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ABSTRACT suit was triggered by the observation that replacing the ex-
plicit sparseness constraint anwith its /;-norm often leads

to the same solution. This in turn enables a convex prob-
lem formulation, which can be solved efficiently using inte-
rior point methods, see e.g. [6].

Although there are some established results characteriz-
ing when the true sparseness constraint can be replaced with
the [;-norm [3], they are not tight in the sense that in many
cases not covered by the cited results, the solution cdn stil
be found. Also interestingly, the condition developed ih [3

Recently, significant attention in compressed sensingéas b
focused on Basis Pursuit, exchanging the cardinality dpera
with thel;-norm, which leads to a linear formulation. Here,
we want to look beyond using tlie-norm in two ways: inves-
tigating non-linear solutions of higher complexity, bubsbr

to the original problem for one, and improving known low
complexity solutions based on Matching Pursuit using tdllo
concepts. Our simulation results concur with previous find
ings that once is “sparse enough”, many algorithms find the ; . .
cogrrect solution, burfc for averagely sparyse g:)roblems we fin ppl|e_s equally 1o greedy algorithms ((_)rthogc_)nal_ Mat(_:hlng
that thel;-norm often does not converge to the correct solu- ursuit) as well as to thig-norm formulation. This gives rise

tion — in fact being outperformed by Matching Pursuit basecf[?] the ||rrt1.pre:.ss:(or.1|thatbonct:e tze prok;lerfn IS (‘j‘sgards?f—enoijgr",
algorithms at lower complexity. The non-linear algorithra w € solution IS fairly robust and can be found Dy difterent a

suggest has increased complexity, but shows superiorrperfoqor'thm_s' hi K ¢ lqorith h h
mance in this setting. We in this work want to focus on algorithms that pus

_ ~ the frontier of solvable problems, i.e., we are interesteal
Index Terms— Compressed sensing, sparse estimationgorithms that can find the optimal solution with a minimum

non-linear programming, rollout. number of measurements for only averagely sparse problems.
We want to compare different algorithms, reducing the num-
1. INTRODUCTION ber of measurements and/or the degree of sparsengssan

find the threshold when each algorithm “breaks” from the op-
In sparse estimation, a signal € C" is estimated from a timal solution. In this context, we are interested in twoeyp
limited set of measurements. These measurements are linexdralgorithms:
projections of the forny = Ax € C™, onto a known set of, _ ) )
generally dependent, vectors.in The interesting aspect of 1. We wantto find a problem formulation, which replaces

this problem appears when < n and one is interested in the the sparseness casd with an approximation different
minimum number of measurements necessary to reconstruct  70m thel;-norm, leading to a closer approximation of
the original signal. This problem only has a well-definedisol the original problem.

tion, when we can assume the sigrab be sparse in nature,
i.e., the number of non-zero elementsxfk = cardx), is
small — necessarily smaller than the number of measurements

Since we can't know which elements efare non-zero, this The rest of this paper is organized as follows: in Section 2,
generally leads to an intractable combinatorial optiniat e present our new solutions; in Section 3, we discuss imple-

problem. _ _ _ ~ mentation and numerical results. Finally, we conclude the
Different versions oMatching Pursuit had been applied paper in Section 4.

in signal processing as greedy solutions, see e.g. [1,t2]yla

significant research has been focusedBasis Pursuit, see

e.g. [3, 4, 5] and references therein. The new focus of this 2. PROPOSED SOLUTIONS
research, besides feasible complexity solutions, is the-th .

retical relationship between the minimum number of needed-1- Problem Formulation

measurements, the sparseness of the solution and the Prop@fe \want to solve the following problem
ties of the measurement matuk The interest irBasis Pur-

2. We want to improve existing greedy algorithms based
on Matching Pursuit.

N . . 9
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wherex € C",y € C™, A € C™*™ andm < n. The
unigueness of the solution is connected te= cardx) < n,
i.e., the sparseness conditionxon

2.2. Implementation via Lagrangian Relaxation

The difficulty in the original problem is that the cardinglit
operator

is non-differentiable. The interpretation of the cardityabp-
erator as a “zero-norm” is one approach,

L,
0,

.’L'iZO

(2)

cardx) = Xn: cardz;), cardz;)

n
. I B . P _
Lim ||, = lim ; |2i]” = cardx), ®3)
wherep = 1, i.e., thel;-norm, is the norm with the smallest
p which is convex.
We formulate the problem by using a new constraint:

X = arg min Z Z (4)

=
subj. to x;(1 — z;) =0 Vi (5)
[Ax —y|* < e (6)

wherez; € {0,1}. Applying Lagrangian relaxation, we get
min J(x,z) = minz zi + Z Aixi (1 — 2;)
it i=1
|fnin

Evidently the minimization ovez yields

n

= min
xX
i=1

iz > 1
)\i.”L'Z' < 1

(8)

Inserting this solution back into (7)
min J(x, A) = min [Z min {1 — A\;z;,0} + Z )\ixi]
=1 =1

= min Z min {1, \;x;}  (9)
i=1

where now we have an additional maximization oXerEx-
amining the plot of this objective function in Fig 1, we can
note several things:

o If we maximize over), this function is equivalent to
the cardinality operator.

e For \ = sign(z), thel;-norm is the convex extension
of this function.
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Fig. 1. The plot ofmin{1, Az} shows that with concurrent
maximization over\, this objective function is equivalent to
the cardinality operator.

2.3. Approximating the Cardinality Operator

The objective function in (9) is still not completely diffan-
tiable and we have to update a vector of Lagrangian multipli-
ers . Instead we suggest a continuously differentiable ap-
proximation in the form of the hyperbolic tangent,

Jo(x) = zn:tanh (c \xi\2> .

In Fig. 2 we can see that as— oo, this function converges
to the cardinality operator. Use of the new objective funtti
J. leads to the following problem formulation consisting of a
series of non-linear optimization problems:

(10)

lim minJ.(x) subj. to|Ax —y|* <e. (11)
We have the following derivatives of.,
oJ, 2cx
Oz - 2112 (12)
K [cosh (c\xk| )}
027, 2¢ {1 — 4c|zk|? tanh (c \mk|2>}
—— = o (13)
O0x,0xy

[cosh (c mﬁﬂ ’

wheredy, is the Kronecker delta. Accordingly the gradient is
well defined and the Hessian matrix has a diagonal structure.
The Hessian is not positive definite, but due to the diagonal
structure we can easily approximate it with a positive deini
matrix to calculate a pseudo-Newton direction.

For eache this non-linear optimization problem converges
to a well-defined (local) maximum. To solve, we use standard
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Fig. 2. tanh(c|z|?) is a continiously differentiable function, Fig. 3. Probability of error detecting the non-zero compo-
which converges to the cardinality operator, whepn oo. nents ofx: 10® simulation runsp, = 512, m = 64.

methods of non-linear programming [7]. We start with a feanew column is selected, we subtract its component from the
sible solution, e.g., the least-squares solution, andesfulv  columns so far not selected. This way we can add one orthog-
some smalt initially. When increasing, we use the previous onal vector to the basis at each iteration without recatmgda
solution for initializing the new problem; and if we incr@as  the previous basis-vectors.

slowly, the algorithm converges to a final solution. In picat

we will not solve each subproblem exactly, but only execute; |\1o| EMENTATION AND NUMERICAL RESULTS
a few iterations, possibly just one, to save computation. '

3.1. Implementation

2.4. Improving Greedy Solutions with Rollout Concepts . . : .
P g y P Both problem formulations in Section 2.2 and Section 2.3

Rollout algorithms were first proposed for the approximateare highly non-linear in nature. As implementation we apply
solution of dynamic programming recursions by Bertsekas egfficient algorithms based on descent directions [7], ngmel
al. in [7]. They are a class of suboptimal solution methodsTrust-Region and Preconditioned Conjugate Gradient meth-
inspired by the policy iteration of dynamic programming andods. The differentiable approximation of the cardinalipeo
the approximate policy iteration of neuro-dynamic program ator in Section 2.3 has considerably lower complexity, stem
ming. The rollout algorithm, combined with base heuristicsming from the diagonal Hessian matrix.
(e.g., Basis Pursuit,...), can solve combinatorial optation For the following simulations we used available off-the-
problems such as that here with a higher computational efhelf products, i.e., an implementation of the Trust-Regio
ficiency than the optimal strategies, while being supeior t method available in the MATLAB Optimization Toolbox,
those using the base algorithms only. which ran in a loop updatingat each iteration and checking
convergence via

2.5. Reducing Complexity of Greedy Algorithms

n
2 2

The Order-Recursive LS MP algorithm is a variant of Match- Z {tanh (C &l ) (1 — tanh (C i ))} <ne, (14)
ing Pursuit (MP), where the next greedy choice is based on =t
reducing the actual fitting error. This is a sensible metricwhich terminates once the approximation of the cardinality
but leads to high complexity. To reduce this complexity, weoperator has converged for each
suggest an efficient implementation. In the case of orthog- The rollout implementation used the Orthogonal MP
onal columns, maximizing the reduction in the fitting error (OMP) algorithm to find a greedy solution and then varied
is equivalent to choosing the maximum projection as in theét by recalculating a solution while excluding one of the
usual MP algorithm. Therefore we suggest calculating orelements picked early by the first greedy solution. To get
thogonal basis vectors of the space spanned by the selectachoticeable improvement in performance, we found about
columns of A, via the Gram-Schmidt procedure. When atwenty iterations to be sufficient.
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Fig. 4. Needed sparseness; plotted is the maximum keftio Fig

for which each algorithm can still find the right non-zero-val
ues ofx in more than 85 % of the cases= 512.

3.2. Numerical Results

We will compare the non-linear optimization based on th
tanh function with an/;-norm implementation, Orthogonal
Matching Pursuit (OMP), order-recursive LS MP (RMP) and
the OMP with rollout. We use only noiseless observations

e
the

unit variance Gaussian distribution. The measurementixnatr
A has random entries from the same distribution and we nor-
malize the columns.

As a first scenario, we fix = 512, m = 64 and slowly
increase the ratio of non-zero elements to observatioms fro
1/81t01/2; we observe in Fig. 4 that for sm&l)/m, i.e., very
sparse problems, basically all algorithms chose the correc
non-zero elements of. Still, different algorithms can han-
dle less sparse problems. Especially theorm algorithm
introduces many additional small elements into the sajtio
which can not be discerned from correct non-zero elements
in the averagely sparse case, since each elemenisafather
small itself.

(1]

(2]

(3]

4

Next we increasen, while keepingn = 512; for eachm 4l

we increase the ratié/m until the probability of error ex- 5]
ceeds 15 %. Fig. 4 confirms the trend observed before that[

the [;-norm cannot handle averagely sparse problems. This
is even more so when the ratio/n approachegd /2, as this
further reduces the sparseness. Comparatively, evenfthe di [6]
ferent OMP versions perform better with the rollout outper-
forming RMP. The throughout strongest performance has the
non-linear formulation using the tanh, but at the cost ohhig
complexity, c.f. Fig. 5. Using our implementations all algo
rithms show a similar scaling behavior, which doesn’t seem [7]
to givel;-norm any edge over the OMP variations.
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5. Run time comparison for the different algorithms for

increasingn.

4. CONCLUSION

We suggested several new approaches to the sparse estimatio
problem. For one, approximating the cardinality operatar v

tanh function, we find a non-linear algorithm which can

also solve moderately sparse problems. Second, we improve
known low complexity greedy algorithms using rollout tech-
nigues, which leads to an algorithm of lower complexity than
'Basis Pursuit and better performance than regular OMP.

5. REFERENCES

S.G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,1EEE Trans. Sgnal Processing, vol.
41, no. 12, pp. 3397-3415, Dec. 1993.

R. Gribonval and E. Bacry, “Harmonic decomposition of audio
signals with matching pursuit,EEE Trans. Sgnal Process-
ing, vol. 52, no. 1, pp. 101-111, Jan. 2003.

J.A. Tropp, “Greed is good: algorithmic results for sparse
approximation,”|EEE Trans. Inform. Theory, vol. 50, no. 10,
pp. 2231-2242, Oct. 2004.

D. Donoho, “Compressed sensindEEE Trans. Inform. The-
ory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

E.J. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin
ciples: exact signal reconstruction from highly incomplete fre-
guency information,1EEE Trans. Inform. Theory, vol. 52, no.

2, pp. 489-509, Feb. 2006.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, “A
method for large-scalé -regularized least squares problems
with applications in signal processing and statistics,” 2007,
Preprint, available at
http://www.stanford.edu/"boyd/reportsAd. pdf.

D. P. BertsekasNonlinear Programming, Athena Scientific,
Belmont, Massachusetts, USA, 2 edition, 1995.



