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Abstract—In this paper we develop a fine synchronization
algorithm for multiband OFDM transmission in the presence
of frequency selective channels. This algorithm is based on
maximum a posteriori (MAP) joint timing and channel esti-
mation that incorporates channel statistical information, leading
to considerable performance enhancement relative to existing
maximum likelihood (ML) approaches. We carry out a thorough
performance analysis of the fine timing algorithm, and link
the diversity concept widely used in data communications to
the timing performance. We show that the probability of the
timing offset equal to or larger than Δ taps has a diversity
order of NB min(Δ, L) in Rayleigh fading channels, where NB

is the number of subbands and L is the number of channel
taps. This result reveals that the timing estimate is very much
concentrated around the true timing as the signal to noise ratio
(SNR) increases. Our simulations confirm the theoretical analysis,
and also demonstrate the robustness of the proposed timing
algorithm against model mismatches in a realistic UWB indoor
channel.

Index Terms—UWB, multiband OFDM, positioning, timing,
synchronization, diversity, performance analysis.

I. INTRODUCTION

POSITIONING in wireless networks is an attractive topic,
and its uses range from localization to geo-routing and

position-aware applications. Many positioning algorithms uti-
lize time of arrival (TOA) or time difference of arrival (TDOA)
measurements, which can be obtained from point-to-point
communication links [1]. In this context, high timing accuracy
translates into precise ranging information. Ultra Wideband
(UWB) signaling promises high time resolution thanks to its
inherently large bandwidth. Recently, timing using the impulse
radio (IR) UWB waveforms has been actively studied; see
e.g., [1] and references therein. We in this paper develop
timing algorithms using the multiband OFDM UWB signals
[2]. UWB channels exhibit dense multipath. To extract tim-
ing information from a communication link, one needs to
locate the “first arrival” in the presence of dense multipath.
This first path is not necessarily the strongest one due to
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channel fading [1]. Therefore at high bandwidths, traditional
correlation-based timing algorithms are not bandwidth limited,
but multipath limited — as the estimated timing varies with the
realization of which path is the strongest in dense multipath.
OFDM signaling has unique capabilities in handling multipath
channels, which can be exploited for accurate timing.

Since OFDM modulation has been widely used in recent
broadband wireless systems, including digital audio/video
broadcasting and wireless local/metropolitan area networks,
the literature on OFDM synchronization is thus rich, see e.g.,
[3]–[9], and references therein. However, for communication
purposes, OFDM does not require precise timing. Small or
moderate offsets in the time domain translate to phase shifts in
the frequency domain, which can be estimated by pilot tones,
or bypassed by differential modulation. For this reason, there
has been only a few fine timing algorithms for OFDM [5]–
[9], where a maximum-likelihood (ML) approach is usually
adopted for joint channel and delay estimation.

For synchronization of multiband OFDM, we first rely on
the algorithm of [3] for coarse timing to capture data blocks
that contains circular convolution between the channels and
the OFDM data symbols. We then apply maximum a posteriori
(MAP) estimation to derive solutions to joint channel and
delay estimation. Relying on analytical tools for non-coherent
data detection with diversity combining [10], we carry out a
thorough performance analysis for timing in the presence of
frequency-selective fading channels. For multiband OFDM on
Rayleigh channels with a uniform power decay profile, the
probability of the timing estimate being off the true timing
by Δ taps has a diversity order of NB min(Δ, L), where
NB is the number of bands and L is the number of channel
taps. This result reveals that the timing estimate is very much
concentrated around the true timing as SNR increases. This is
not the case for a correlation-based synchronization algorithm
that looks for the strongest channel tap of the current channel
realization.

Our main distinctions from existing works in [5]–[9] are:

1) Our proposed fine timing algorithm incorporates sta-
tistical channel information to considerably improve
the timing performance. Such a formulation was not
available before.

2) We link the diversity concept well known in data com-
munications to the synchronization performance, which
provides valuable insights. Such a link had not been
made before.

3) We have considered multiband OFDM, while existing
works focus on single band OFDM.

The rest of this paper is as follows. We present the synchro-
nization algorithm in Section II, and carry out a performance
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analysis in Section III. We present numerical results in Section
IV, and conclude in Section V.

II. MULTIBAND OFDM SYNCHRONIZATION

For mathematical tractability and ease of presentation, we
first list the adopted assumptions in deriving the fine synchro-
nization algorithm which is based on joint delay and channel
estimation.

A1) The discrete-time1 frequency selective channel has L
taps, contained in hi := [hi,0, · · · , hi,L−1]T the channel
vector in the ith band. The number of taps L is known
at the receiver.

A2) Channel vectors h1, . . . ,hNB are uncorrelated over dif-
ferent frequency bands. Each channel vector hi is com-
plex Gaussian distributed with zero mean and a diagonal
covariance matrix Rhi = diag(σ2

hi,0
, . . . , σ2

hi,L−1
).

A3) A coarse synchronization of [3] has been used2 and
the coarse synchronization yields a delay estimate d ∈
[−(Ng − L), 0], where Ng is the length of the OFDM
cyclic prefix. But no knowledge on the distribution of d
from the coarse synchronization is available.

A4) Carrier frequency offset (CFO) can be ignored or has
been compensated already in the received sequence. (The
impact of CFO will be tested by numerical results.)

A5) All entries of the OFDM information symbols are drawn
from a signal constellation with unit amplitude, e.g.,
phase-shift-keying (PSK) modulation.

Multiband OFDM splits the whole UWB spectrum into mul-
tiple subbands, and adopts frequency hopped OFDM transmis-
sion across the subbands. For example, the multiband OFDM
in [2] uses subbands of 528 MHz each, and the hopping is
done on an OFDM symbol-by-symbol basis. Let Nc denote the
number of subcarriers in OFDM. On the ith frequency band,
the transmitter converts a data vector of length Nc, denoted by
si = [si,0 · · · si,Nc−1]T , to the corresponding OFDM symbol
xi = FHsi via inverse Fourier transform, where (·)H denotes
the Hermitian transpose and F is the discrete Fourier transform
(DFT) matrix of dimension Nc ×Nc with the (l + 1, k + 1)th
entry [F]l,k = 1√

Nc
exp (−j2πlk/Nc) , l, k = 0, . . . , Nc − 1.

Cyclic prefixes (CP), which are simply the last Ng samples
of the OFDM block, are inserted before each OFDM symbol
as a guard interval.

After coarse synchronization, the receiver takes a received
vector yi of length Nc starting at d, as illustrated in Fig. 1. As-
sumption A2 ensures that the block yi contains an exact cyclic
convolution between the channel vector hi and the transmitted
symbol block xi; though the proposed timing algorithm will
still work in practice if an exact cyclic convolution is not
available due to edge effects. To use a matrix-vector form to

1Note that we just estimate the delay as multiples of the sampling period,
and absorb the effects of fractional delay and filter effects into the channel
coefficients; see a discussion in e.g., [7]. The number of channel taps could
be known a priori relying on channel models, or jointly estimated with the
channel itself, as in [5].

2The coarse synchronization algorithm of [3] uses two identical OFDM
symbols with one cyclic prefix, as shown in the first frequency band in Fig. 1.
The delay estimate of [3] is expected to be centered around −(Ng − L)/2;
see also Fig. 2(a).
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Fig. 1. Transmitted signals for multiband OFDM synchronization and
detailed view of coarse synchronization in multipath

represent cyclic convolution, we define an Nc × Nc circular
shift matrix J and an Nc × L zero-insertion matrix T as

J =
[

01×(Nc−1) 1
I(Nc−1) 0(Nc−1)×1

]
, T =

[
IL

0(Nc−L)×L

]
.

The matrix Jk will perform a circular shift on a vector by k
entries. Jk is well defined for both k > 0 (right shift) and
k < 0 (left shift). Define a circulant matrix

Xi = [xi,Jxi, . . . ,JNc−1xi]. (1)

With assumptions A1-A3, we have

yi = XiJdThi + wi, (2)

where wi contains the additive white Gaussian noise (AWGN)
with variance N0.

The joint PDF of all yi,hi and d is

p (y1, . . . ,yNB ,h1, . . . ,hNB , d) = p (d)
NB∏
i=1

p (yi,hi | d) .

(3)
The joint MAP estimates of all hi and d are determined
through{

{ĥi}NB

i=1, d̂
}

MAP
= argmax

hi,d
p (d)

NB∏
i=1

p (yi,hi | d) . (4)

We will use a search interval of (−Nc/2, Nc/2] on d assum-
ing3 that p(d) = 1/Nc. Due to the Gaussian assumptions on

3Note that the distribution on d may not be uniform and may be correlated
with the channel realizations. We choose to neglect possible prior information
on d, as this will make our algorithm independent of a particular implemen-
tation of the coarse synchronization algorithm, and considerably simplify the
analysis. However, our simulations in Section IV will test practical scenarios
where both of these assumptions could be violated.
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hi and wi, we have{
{ĥi}NB

i=1, d̂
}

MAP
=

arg min
hi,d

NB∑
i=1

[
1

N0
||yi − XiJdThi||2 + hH

i R−1
hi

hi

]
, (5)

after straightforward derivations. For each tentative value of
d, the MAP channel estimate is

ĥi,MAP(d) = E[hi|yi, d] =
1

Nc
DiTHJ−dXH

i yi, (6)

where Di is a L × L diagonal matrix with the kth diagonal
entry as σ2

hi,k
/
(
σ2

hi,k
+ N0/Nc

)
; the fact of XH

i Xi = NcINc

is used in the derivation due to assumption A5. Substituting
ĥi,MAP(d) into the cost function in (5), we find the MAP
estimate of d as:

d̂ = argmax
d

NB∑
i=1

∣∣∣∣
∣∣∣∣ 1
Nc

D
1
2
i THJ−dXH

i yi

∣∣∣∣
∣∣∣∣
2

. (7)

Define a tentative channel estimate as

h̃i =
1

Nc
XH

i yi =
1√
Nc

FHdiag{sH
i }Fyi. (8)

The MAP estimator in (7) simplifies to

d̂ = arg max
d

NB∑
i=1

L−1∑
k=0

(
σ2

hi,k

σ2
hi,k

+ N0/Nc

)
|h̃i,[k+d]|2, (9)

where the subscript [k + d] stands for (k + d) mod Nc. The
MAP estimator in (9) combines the channel energy from all
branches to decide on the best estimate of d.

Remark 1 In the special case of no knowledge on the distri-
bution of the channel taps, Rhi is assumed to be proportional
to an identity matrix. (7) simplifies to

d̂ = argmax
d

NB∑
i=1

L−1∑
k=0

|h̃i,[k+d]|2, (10)

corresponding to a rectangular sliding window. This rectan-
gular sliding window has been used in [5]–[7], [9], starting
from an ML approach for the case of NB = 1. Our MAP
approach incorporates the prior channel statistical information
for performance improvement on the delay estimation.

III. TIMING PERFORMANCE ANALYSIS

We now analyze the performance of the proposed fine
timing algorithm. First, let us take a closer look at the
tentative channel estimate h̃ in (8), on which we operate a
sliding window correlator to determine the fine timing, c.f,
(9). Substituting (2) into (8), we have:

h̃i =
1

Nc
XH

i

(
XiJdThi + wi

)
= JdThi + w̃i, (11)

where the noise vector w̃i remains white but with variance
N0/Nc.

This is a problem of signal detection in the presence of
Gaussian noise: we have to decide at which sample d̂, out
of the Nc possibilities, a waveform of length L starts. For
L = 1 the problem formulation is equivalent to non-coherent

detection of orthogonal FSK on a fading channel, for L �=
1 the problem changes to non-orthogonal FSK. Due to the
random phase of the signal, the MAP derivation naturally led
to a type of energy detector [10].

The pair-wise error probability (PEP) of that the timing
metric at d̂ = d + ν is larger than the counterpart at the true
timing d can be expressed as:

PEP(ν) =

Pr

{
NB∑
i=1

L−1∑
k=0

ci,k|h̃i,[k+d]|2 <

NB∑
i=1

L−1∑
k=0

ci,k|h̃i,[k+d+ν]|2
}

(12)

using the weights ci,k = σ2
hi,k

/(σ2
hi,k

+ N0/Nc). Once the
PEP is found, we can apply the union bound to assess the
timing performance. For purpose of ranging, it is important to
achieve a small mean-square-error (MSE) E{|d− d̂|2} — but
since we link this formulation to a detection problem, we are
interested in the probability of a timing offset larger than or
equal to a constant Δ:

Pr(|d̂ − d| ≥ Δ) ≤
Nc/2∑

ν=−Nc/2; |ν|≥Δ

PEP(ν). (13)

We term the probability to miss the true timing (Δ = 0) as the
mis-timing event. We next specify how to evaluate the PEP(ν).

A. The General Case

To derive the PEP with an arbitrary sliding window and
Gaussian channel taps from an arbitrary power decay profile,
we rewrite the argument of (12) as

Λ(ν) =
NB∑
i=1

L−1+ν∑
k=0

(ci,k − ci,k−ν) |h̃i,[k+d]|2

=
NB(L−1+ν)∑

j=0

yj (14)

where the ci,k = 0 for k /∈ [1, L]. Accordingly yj is
generalized exponential with

fY (yj) =
1

|λj |e
− yj

λj U(λjyj), (15a)

λk+(i−1)NB
= (ci,k − ci,k−ν)E

[
|h̃i,[k+d]|2

]
, (15b)

where U(x) is the unit step function. Note that the parameter
λj can be negative, implying that the random variable could
be exponentially distributed on the negative half of the x-axis.
Using that the PDF of a sum of independent random variables
is the convolution of the individual PDF’s, the characteristic
function is the product of the individual characteristic func-
tions

FΛ(s) =
NB(L−1+ν)∏

j=0

(1 − j2πsλj)
−1

=
NB(L−1+ν)∑

j=0

rj

(1 − j2πsλj)pj
. (16)
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The pj’s in (16) are introduced to account for possible second
order poles when λj = λi, j �= i, while the rj’s are found via
partial fraction decomposition. The terms in the summation in
(16) are characteristic functions of Chi-square random vari-
ables of order 2pj , therefore the Fourier transform of FΛ(s)
will be a sum of different Chi-square PDF’s with coefficients
rj . The probability that Λ(ν) ≤ 0 can be determined easily,
since the Chi-square PDF’s in (16) are only non-zero for x ≤ 0
if λj < 0. Therefore the PEP comes out to the sum of the rj’s
associated with negative λj ’s. Thus, the PEP in (12) is

PEP(ν) =
∫ 0

−∞
fΛ(x) dx =

NB(L−1+ν)∑
j=0

rjU(−λj). (17)

B. The Special Case With Uniform Window

In this section, we take a close look at the special case with
uniform window where all ci,k’s are the same. This happens
in two scenarios i) the SNR is sufficiently high, i.e., N0 → 0.
This is applicable to channels with non-uniform delay profiles;
ii) The channel taps have equal energy σ2

hi,k
= 1/L. In this

case, the sliding window is uniform at any SNR.
Assuming uniform weights, for 1 ≤ ν ≤ L common terms

in (12) cancel out and we obtain

PEP(ν) = Pr

{
ν−1∑
k=0

NB∑
i=1

|h̃i,[k+d]|2 <

L+ν−1∑
k=L

NB∑
i=1

|h̃i,[k+d]|2
}
(18)

This is the error probability of non-coherent detection with
receiver diversity combining over νNB branches [10, chapter
14.4], where the right hand side contains all noise with equal
power leading to a chi-square distribution, and the left hand
side is the sum of the different diversity branches.

We next explore the case where all channel taps have the
same variance. The left side of (18) turns to a chi-square
distribution with higher variance. We can directly use the result
from [10, eq. (14.4-15)]: Assuming uniform power decay
profile on each subband σ2

hi,k
= 1/L, the pair-wise error

probability events can be calculated as

PEP(ν) =
1

(2 + Ncγ̄/L)νNB

×
νNB−1∑

k=0

(
νNB − 1 + k

k

)(
1 + Ncγ̄/L

2 + Ncγ̄/L

)k

, (19)

for 1 ≤ ν ≤ L. At high SNR γ̄ � 1, we simplify (19) as [10,
eq. (14.4-18)]:

PEP(ν) ≈
(

2νNB − 1
νNB

)(
Nc

L
γ̄

)−νNB

, 1 ≤ ν ≤ L. (20)

Therefore, PEP(ν) has diversity order νNB for |ν| ≤ L; i.e.,
when plotting PEP(ν) versus SNR on a log-log scale, this
curve becomes a straight line with slope −νNB. Diversity
order is one important performance indicator, as it specifies
how fast the performance improves as SNR increases.

Since the sliding window is of length L, we infer that

PEP(ν) = PEP(L), L < ν < Nc/2. (21)

We can derive PEP in a similar fashion when ν is negative,
since all channel taps are i.i.d., thus

PEP(ν) = PEP(|ν|), ν < 0. (22)

Substituting the PEP(ν) of (19) into the union bound in
(13), we see that low diversity events will dominate at high
SNR. In summary, we have the following conclusion.

Proposition 1 Under assumptions A1-A5 and when all chan-
nel taps have the same variance σ2

hi,k
= 1/L, the probability

of timing offset equal to or larger than Δ is upper bounded
by

Pr(|d̂−d| ≥ Δ) ≤

⎧⎪⎨
⎪⎩

2
∑L

ν=Δ PEP(ν) + (Nc − 2L)PEP(L),
for Δ ≤ L

(Nc − 2Δ)PEP(L), otherwise
(23)

where the closed-form expression for PEP(ν) is given in (19).
At high SNR, the probability of timing offset equal to or larger
than Δ has diversity order NB min(Δ, L).

To our knowledge, this is the first time the diversity concept
widely used in data communications is linked to synchro-
nization performance. This link provides valuable insight. It
reveals that the timing estimate of the proposed algorithm
is very much concentrated around the true timing when the
SNR increases. On the contrary, consider a correlation-based
synchronization algorithm in the presence of a channel with
uniform power profile, which is the worst-case for synchro-
nization. All channel taps are equally likely to be the strongest
one, thus the timing estimate more or less spreads uniformly
across the whole channel duration. One cannot improve its
performance by improving the timing resolution or increasing
the SNR4.

IV. NUMERICAL RESULTS

The system parameters are Nc = 128, Ng = 32, as in
[2]. Unless stated otherwise, the channel length is set to L =
16, and the channel taps are i.i.d. Rayleigh distributed. Most
Monte Carlo simulations use 106 runs and we do not consider
CFO unless specified otherwise.

Case 1: Single Band OFDM (NB = 1). Fig. 2(a) shows the
distribution of the timing delay after coarse synchronization
for different levels of SNR, while Fig. 2(b) depicts the
counterparts after fine timing. In Fig. 2(a) we can see that
assumption A3 is not necessarily true for low SNR, as the
coarse timing has some non-negligible probability of being
outside [−16, 0]. However, when examining Fig. 2(b) we still
see a significant improvement in the delay distribution. Thus,
even if the coarse synchronization is not as precise as required
by assumption A3, the fine timing algorithm still shows an

4A similar timing performance analysis for frequency selective channels is
available in [7]. The distinctions of our analysis are: i) Our PEP analysis is
exact, which is linked to non-coherent data detection in fading channels. The
PEP analysis in [7] is approximate, as it drops the squared noise term to make
the test variable Gaussian distributed when conditioned on the channel; see
the paragraph after eq. (A4). The analysis in [7] is then linked to coherent
data detection in fading channels. ii) We consider a general sliding window
while [7] only uses a rectangular sliding window. iii) The diversity concept
was not linked to timing performance in [7].
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Fig. 2. Comparison of timing distribution after coarse acquisition and fine synchronization for NB = 1.
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Fig. 3. Probability of mis-timing for multiband OFDM synchronization

acceptable performance. For higher SNR’s, the coarse syn-
chronization is very contained in the interval [−16, 0] and the
fine synchronization has only noticeable probabilities around
d = 0. It shows that most estimates concentrate around the
correct timing.

Case 2: Multiband OFDM. The multiband simulation uses
two identical symbols on one frequency band for coarse
synchronization and only one symbol on each other frequency
band. After diversity combining, the probability of mis-timing
decreases with diversity NB and converges well against the
theoretical union bounds (see Fig. 3). It is true that multiband
reception also increases the average SNR, however, the slope
change of the performance curves has to be attributed to the
diversity effect.

Case 3: MAP versus ML Timing Performance. We now
compare the MAP and ML timing algorithms to see how
much statistical channel information can help on the timing
performance. We consider a channel of length L = 16, with
exponentially decreasing profile on each frequency band as:
σ2

hk
= 10−aσ2

hk−1
. The decay factor a = 0.1 leads to a
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Fig. 4. Comparison between the MAP and ML timing algorithms on a
channel with exponential delay profile

15 dB difference between the power of the first and last
channel taps. With the optimal sliding window for MAP and
the uniform window for ML, Fig. 4 demonstrates considerable
performance improvement of the MAP algorithm relative to
the ML counterpart. Note that the ML algorithm performs
poorly at low SNR. This is reasonable, since weak channel
taps towards the tail can be easily exchanged for noise samples
in the front of the channel without changing much the energy
within the uniform sliding window.

Case 4: Carrier Frequency Offset. We study the impact
of CFO on the timing performance. The CFO is randomly
generated within an interval of [−εmax, εmax]. We choose
εmax = 10−3, that corresponds to a CFO of 528kHz in the
OFDM UWB setting of [2]. This easily includes any Doppler
spreads and oscillator mismatches. For example, a moving
speed of 3 m/s with a carrier frequency of 10 GHz would
only lead to εmax ≈ 10−6; a 40 ppm mismatch between the
oscillators at the transmitter and the receiver would lead to
εmax ≈ 6 · 10−4 at 8 GHz.
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Fig. 5. Comparison of Multiband OFDM synchronization with CFO (full
lines) vs. no CFO (dashed lines); ε ∈ [−10−3, 10−3]

In general, the performance degradation due to small CFOs
is barely noticeable at SNR’s of interest, as shown in Fig. 5.
We argue that for these levels of CFOs, the impact on fine
timing is quite negligible and the CFO can be compensated
for data demodulation after the synchronization.

Case 5: UWB Indoor Channel. We now simulate the timing
performance using UWB channels generated from the indoor
channel model [12]. This channel model was adopted by
the IEEE 802.15.3a standardization task group (TG3a); we
use the parameters from channel model (CM) 1 [12]. Since
the UWB indoor channel model returns real (non-complex)
delayed paths arriving in clusters in continuous time, we
have to assign a complex phase, filter and down sample the
channel; see e.g., [13] for an equivalent base-band model. As
statistical information about the channel, we use the average
power decay profile, generating 100 channel tap realizations
and averaging their energy.

Fig. 6 depicts the timing performance for multiband OFDM.
Compared with the L-tap i.i.d. Rayleigh fading channels,
the timing performance with the realistic indoor channels
demonstrates some performance degradation. This can be
attributed to two effects: i) the channel taps not being com-
plex Gaussian distributed, and ii) the UWB indoor channel
model yields an almost arbitrarily long channel that eventually
vanishes underneath the noise, hence for increasing SNR
the channel becomes longer – too long for the CP included
in the system design – generating intersymbol interference.
Nevertheless, the important messages here are: i) frequency
hopping across multiple subbands enhances the diversity order
of the timing performance, and ii) the proposed MAP timing
algorithm could be robust against mismatches on the needed
statistical knowledge, e.g., the distribution and channel length
mismatches as illustrated in this example.

V. CONCLUSION

We developed a fine timing algorithm for multiband OFDM
based on MAP joint channel and delay estimation that in-
corporates statistical channel information. We analyzed the
timing performance, relying on tools from non-coherent data
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Fig. 6. Multiband OFDM synchronization using a UWB indoor channel

communication in frequency-selective channels. We showed
that most timing estimates lie closely around the right timing,
with the probability of timing offset equal to or greater than Δ
having diversity order of NB min(Δ, L), where L the number
of channel taps and NB is the number of subbands. We tested
the proposed timing algorithm with both Rayleigh and UWB
indoor channels.

REFERENCES

[1] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. Molisch, V. Poor,
and Z. Sahinoglu, “Localization via ultra-wideband radios - a look at
positioning aspects of future sensor networks,” IEEE Signal Processing
Mag., vol. 22, no. 4, pp. 70–84, July 2005.

[2] A. Batra, J. Balakishnan, G. R. Aiello, J. R. Foerster, and A. Dabak,
“Design of a multiband OFDM system for realistic UWB channel
environments,” IEEE Trans. Microwave Theory and Techniques, pp.
2123–2138, Sept. 2004.

[3] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchro-
nization for OFDM,” IEEE Trans. Commun., pp. 1613–1621, Dec. 1997.

[4] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation
of time and frequency offset in OFDM systems,” IEEE Trans. Signal
Processing, pp. 1800–18 005, July 1997.

[5] E. G. Larsson, G. Liu, J. Li, and G. B. Giannakis, “Joint symbol timing
and channel estimation for OFDM based WLANs,” IEEE Commun.
Lett., vol. 5, no. 8, pp. 325–327, Aug. 2001.

[6] H. Minn, V. Bhargava, and K. Letaief, “A robust timing and frequency
synchronization for OFDM systems,” IEEE Trans. Wireless Commun.,
pp. 822–839, July 2003.

[7] M. Morelli, “Timing and frequency synchronization for the uplink of
an OFDMA system,” IEEE Trans. Commun., pp. 296–306, Feb. 2004.

[8] W. C. Lim, B. Kannan, and T. T. Tjhung, “Joint channel estimation
and OFDM synchronisation in multipath fading,” in Proc. International
Conference on Communications, 2004, pp. 983–987.

[9] H. Minn, V. Bhargava, and K. Letaief, “A combined timing and
frequency synchronization and channel estimation for OFDM,” IEEE
Trans. Commun., vol. 54, no. 3, pp. 1081–1096, June 2006.

[10] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-
Hill, 2001.

[11] M. Morelli and U. Mengali, “Carrier-frequency estimation for transmis-
sions over selective channels,” IEEE Trans. Commun., vol. 48, no. 9,
pp. 1580–1589, Sept. 2000.

[12] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models
for ultrawideband personal area networks,” IEEE Wireless Commun.,
vol. 10, no. 6, pp. 1247–1257, Aug. 2002.

[13] Y. Li, T. Jacobs, and H. Minn, “Frequency offset estimation for MB-
OFDM-based UWB systems,” in Proc. Intl. Conf. on Commun., June
2006.


