.1. Implementation

Both problem formulations in Section 2.2 and Section 2.3
are highly non-linear in nature. As implementation we apply
efficient algorithms based on descent directions [7], namely
Trust-Region and Preconditioned Conjugate Gradient meth-
ods. The differentiable approximation of the cardinality oper-
ator in Section 2.3 has considerably lower complexity, stem-
ming from the diagonal Hessian matrix.

For the following simulations we used available off-the-
shelf products, i.e., an implementation of the Trust-Region
method available in the MATLAB Optimization Toolbox,
which ran in a loop updatingc at each iteration and checking
convergence via

n
∑

i=1

[

tanh
(

c |xi|
2

)(

1 − tanh
(

c |xi|
2

))]

≤ nε, (14)

which terminates once the approximation of the cardinality
operator has converged for eachxi.

The rollout implementation used the Orthogonal MP
(OMP) algorithm to find a greedy solution and then varied
it by recalculating a solution while excluding one of the
elements picked early by the first greedy solution. To get
a noticeable improvement in performance, we found about
twenty iterations to be sufficient.



0 50 100 150 200 250 300
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m

k/
m

tangent
L1
OMP
RMP
OMP rollout

Fig. 4. Needed sparseness; plotted is the maximum ratiok/m
for which each algorithm can still find the right non-zero val-
ues ofx in more than 85 % of the cases,n = 512.

3.2. Numerical Results

We will compare the non-linear optimization based on the
tanh function with anl1-norm implementation, Orthogonal
Matching Pursuit (OMP), order-recursive LS MP (RMP) and
the OMP with rollout. We use only noiseless observations,
thereforeε = 0 in (1). We generate the signalx by randomly
choosingk elements and assign values using a zero-mean,
unit variance Gaussian distribution. The measurement matrix
A has random entries from the same distribution and we nor-
malize the columns.

As a first scenario, we fixn = 512, m = 64 and slowly
increase the ratio of non-zero elements to observations from
1/8 to 1/2; we observe in Fig. 4 that for smallk/m, i.e., very
sparse problems, basically all algorithms chose the correct
non-zero elements ofx. Still, different algorithms can han-
dle less sparse problems. Especially thel1-norm algorithm
introduces many additional small elements into the solution,
which can not be discerned from correct non-zero elements
in the averagely sparse case, since each element ofx is rather
small itself.

Next we increasem, while keepingn = 512; for eachm
we increase the ratiok/m until the probability of error ex-
ceeds 15 %. Fig. 4 confirms the trend observed before that
the l1-norm cannot handle averagely sparse problems. This
is even more so when the ratiom/n approaches1/2, as this
further reduces the sparseness. Comparatively, even the dif-
ferent OMP versions perform better with the rollout outper-
forming RMP. The throughout strongest performance has the
non-linear formulation using the tanh, but at the cost of high
complexity, c.f. Fig. 5. Using our implementations all algo-
rithms show a similar scaling behavior, which doesn’t seem
to givel1-norm any edge over the OMP variations.
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Fig. 5. Run time comparison for the different algorithms for
increasingn.

4. CONCLUSION

We suggested several new approaches to the sparse estimation
problem. For one, approximating the cardinality operator via
the tanh function, we find a non-linear algorithm which can
also solve moderately sparse problems. Second, we improve
known low complexity greedy algorithms using rollout tech-
niques, which leads to an algorithm of lower complexity than
Basis Pursuit and better performance than regular OMP.
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