IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 201

Sparse Channel Est
Underwater Acoustic

Imation for Multicarrier
Communication: From

Subspace Methods to Compressed Sensing

Christian R. BergerMember, IEEE, Shengli ZhouMember, IEEE, James C. Preisigylember, |EEE, and
Peter Willett, Fellow, |IEEE

Abstract—In this paper, we investigate various channel esti-
mators that exploit channel sparsity in the time and/or Doppler
domain for a multicarrier underwater acoustic system. We use a
path-based channel model, where the channel is described by a
limited number of paths, each characterized by a delay, Doppler
scale, and attenuation factor, and derive the exact inter-caiier-
interference (ICl) pattern. For channels that have limited Doppler
spread we show that subspace algorithms from the array process
ing literature, namely Root-MUSIC and ESPRIT, can be applied
for channel estimation. For channels with Doppler spread, we
adopt a compressed sensing approach, in form of Orthogonal
Matching Pursuit (OMP) and Basis Pursuit (BP) algorithms, and
utilize overcomplete dictionaries with an increased path delay
resolution. Numerical simulation and experimental data of an
OFDM block-by-block receiver are used to evaluate the proposed
algorithms in comparison to the conventional least-squares (LS)
channel estimator. We observe that subspace methods can todee
small to moderate Doppler effects, and outperform the LS
approach when the channel is indeed sparse. On the other hand,
compressed sensing algorithms uniformly outperform the LS and
subspace methods. Coupled with a channel equalizer mitigating
ICI, the compressed sensing algorithms can effectively handle
channels with significant Doppler spread.

Index Terms—Basis Pursuit, Doppler spread, ESPRIT, ICI,
MUSIC, OFDM, Orthogonal Matching Pursuit.

I. INTRODUCTION

U

years [1]-[4]. At the physical layer, UWA channels pose grar{
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NDERWATER acoustic (UWA) communication and net- . . .
working has been under extensive investigation in recefiannels has been extensively studied for frequency select

challenges for effective communications, featuring loetpg
spreads and significant Doppler effects due to internal save
platform and sea-surface motion [5]. The long channel de-
lay spread leads to significant inter-symbol-interfere(i&s)

in single-carrier transmissions [6]. The receiver comityex
for channel equalization becomes a major burden when the
symbol rate increases. Multicarrier approaches like gonal
frequency division multiplexing (OFDM) can equalize the
channel at low complexity, but the aforementioned Doppler
effects destroy the orthogonality of the sub-carriers aadl|

to inter-carrier-interference (ICl).

The combination of large delay spread and significant
Doppler effects qualify UWA channels as doubly (time- and
frequency-) spread channels. One known approach to tts cla
of channels is the use of a basis expansion model (BEM)
to reflect the time-varying nature of the UWA channel, see
e.gd., [7]-[9]. Even though the time-varying nature of chalan
can be modeled arbitrarily well this way, it also tremendpus
increases demands on channel estimation, as the number of
unknowns that need to be estimated increases correspdnding
The only remedy to this challenge, is to exploit the fact that
UWA channels are naturally sparse, meaning that most clhanne
energy is concentrated in a few delay and/or Doppler values
[10], [11].

Sparse channel estimation for linear time-invariant (LTI)

adio channels based on, e.g., subspace fitting [12], model
order fitting using a generalized Akaike information crite-
rion [13], zero-tap detection [14], or Monte Carlo Markov
Chain methods [15]. More recently, advances in the new
field of compressive sensing [16]-[19] have led to numerous
applications on sparse channel estimation, e.g., spasene
delay only [20]-[27] and very recently for sparseness iragel
and Doppler [28]-[31]. Specifically on UWA channels, the
matching pursuit (MP) algorithm and its variants have been
used both in [10], [32] for a single carrier system and in [33]
for a multicarrier system.

We in this paper deal with sparse channel estimation for
multicarrier systems. We focus on our previously used OFDM
design [34]-[36] using a block-by-block receiver, wheretea
OFDM symbol is separately, coherently demodulated based
on pilot subcarriers inserted among the data subcarridrs. T
contributions of this paper are the following:

« We suggest the use of a path-based channel model,
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amenable to sparse estimation, where the UWA channelNotation: We will use the following notations throughout

is parameterized by a number of distinct paths, eathe paper: Column vectors and matrices will be denoted
characterized by a triplet of delay, Doppler rate, and pally lower case,x, and upper caseA, bold face symbols
attenuation. We derive the exact ICI formulation at theespectivelyA”, AH denote the transpose and the Hermitian,
output of the block-by-block OFDM receiver after propethe complex conjugate transpose. The Moore-Penrose pseudo

time-domain Doppler compensation. inverse is denoted aA .
« We link well known algorithms from the array process-
ing literature to the sparse channel estimation problem, Il. SYSTEM MODEL

namely Root-MUSIC and ESPRIT [37]. These algorithms \we consider zero-padded (ZP) orthogonal frequency divi-
can be applied when the channel has limited Dopplgfon multiplexing (OFDM) as in [34], [39]. LeT" denote the
spread, where the residual ICl is treated as additiongFpm symbol duration and, the guard interval for the ZP.
noise after proper Doppler compensation. The total OFDM block duration i¥” = T + T, and the

« We use compressed sensing techniques, specifically Qiihcarrier spacing is/7. The kth subcarrier is at frequency
thogonal Matching Pursuit (OMP) and Basis Pursuit

(BP) algorithms, to deal with channels with larger fe=fe+k/T, k=-K/2,...,K/2 -1, 1)

Doppler spread. Relative to existing work based on basgnere f, is the carrier frequency ands subcarriers are
band channel models, we utilize dictionaries with finglised so that the bandwidth B — K/T. Let s[k] denote
delay and Doppler resolutions. the information symbol to be transmitted on theéh subcar-

« We use extensive numerical simulation and experimeni@r The non-overlapping sets of data subcarrigs pilot
data to investigate the performance of the proposed spaggcarriersSp, and null subcarriersSy satisfy Sp U Sp U
channel estimators. Sx = {~K/2,...,K/2—1}; the null subcarriers are used to

The experimental data was recorded as part of tlicilitate Doppler compensation at the receiver (see [34])

GLINT'08 experiment in the Mediterranean, south of the The transmitted signal is given by
island Elba, Italy, in July 2008, and as part of the SPACE’'08
experiment off the coast of Martha's Vineyard, MA, from F(t) = 2Re{[ Z S[k]€j27r;itq(t)‘| ejwaCt}

Oct. 14 to Nov. 1, 2008. We have the following observations.
keSpUSp

« Root-MUSIC and ESPRIT channel estimators outperform tel0,T+T,], (2
the conventional least-squares (LS) scheme on sparse ) . o
channels, but perform worse when most energy arrivééiereq(t) describes the zero-padding operation, i.e.,

as “diffuse” multipath. 1 tel0,T]
« Both OMP and BP can well handle sparse and diffuse (t) = { h Y 3)
multipath, performing uniformly the best, with BP having 0 otherwise

a slight edge over OMP.
« On channels with mild Doppler spread, receivers thdx Channel Model
operate in an ICignorant manner, can achieve sufficient The underwater acoustic (UWA) time-varying channel im-
performance and still take advantage of the sparsity julse response is often defined as
the delay profile.
« Using compressive sensing algorithms, in particular BP, or,t) = ZAP(WS(T = 7p(1))- )
in conjunction with an IClaware receiver leads to dras- b

tic performance improvement in channels with severEh€ continuously time varying delays are caused by motion of
Doppler spread. the transmitter/receiver as well as scattering off of thevimp
. . , . ._sea surface or refraction due to sound speed variations. The
The rest of this paper is as follows. In Section Il we mtroF al path amplitudes chanae with the delavs as the attemuati
duce the signal model. In Sections Il and IV we present Hed P pitud 9 y e
. . 1S related to the distance traveled as well as the physidseof t
subspace and compressed sensing algorithms, respechively ) .
. . ; . . .~ “scattering and propagation processes.

Sections V and VI we use numerical simulation to mves'uga?e . . .

. : For the duration of an OFDM symbol, the time variation of
effects of time resolution and Doppler spread on channt?lle ath delavs can be reasonablv anproximated by a Dobpler
estimation performance. Section VII contains experimentg P y y app y PP

results, and we conclude in Section VIILI. rate as,

() = Tp — apt, )
When refering to BP, we always consider the solution to thiodohg and the path amplitudes are assumed cons@t@t) ~ Ap.

convex optimation problem Furthermore we assume that the UWA channel can be well

approximated byV, dominant discrete paths, what we denote

in the following as a “path-based” channel model. With this,

that takes explicitly into account the noisy nature of theeshations. This theé channel model can be simplified to

formulation is sometimes referred to &s— /1 or Basis Pursuit Denoising N

(BPDN), and the solution will be equivalent to that of the teébsolute L

Shrinkage and Selection Operator (LASSO) under appr@ppatameteriza- C(T, l‘) = z Ap5 (T - [Tp - apt]) ) (6)
tion, see e.g. [38]. p=1

1
min = [|Ax — 2| + 7 |||,
x 2
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where we specifically keep the path dependent Doppler rateserew,, is the additive noise and

ap. The received passband signal is then . ( e T)
N o = PPNk 14)
_ ~ - _ mk 3P T :
Gt) = ApE([1 + ap)t — 7)) + (), (7) mﬁ »
p=1 ®) _ (h )= 4 2pIm T €

wherew(t) is additive noise. . .
w(t) Defining a stacked received vecter data vectors, and

noise vectorwv across all subcarriers, we can write the follow-

B. Receiver Processing ing input-output relationship:
A two-step approach to mitigating the channel Doppler z=Hs+v. (16)
effect was proposed in [34]. where the channel mixing-matrid has entries
1) The first step is to resamplg(t) in passband with a N,
resampling factof; that corresponds to a rough Doppler [H]r = Z Ap e—I2m(fmte)T, Q(p) . (17)
estimate, leading t6(), c.f. (9). R ™k

2) The second step is to perform fine Doppler shift com-
pensation orx(t), the baseband version &ft), to obtain
z(t)e=72™<t, where ¢ is the estimated residual mea

The channel estimation methods in this paper use a base-
and formulation where each path has a complex path gain.
Specifically, the mixing matri is now expressed as

Doppler shift.
. . . N,
The resampling can be written as the following: 2
H=> &A,T, (18)
Ny 1+a p=t
2t) =) A (( T ;) t— Tp> +@(t/(L+a)), (8) where the complex path gain for thth path is
p=1
N, & = ie*ﬂﬂ(ﬂﬂ)n@7 (19)
=S 4,5 (1L +by) (=) +(t/(1+a). (9 1+b,
p=1 the matrixI', has an(m, k)th entry as[T',],, x = gg?k, and
To simplify notation, we have defined the new residudf® MatrixA, is a diagonal matrix with
Doppler rates and scaled delays [Ap)mm = eI2TTT, (20)
l4b, — 14 ap —a _ 1+a, (10) The formulation in (18) clearly specifies the contributioarh
P 1+a 1+a’ each discrete path with delay and Doppler scalé, towards
r_ _Tp the channel mixing matrix that defines the ICI pattern.
T = . (12)
Pool+b,
[1l. SUBSPACEMETHODS

Comparing (7) with (9), we see that the received waveform Wh I th ths h imilar Dobpl |
after resampling is equivalent to one that passed through a en afl the paths have similar Loppler scales, proper

channel with Doppler ratels,. In channels with a single dom- ph0|ces O,fd and e can rendng clos_e tc_) diagonal, W.h.ICh
inant Doppler, e.g. from platform motion, this can reduce tHS the rationale for the receiver design in [34]. Specificall

channel to an ICI free system. In practice this operation wﬁhe residual ICl is ignored, arid, in (18) is approximated by

let us assume that the Doppler spread is centered around z@%'dem'ty matrix. L N
et us now relate this simplified setup to the direction

as a non-zero mean of thg, is removed by the resampling. ) . . a
he y ing ing problem from the array processing literature. Divid

Th f scaled del ly exch the order of scalll
e LSS OF scaled deways only exchanges e order of sca measurements,,, by the transmitted symbol on each sub-

and delaying in the definition of the channel impulse-re
in (6) aying | e mpuise-r SFmncarrier,s[m], (in practice, only pilot subcarriers are considered,

Performing ZP-OFDM demodulation, the output on the as will be clear Ia}ter on), the estimated fr_equency response
mth subchannel is can be collected into a vector, where we ignore the noise at
this moment. Collecting the diagonal entriestbfinto a vector
h, we obtain

Z

1 T+T, ) S
Zm = T/ 2(t)e 92Tl em 2T T gt (12) .
0 h (21)

I
S
g
—
’d\]\
~—

1

]
Il

Plugging inz(¢) and carrying out the integration, we simplify

Zm 10 wherew(r) has themth entry e 727 # 7. The formulation

N, in (21) is thus equivalent to a direction finding problem in
Ap e—I2m(fmte)T, Z st)k s[k] + v, the array processing literature; each arrival from a certai
L+bp ' direction has a steering vector in a similar form #q7,).
(13) Hence, subspace methods from array processing can bedapplie

Zm =

p=1 keSpUSPp
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to identify the distinct path arrivals. Specifically, frorhet matrix decomposition of the covariance matrix, we choose al
collected measurements, one needs to estimate the caarigigenvectors corresponding to eigenvalues less than tivece
matrix noise variance to compose the noise space.
N, Once the model orde¥,, and the delay$, } are estimated,
R = E [flle} -3k [@ﬂ w (7)) w (T{))H (22) the complex path gaing, are estimated as based on the pilot
=1 subcarriers,

The delays{7,}, in our channel estimation problem corre- 2

Np
spond to the directions of arrival in array processing, Whic {¢,}, ¢ = argmin Z H,, — pre*ﬂ"%fp , (28)
can be identified based on eigenvalue-decomposition of the (S e p=1
covariance matrixR ;.

Usually, a number of OFDM symbols (let us s&y nee
to be observed to approximate the covariance matrix,

d where theH,,, are the entries of the vecthr Then the channel
response on the data subcarriers is reconstructed in aasimil
way as

1~ - Ny

R; ~ b h;h!’ (23) H,, = nge—ﬂﬂ%% m € Sp. (29)

p=1

In our work, we assume a block-by-block receiver as in [34].

Hence, we need to estimate the covariance matrix based BINESPRIT

one OFDM symbol only. This is possible via spatial smoothing ag with Root-MUSIC, we choose the unitary implemen-

(see, e.g., [40] or [37]). Ina nutshell, as long as the eldme (4tion for ESPRIT, following the details in [41] or [37].

the steering vectorss () exhibit a shift invariance property, The signal space is determined complementary to the noise

we can exchange the observation of a large array for multipl§pspace in MUSIC; we choose all eigenvectors correspgndin

“independent” observations of a smaller array, but geeeraty, gigenvalues larger or equal to twice the noise variance. T

by the samer;. . improve robustness against model mismatch (especiallsechu
Specifically, let us assume that the pilots are spaced Uy poppler), we solve for the unknown delay parameters
formly within each OFDM §{mb%|* ieqn = A, 24, ... 7, using a total-least-squares (TLS) formulation. Then the
and introduce partial vectors,, w,, which includes pilots channel response on the data subcarriers is determined as in
a throughb of the original vector: Sec. llI-A.
T
b " — —j2ﬂ'%‘l']/) —3'271'7((L+1)A‘r;7 . —j27‘{'%7';)
W (7) [e e ’ e (3) IV. COMPRESSEDSENSING
Therefore, we have 'Although H in (18) hasK2 entries, it is defined byV,
N triplets of (£,,b,,7,). Since UWA channels are sparse, the
Shis - b5 (1 value of V,, is small, hence, it is possible that thodg paths
h s = ngwa-i-é (Tp (29) can be identified by compressed sensing methods based on
”;1 only a limited number of measurements.
L AN To facilitate implementation, we rewrite as
=3 (Ge ) wi(m) (@)
p=1 61
which can be interpreted as a second observatiorhpf z=[MTis - ANTws]| 0| +v.  (30)

with new ampIitudefpe*ﬂ”‘;%Té. We can approximate the én,

covariance matrix of siz&/c as, If the parametergb,,7,) were available, we could construct

1 the (K x Np)-matrix in (30) and solve for thg, using least

I-1

~ _ s — H

Rl{:fc ~ TE :h,ﬁNC 1 (hﬁNc 1) (27)  squares.
=0

Where] = K/A—NC+1 depends on the numbel’ Of aVaiIabI%_ Non_Linear Eg”'nanon Via Con'pre$ed %nsng

observations (pilots). Clearly there is a trade off: a large A brute force approach to solve ]SSO) would be to try

Nc leads to better resolution of the), while a larger ! : T N A
approximates the covariance matrix better. In any case b(.fi'tI possible combinations 0{ (b’”TP)} =1 and choose the

dimensions have to be larger than the assumed maximd ution with the best fit. Of course the fit always improves

number of paths, as the rank of the covariance matrix limit 2 function ofN,,, which is also unknown. Similar esti-
the maximum number of identifiable components. mation problems have been solved using compressed sensing

(see [16]-[19]). An observed signal is defined as a linear

combination of an unknown number of structured signals,

A. Root-MUSC each defined by an unknown parameter(s). This problem is

We choose the unitary implementation of Root-MUSIC, teolved by constructing a so-called dictionary, made of the
reduce computational complexity (for details see [37])e Thsignals parameterized by a representative selection ailes

order selection problem is solved in the following way: afteparameters (or parameter sets). In this model, parameter se
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not part of the solution will be assigned a zero weight 2) Orthogonal Matching Pursuit: This greedy algorithm
coefficient. Since a large number of such sets is necessaeyatively identifies one, at a time and solves a constrained
to construct an accurate dictionary, most weights will be@zelLS problem at each iteration to measure the fitting error.

and the problem is sparse. Details for this algorithm can be found in, e.g., [10], [42].
We follow this approach and choose representative setsShce the number of path¥, is unknown, a stopping criterion
(b,7") as, needs to be defined carefully. We compare the residual fitting

error and decrease of fitting error at each iteration to trolels
, T 2T based on the noise power to determine the termination of the
Te {AK’AK’”' ’ 9}’ (3 aigorithm.
b € {—bmaxs —bmax + Ab, -+, bax} - (32) For implementation of both algorithms, it is important

to consider that multiplying by the matriA can be done
The discretization i’ is based on the assumption that aftefTiciently using FFTs. _ o
synchronization all arriving paths fall into the guard iml, 10 reduce the complexity of computing the dictionary set
where we choose the time resolution as a multiplepf the With @ large size, we choose to retain olly off-diagonals
baseband sampling tim&/K, leading toN, = AKT,/T on the templatei‘p,' (therefor_e also. oH). This means that
tentative delays. For the residual Doppler rates, we assuffY IC! from D directly neighboring subcarriers on each
that they are spread around zero after compensation bpd 5|_de are considered. The symbol vectorcontains known
bmax Can be chosen based on the assumed Doppler spréﬁ@,t symbols, and zeros, but also unknown data symbols. The
with resolution2b,nax /(Ab)+1 = Np. Hence, a total ofV, N, unknown data symbols are set to zero to compute the matrix
candidate paths will be searched, and we expéct NN,
significant paths due to the channel sparsity.

With this, we form vectors

Once the channel mixing matrix is constructed, a minimum
mean square error (MMSE) receiver (see e.g. [43]) is applied
for data demodulation

WD e e S= (HH 5 N H, )

(Ny is the noise power and the symbalg] are assumed of
unit average power) followed by channel decoding for data
recovery. Again, the banded matrix structure Kf leads to

corresponding to all delays associated with Doppler stale
and form a stacked vectot. The linear formulation of the

problem is . ) L L .
reduced complexity by allowing efficient matrix inversidrhe
(1) special case oD = 0 corresponds to an ICl-ignorant receiver,
XA . . .
whereb,.x in (32) will be set to zero correspondingly.
Z = [All"ls ANTN;)FN.,-NbS] + v (33)
X(AN“ V. EFFECT OFTIME RESOLUTION ONSPARSECHANNEL
— A ESTIMATION
= AX+V

To investigate channels that are sparse in the time domain,
where A is a fat matrix with N.N, columns, and most of we will first focus on linear time invariant channels, andlwil
entries ofx are assumed to be zeros since the channel is spagggsider channels with Doppler spread in Section VI. This is
Without the assumption that most entries are zero, the noblmotivated by the fact that previous work on sparse channel
would be ill defined, i.e., estimation of the parameters woukstimation has focused only on channels that are sparse in th
be impossible. equivalent discrete baseband representation. Althoughep-

resentation can capture the full channel effect, corredingn
to a complete basis, considering an increased time resoluti
B. BP and OMP Algorithms will render a more sparse channel representation, whialrin t
improves channel estimation accuracy.
To solve the sparse estimation problem with the measure-
ment model in (33), we focus on two popular algorithms: A. Smulation Setup

1) Basis Pursuit: As BP we denote the solution to the . : . .

following convex optimization problem, Fo_r purpose of numgrlca! S|mulat|.on, we approxmate t_he

continuous time operations in (12) with a sampling rate dpein
1 ) twice the bandwidth. We start with a sparse channel with=
min o [|Ax — z[|” + 7 [x]; . (34) 15 discrete paths, where the inter-arrival times are disteitbu

exponentially with mean® [, — 7,] = 1 ms. Hence, the

This formulation explicitly takes into account the noisytute average channel delay spread is about 15 ms. The amplitudes

of the observations. For an efficient solver for the compleare Rayleigh distributed with the average power decreasing

valued version of this formulation see, e.g., [38]. The para exponentially with delay, where the difference between the

eter 7 has to be tuned as no analytical parameterization bgginning and the end of the guard time of 24.6 ms is 20 dB.

available. In our experience this parameter seems quitestob The ZP-OFDM specifications in the numerical simulation

against the choice of values. are deliberately chosen to match the settings used in the
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TABLE |
PARAMETERS OFZP-OFDMIN NUMERICAL SIMULATION AND SPACE’08 100
EXPERIMENT.
carrier frequency fe 13 kHz
bandwidth B 9.77 kHz
no. subcarriers K 1024
symbol duration T 104.86 ms -1
subcarrier spacing Af :=1/T 9.54 Hz 10 ¢
guard interval Ty 24.6 ms

BLER

SPACE’'08 experiment. The carrier frequency, bandwidth,
number of subcarriers, inter carrier spacing, and symbol in 10
terval are summarized in Table I.

—8—— LS
—6—— ESPRIT

. —&6— MUSIC
The data rateR, depends also on the modulation scheme ———— OMP(1)
and the number of subcarriers used for channel estimatien. W —*— BP(1)
adopt the subcarrier allocation from [36]. Out of the= 1024 | L=_= —fullcsI |
. _ . . . 10 I I 1 1 1
subcarriers, there arkSp| = 256 subcarriers carrying pilot 7 8 9 10 11 12 13

symbols, distributed on every fourth subcarrier, &§id| = 96
zeros, half at the band edges and half inserted between the
data. The remaining 672 data subcarriers are encoded usinggal. All sparse channel estimation schemes significantipestorm the
rate 1/2 nonbinary LDPC code (see [36] for details). With gpnventional LS estimator.

16-QAM constellation, the spectral efficieneyand the data

SNR per Symbol [dB]

rate R are 100
T 672 1 .
R =aB =10.4 kbl/s (37)

We use block-error-rate (BLER) as our performance mea- 10
sure, which is the average number of error-free OFDM blocks
after LDPC decoding. We see this as a reasonable performanc &
criterion, since on unreliable channels such as UWA, itcan b @

expected that there is a mechanism in place to recover los -
blocks, e.g., automatic repeat-request (ARQ) or a higherla 10 | —/=— EipRlT \
block erasure code. In this context it has been recently show — 46— MUSIC
that BLER’s around10~! to 10~2 achieve optimal overall ——+—— OMP(4)
spectral efficiency [44], when combined with a higher layer —%*— BP(2)
erasure code. o0 — - — ful = .
7 8 o 10 11 12 13

B. Baseband Sampling SNR per Symbol [dB]

. The compr(_assed.sen_smg algorithms use a dictionary O'&M 2. The compressed sensing methods can increase theirmarice
in the delay dimension (i.ebu.x = 0); furthermore the delay significantly by using dictionaries with finer delay resasuat(for OMP \ = 4,
grid is at first spaced at baseband sampling rate: for BP A = 2).

T 2T
TIE{K7Ka"'7Tq}7

which corresponds td = 1. These are typical assumptionéncreases‘

that have been made in previous work on sparse channel ) o )

estimation, see [10], [20]-[27], [33]; where a) Doppleresgmt C- High Time Resolution Dictionaries A > 1

is ignored, and b) the channel is assumed sparse in th&Ve next increase the dictionary size of the compressed

equivalentdiscrete baseband representation. We designate tliensing methods, to reflect the discrete nature of the channe

implementation as OMP(1) and BP(1) to reflect the value @f continuous time, corresponding to our path-based channel

A model. We find that & > 1 increases performance signif-
Simulation results are plotted in Fig. 1. Clearly all sparsieantly, but the improvement saturates quickly. We plot the

channel estimation schemes outperform the simple leas&éme simulation withh = 4 for OMP and\ = 2 for BP (see

squares (LS) channel estimator (see [34] for details),iggin Fig. 2). Although the delays at baseband samplihg= 1)

about 1.5 dB. We also include a plot based on full channfglrm a complete basis to explain the channel effect, the use

state information (CSI) as a lower bound. All sparse channal over-complete dictionaries improves performance byoaim

estimation methods perform similarly well, where ESPRIT dB. As the path delays are generated from a continuous time

is slightly preferable for low SNR, but lags behind as SNR
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10°

10—1 I 10
o
o 4
| m
m
_2 |
102} —e— s 10
—6— ESPRIT
—&6—— MUSIC
——+—— OMP(4)
—— BP(2)
Lll=== full CSI 1072 . . . "
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Fig. 4. Perfect channel knowledge, but odlyoff-diagonals from each side
Fig. 3. On less sparse channelé,(= 45), the compressed sensing methodsire kept in the channel matrix for data demodulation. The ctiamas a mild
slowly converge to the LS performance, while the subspacedbastimators Doppler spread, i.e, the Doppler rates of the simulated patied model are
cannot model the composite effect of many irresolvable pategfppning generated using a uniform distribution with, = 0.1 m/s.
worse than the LS estimator at high SNR.

o o _ . ) . ) therefore the receiver operates in an IQerant fashion.
distribution, the dictionaries with higher time resolutican \we will afterwards proceed to more severe Doppler spread
explain the observations with fewer non-zero elements.  channels, which can only be handled by directly addressing

the ICI.
D. Time Resolution vs. Composite Effect

Based on our reasoning on time resolution, the subspaktelCl-lIgnorant Receiver
methods Root-MUSIC and ESPRIT should outperform the 14 simulate Doppler spread using the path-based channel

compressed sensing methods, as they inherently operateyffyel, each path is assigned a Doppler rate drawn from a zero
a continuous estimation space, while the compressed $ensifkan uniform distribution (we use agai, = 15). With the
methods can only approximate the continuous time operatiQR|ocity standard deviation,, the maximum possible Doppler
We speculate that the super-resolution properties of sulgspig V30, f./c (the sound speed is set to= 1500 ms). We
methods do not work well when several paths fall too close {¢,gose a zero-mean Doppler distribution, because a nan-zer
be resolved, leading to a known bias in subspace estimatg{gan could be removed through the resampling operation.
[37]. In the;e cases the. compre;sed sensing rnethods modgs Equalizer Trade-Off for Mild Doppler Sporead: To assess
the composite effect, which is ultimately the_ ra_lt|onale|bdh the need for equalization to suppress ICI, we first assume
the equivalent baseband model. In UWA, this is often termggat the receiver has perfect knowledge of all path ampsisud
diffuse” multipath. _ _ . _delays, and Doppler rates. However, the channel mixingirmatr
To verify this hypothesis, we run the same simulation witigy (16) will be approximated with a banded structure
a denser channel model. We increase the number of paﬁ'@%pingD off-diagonals to each side (i.e., a total 2D + 1
to N, = 45, while keeping the total delay spread constanjagonals are retained). We then suppress ICI by using an
leading to closer spaced arrivals. The simulation results jymSE equalizer, see (35). This is a trade-off in the sense
Fig. 3 support our hypothesis, as while all sparse estiraatgp ¢ by choosing a largeP we can remove more ICI, but
gain less over the LS approach, the subspace methods SUfffl have to accept higher computational complexity in the

considerably more. associated matrix inversion.
Fig. 4 shows the performance for differeit, where the
VI. ICI EFFECTS INDOPPLERSPREAD CHANNELS channel has mild Doppler spread with, = 0.1 m/s. We

We now consider the effect of Doppler spread on the systeshserve that what corresponds to the ICI-ignorant receiver
performance. First, we will generate data corresponding to(D = 0) works well, being about 1.5 dB away from the full
low degree of Doppler spread and continue using the receiveatrix case. Most of the ICI can be captured by a banded
previously used on the linear time invariant channels, sewtrix approximation withD = 3; for D = 10 the ICl is
Section V (also used in [34]-[36]). This reflects well theractically removed and the performance matches closely th
conditions in UWA communication on days of calm sea, dsll CSI curve for Doppler free channels, see e.g. Fig. 3.
there will always be a certain degree of Doppler spreading?) Effect of Mild Doppler Spread on Channel Estimation:
present, even when assumed negligible. As Doppler effeets & Fig. 5, we compare the ICl-ignorant receivefs £ 0). That
not addressed, any IClI is treated as additional additiveenoimeans the channels are estimated the same as on the Doppler
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Fig. 5. Performance comparisons for ICl-ignorant receiveith wifferent

channel estimation methods; channel has mild Doppler spegae=(0.1 m/s).
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10

11
SNR [dB]

Fig. 6. Perfect channel knowledge, but otlyoff-diagonals from each side
are kept in the channel matrix for data demodulation. The sitedlahannel
has a severe Doppler spread with = 0.25 m/s.

free channels in the previous sections, and no ICl is eceahliz
We find that all receivers can still achieve a low BLER, but at
different levels of SNR. This implies that the level of ICI is
below the necessary SNR for the LDPC code to decode suc
cessfully. The loss in performance is about 1.5 dB compared
to the ICI-free case in Fig. 2. We posit that the performance
loss is due to the unaddressed ICI, but that channel estimati
is not significantly affected by the model mismatch of the
linear time invariant channel assumption. Between thesspar
channel estimators, the compressed sensing based ahgerith
still outperform the subspace algorithms, but less so than o
the Doppler free channel.

BLER

B. ICl-Aware Receiver

We now consider channels with more severe Doppler
spreads. To improve the channel estimation performance ir.
the presence of severe ICI, we convert 96 data subcarrig{gs 7
into additional pilots by assuming that 96 data symbols aftrix
known a priori. The additional pilots are grouped in clusteiCS! th
between zero subcarriers and existing pilots, creatingiggo
of five consecutive known subcarriers. Adjacent obseraatio

10"
10
—e— S, D=0
—8—BP,D=0
—e—BP,D=1
——BP,D=3
—+—BP,D=5
10° : : : : 00—
8 9 10 11 12 13 14 15
SNR [dB]

Performance of ICl-aware BP receiver, where the chlamixing
is assumed to havB® off diagonals from each side; compared to full
e performance degrades by about 3 dB.

are needed as to effectively estimate the Doppler batef
each path by observing the KCI

1) Equalizer Trade-Off for Severe Doppler Spread: We first
assume that the channel is known to assess the need for

Since 96 coded symbols are assumed known while the saffalization. The numerical simulation results are degiicn
LDPC code structure is used (code truncation), this leads - 6, wheres, = 0.25 m/s. Clearly, ICl-ignorant receivers

an equivalent coding rate 4836 —96)/(672—96) ~ 0.4. For

(D = 0) will have very poor performance, which indicates

a 16-QAM constellation, the spectral efficiency and the datde need for ICl-aware receivers. This means in turn that the

rate are
T 336 — 96 .
a=r T, BT log, 16 = 0.76 bits/s/Hz  (38)
R=aB =74 kbls (39)

20ptimal pilot placement is still a topic of ongoing reseachmparing
with random pilot placement as in the compressed sensing rofsés of
interest.

ICI needs to be estimated as part of channel estimation, so
that equalization can be performed. We also notice thaten th
full CSI case, once we remove sufficient levels of ICI the
performance is about 1 dB better than in Fig. 4, due to the
change in coding rate.

2) Channel Estimation for Severe Doppler Soread Chan-
nels: The channels with significant Doppler spread can only
be handled by the compressed sensing based estimators. In
addition to delay, we introduce dictionaries that also @ars
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Fig. 8. Two example channels from the GLINT'08 experiment; ithpulse response is sparse and has a delay spread of about 20 ms.

TABLE I . . .
PARAMETERS OFZP-OFDMIN GLINT'08 EXPERIMENT. pilots, and zeros, the carrier frequency, bandwidth, amaogy
_ duration are different, as specified in Table Il. With thie th

carrier frequency Je 25 kHz spectral efficiency for 16-QAM is the same, but the data rate
bandwidth B 7.8125 kHz . . e
no. subcarriers I% 1024 is slightly less, due to the smaller bandwidth:
symbol duration T 131.072 ms T 672 1
subcarrier spacing Af:=1/T | 7.63 Hz a= - —— . = .log, 16 = 1.1 bits/s/H 40
guard interval T, 25 ms T+T, 1024 2 82 2z (40)

R =aB =86 kbls (41)
fifteen different Doppler rates uniformly distributed with \We will additionally consider 64-QAM for increased dateerat
[—bmaxs bmax)s WHEr€bpay = vmax/c = 5+ 1074, Although T 672 1 _
both BP and OMP can handle ICl-aware channel estimation, “ = 77, " 1024 2 log, 64 = 1.65 bits/s/Hz  (42)

we here focus onl_y on BP As comparison we include the _LS R = aB = 12.96 kb/s (43)

and the BP algorithms that assume no Doppler as previously

(D = 0), but benefit from the increased number of pifots Two recorded channel impulse responses are plotted in
Simulation results are in Fig. 7. We observe that perforraanEig. 8; we notice that the channels are extremely sparsh, wit
significantly improves by considering ICI explicitly thrghi about four noticeable clusters, and feature a total delesesb
the increase ofD. The trend with increasind is similar as of about 20 ms. The data from the three days was recorded
in Fig. 6, but generally the performance is about 3 dB wors#der the following conditions,

due to imperfect channel estimation. « July 25: Recorded at a distance of 905 m, drift negligible.
o July 26: Recorded at a distance of 1,720 m, drifting at
VII. EXPERIMENTAL RESULTS 0.7 knots (0.36 m/s).

As numerical simulation can only capture some of the  July 27: Recorded at a distance of 1,500 m, drifting at
effects of real UWA communication, we next use data exper- 0.6 knots (0.31 m/s).
imentally recorded in two different environments: i) duyin For each day, we use five recorded files, for each file 15 OFDM
the GLINT'08 experiment; and ii) during the SPACE'08blocks are transmitted, leading to a total of 75 transmitted
experiment. We will start with the GLINT'08 experiment as iPlocks to assess the BLER.
corresponds more so to the mild Doppler spread scenario, the Inspecting the performance results in Fig. 9, we notice that
proceed to the SPACE'08 experiment, as it included storn@most all blocks can be decoded correctly, for both 16-QAM
days with strong wind and wave activity leading to what wand 64-QAM. Generally BP is the best, followed by OMP; the

call severe Doppler spread. subspace methods can be better or worse than the LS estimator
at times. The overall good performance makes differetiati
A. ICl-Ignorant Receivers for GLINT 08 Experiment difficult. The transmitter motion seems to be well compesdat

The first dat id ded duri tb the resampling and fine Doppler shift compensation, as it
€ Trst dala we consider was recorde uring oes not degrade the performance. We conclude that the calm

GLINT’08 experiment, in the area around Pianosa, just soyt - :
. ) . ter surface during the experiment does not lead to ndiigea
of Elba, off the coast of Italy, in July 2008. At this point ofDo pler spread chgnnels P

the Mediterranean, the water depth is about 90 m, and the dat
was recorded by a hydrophone array with four elements. We ) )
will focus on data recorded on three days of the experimef, |Cl-Ignorant Receivers for SPACE’08 Experiment
July 25 to July 27 of 2008. The SPACE’08 experiment was held off the coast of
Although the general OFDM structure is the same as Martha's Vineyard, MA, from Oct. 14 to Nov. 1, 2008. The
Section V, i.e., total number of subcarriers, split intoajatwater depth was about 15 meters. We consider three receivers
3In previous work we found that BP always outperforms OMP, eisig labeled as S1, S3, and- S5, which \-Nere 60 m, 209 m, and
in the ICl-aware setting [45]. : 1,000 m from the transmitter, respectively. Each receiveaya
has at least twelve hydrophones. We plot the performance

4The same is not possible for the subspace algorithms, as thteppittern - A - I
no longer has the shift invariance property. combining an increasing number of phones to increase the
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Fig. 9. Performance results from the GLINT experiment usingi¢@orant receivers for two data rates (rows): 16-QAM (&)and 64-QAM (d)-(f), recorded
over three days (columns): July 25 (a)/(d), July 26 (b)/(ed auly 27(c)/(f).
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Fig. 10. Examples of channel responses from the SPACE’08riexpet, taken from the LS estimate.
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Fig. 11. Performance results from the SPACE’'08 experimemgu$Cl-ignorant receivers at three different locations,(SB, and S5, correponding to
columns from left to right), first on a day with calm weatherlighu date 297, first row), then on a day with stormy conditiohili@an date 300, second row).

effective SNR and show performance differences. We conside In Fig. 11 we see the BLER performance for Julian Dates
recorded data from two different days, Julian Dates 297 aB@87 and 300. As in the numerical simulation the order of
300, where one day has rather calm sea and one day has sesvangpressed sensing, subspace, LS stays the same.

wind activity, respectively. For each day, there are twelve

recorded files consisting of twenty OFDM symbols each. On 2) S3 Data (200 m): The middle distance might be the

the second day, the five files recorded during the afternoggg; trageoff between channel difficulty and received SNR.
were severely distorted and therefore unusable; we focus s example channel responses in Fig. 10 seem to be more
the remaining seven files recorded during the moming apftained, with a more dominating first cluster. The BLER
evening. . i _ erformance in Fig. 11 is generally better compared to the S1
The OFDM parameters are identical to those in Sec. Vl-Receiver, where the LS performance gains relative to thesepa

given in Table I; hence, the achieved spectral efficiency apdimators, outperforming the subspace methods on Judin d
the data rate are in (36) and (37), respectively. 297 and coming quite close on Julian date 300.
In this subsection, we test ICl-ignorant receivers. The-sam

ple channel responses based on the LS estimators at differen i
receiver locations are shown in Fig. 10. 3) 5 Data (1000 m): At the 1 km distance only one

significant cluster can be spotted in the channel estimates,
1) S1 Data (60 m): At a short distance of only 60 m andand at the stormy day (Julian Date 300) the received energy
considering the shallow water depth, we expect rich muthipaseems to be vanishingly small, c.f. Fig. 10. Accordingly the
and significant Doppler variation due to the geometry. Thisend of the LS channel estimator closing in on the comprkesse
makes this receiver the most challenging in terms of its shhn sensing algorithms continues, with the subspace methads no
response, but the easiest in terms of received signal strengble to handle this diffuse multipath. On the stormy day
or SNR. From Fig. 10, we notice that there are three to fothhe performance is generally not as good, with even the CS
significant clusters of similar strength. The total delayesg algorithms successfully recovering only about 80% of the
is around 10 ms. OFDM blocks.
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Fig. 12. Performance results from the SPACE’08 experimemiguie ICl-aware BP receiver; we focus on Julian date 300 andider both 16-QAM (data
rate of 7.4 kb/s, top row) and 64-QAM (data rate of 11.1 kbfsttdm row); again receivers S1, S3, and S5 are consideresponding to the columns
from left to right.

C. ICI-Aware Receivers for SPACE’ 08 Experiment compared to a conventional LS channel estimator (diffexenc

We saw that on the stormy day (Julian Date 300), tfRetween LS and BP fab = 0). Furthermore, on channelsyvith_
performance was limited, most likely due to ICI caused byevere Doppler spread adopting ICl-aware channel esomati
significant Doppler spread that degrades the effective SNR'd equalization another significant gain in performange ca
the ICI-ignorant receivers. We now focus on Julian Date 3¢t achieved.
to test the effectiveness of ICl-aware receivers based on BP

The OFDM parameters are identical to those in Section VIII. CONCLUSION
VI-B, given in Table I, but we will also consider 64-QAM; e considered sparse channel estimation for multicarrier
hence, the achieved spectral efficiency and the data raféfor ynderwater acoustic communication. Based on the patrdbase
QAM are in (38) and (39), respectively, while for 64-QAMchannel model, we linked well-known subspace methods from

we have: the array-processing literature to the channel estimatiob-
T 336 — 96 B ) lem. Also we employed recent compressed sensing methods,
=7 +T, T 1024 log, 64 = 1.14 bits/s/Hz  (44) namely Orthogonal Matching Pursuit (OMP) and Basis Pursuit
R—aB =111 kb/s (45) (BP). Based on the continuous time characterization of the

path delays, we suggested the use of finer delay resolution
The performance improvement for ICl-aware receivers cawvercomplete dictionaries. We also extended the compitesse
be seen in Fig. 12. As a comparison we also include LS asdnsing receivers to handle channels with different Dapple
BP channel estimators operating ICl-ignorabt£ 0), as they scales on different paths, supplying intercarrier intenfiee
also benefit from the additional pilots and reduced coditg. ra(ICl) pattern estimates that can be used to equalize the
These plots clearly highlight again that using sparse oblanhCl. Using extensive numerical simulation and experimenta
estimation a significant performance gain can be realizegsults, we find that in comparison to the LS receiver the
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subspace methods show significant performance increase[aan C.-J. Wu and D. W. Lin, “A group matching pursuit algoritHfor sparse
channels that are sparse, but perform worse if most received

energy comes from diffuse multipath. The compressed sgnsrlg3

algorithms do not suffer this drawback, and benefit signifi-
cantly from the increased time resolution using overcoteple

dictionaries. When accounting for different Doppler scalas

(24]

different paths, BP can effectively handle channels wittyve
large Doppler spread. [25]

(1]

(2]

(3]

(4]

(5]

[6

[7

(8]

[9

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

26
REFERENCES [26]

I. F. Akyildiz, D. Pompili, and T. Melodia, “Challenges fcefficient  [27]
communication in underwater acoustic sensor netwoGM SIGBED
Review, vol. 1, no. 1, pp. 3-8, Jul. 2004.

J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “The challengésuilding  [28]
mobile underwater wireless networks for aquatic applicesjol EEE
Network, Special Issue on Wireless Sensor Networking, vol. 20, no. 3,

pp. 12-18, May/June 2006.

J. Heidemann, U. Mitra, J. C. Preisig, M. Stojanovic, and Zbrzi, [29]
“Guest editorial - underwater wireless communication neksgn EEE

J. Select. Areas Commun., vol. 26, no. 9, pp. 1617-1619, Dec. 2008.

A. C. Singer, J. K. Nelson, and S. S. Kozat, “Signal preieg for un-
derwater acoustic communication$EEE Communications Magazine,  [30]
vol. 47, no. 1, pp. 90-96, Jan. 2009.

T. H. Eggen, A. B. Baggeroer, and J. C. Preisig, “Commuincabver
Doppler spread channels. Part I: Channel and receiver eg&®,”  [31]
IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 62-71, Jan. 2000.

D. B. Kilfoyle and A. B. Baggeroer, “The state of the artumderwater
acoustic telemetry,JEEE J. Ocean. Eng,, vol. 25, no. 1, pp. 4-27, Jan. [32]
2000.

F. Qu and L. Yang, “Basis expansion model for underwatesuatic
channels?" presented at thMTSIEEE OCEANS Conf., Quebec City, [33]
Quebec, Sep. 2008.

S.-J. Hwang and P. Schniter, “Efficient multicarrier comrication for
highly spread underwater acoustic channel§EE J. Sclect. Areas  [34]
Commun., vol. 26, no. 9, pp. 1674-1683, Dec. 2008.

G. Leus and P. A. van Walree, “Multiband OFDM for covertastic
communications,1EEE J. Select. Areas Commun., vol. 26, no. 9, pp.
1662-1673, Dec. 2008. [35]
W. Li and J. C. Preisig, “Estimation of rapidly time-vang sparse
channels,1EEE J. Ocean. Eng., vol. 32, no. 4, pp. 927-939, Oct. 2007.

M. Stojanovic, “OFDM for underwater acoustic communicas: Adap-

tive synchronization and sparse channel estimation,” ptedeat thentl.  [36]
Conf. on Acoustics, Speech and Sgnal Proc., Las Vegas, NV, Apr. 2008.

C.-J. Wu and D. W. Lin, “Sparse channel estimation for GFD
transmission based on representative subspace fittingsepred at the [37]
\ehicular Technology Conf., Stockholm, Sweden, May 2005.

M. R. Raghavendra and K. Giridhar, “Improving channdiraation in
OFDM systems for sparse multipath channelEEE Signal Processing  [38]
Lett., vol. 12, no. 1, pp. 52-55, Jan. 2005.

C. Carbonelli, S. Vedantam, and U. Mitra, “Sparse chamsémation

with zero tap detection/EEE Trans. Wireless Commun., vol. 6, no. 5, [39]
pp. 1743-1763, May 2007.

0. Rabaste and T. Chonavel, “Estimation of multipath cieds with

long impulse response at low SNR via an MCMC methoHEE Trans.  [40]
Signal Processing, vol. 55, no. 4, pp. 1312-1325, Apr. 2007.

E. Candes, J. Romberg, and T. Tao, “Robust uncertairtgiptes: Exact
signal reconstruction from highly incomplete frequencyomfation,” [41]
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

D. Donoho, “Compressed sensingZEE Trans. Inform. Theory, vol. 52,

no. 4, pp. 1289-1306, Apr. 2006.

E. Candes and T. Tao, “Near-optimal signal recovery framdom pro- [42]
jections: Universal encoding strategiedBEE Trans. Inform. Theory,

vol. 52, no. 12, pp. 5406-5425, Dec. 2006.

R. Baraniuk, “Compressive sensin¢fZEE Sgnal Processing Magazine,  [43]
vol. 24, no. 4, pp. 118-121, Jul. 2007.

S. F. Cotter and B. D. Rao, “Sparse channel estimationmatching [44]
pursuit with application to equalizationEEE Trans. Commun., vol. 50,

no. 3, pp. 374 — 377, Mar. 2002.

G. Z. Karabulut and A. Yongacoglu, “Sparse channelneation using
orthogonal matching pursuit algorithm,” presented at Wehicular  [45]
Technology Conf., Los Angeles, CA, Sep. 2004.

channel estimation for OFDM transmission,” presented atntieConf.
on Acoustics, Speech and Signal Proc., Toulouse, France, May 2006.

] C. Carbonelli and U. Mitra, “A simple sparse channel restior for

underwater acoustic channels,” presented at NfS/IEEE OCEANS
Conf., Vancouver, Canada, Oct. 2007.

J. L. Paredes, G. R. Arce, and Z. Wang, “Ultra-widebanthpressed
sensing: Channel estimationEEE J. Select. Topics Sgnal Proc., vol. 1,
no. 3, pp. 383-395, Oct. 2007.

B. Friedlander, “Random projections for sparse chamsémation and
equalization,” presented at theilomar Conf. on Sgnals, Systems, and
Computers, Pacific Grove, CA, Oct. 2006.

W. U. Bajwa, J. Haupt, G. Raz, and R. Nowak, “Compressezhnhl
sensing,” inProc. of Conf. on Information Sciences and Systems (CISS),
Princeton, NJ, Mar. 2008.

M. Sharp and A. Scaglione, “Application of sparse signevocery
to pilot-assisted channel estimation,” presented at Itiie Conf. on
Acoustics, Speech and Sgnal Proc., Las Vegas, NV, Apr. 2008.

G. Taubock and F. Hlawatsch, “A compressed sensing tqubnfor
OFDM channel estimation in mobile environments: Exploitingohel
sparsity for reducing pilots,” presented at thel. Conf. on Acoustics,
Speech and Sgnal Proc., Las Vegas, NV, Apr. 2008.

——, “Compressed sensing based estimation of doubly ®etechan-
nels using a sparsity-optimized basis expansion,” predeate the
European Signal Processing Conf. (EUSIPCO), Lausanne, Switzerland,
Aug. 2008.

W. U. Bajwa, A. Sayeed, and R. Nowak, “Learning sparsehdip
selective channels,” presented at #ikerton Conf. on Communications,
Control and Computing, Sep. 2008, pp. 575-582.

——, “Compressed sensing of wireless channels in timegueacy,
and space,” presented at tAsilomar Conf. on Sgnals, Systems, and
Computers, Pacific Grove, CA, Oct. 2008.

R. A. lltis, “Iterative joint decoding and sparse chahestimation for
single-carrier modulation,” presented at thal. Conf. on Acoustics,
Foeech and Sgnal Proc., Las Vegas, NV, Apr. 2008, pp. 2689—-2692.
T. Kang and R. A. lltis, “Iterative carrier frequencyfeét and channel
estimation for underwater acoustic OFDM system&EE J. Select.
Areas Commun., vol. 26, no. 9, pp. 1650-1661, Dec. 2008.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. WilletMulticarrier
communication over underwater acoustic channels with ndowmi
Doppler shifts,”IEEE J. Ocean. Eng., vol. 33, no. 2, pp. 198-209, Apr.
2008.

S. Mason, C. R. Berger, S. Zhou, and P. Willett, “Detemtisynchro-
nization, and Doppler scale estimation with multicarrier afavms in
underwater acoustic communicatiohPEE J. Select. Areas Commun.,
vol. 26, no. 9, pp. 1638-1649, Dec. 2008.

J. Huang, S. Zhou, and P. Willett, “Nonbinary LDPC caglifior
multicarrier underwater acoustic communicatioigEE J. Select. Areas
Commun., vol. 26, no. 9, pp. 1684-1696, Dec. 2008.

H. Van Trees,Optimum Array Processing, 1st ed., ser. Detection,
Estimation, and Modulation Theory (Part IV). New York: Johriléy
& Sons, Inc., 2002.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevskgrf interior-
point method for large-scale-regularized least square$EE J. Select.
Topics Sgnal Proc., vol. 1, no. 4, pp. 606-617, Dec. 2007.

M. Stojanovic, “Low complexity OFDM detector for undeater chan-
nels,” presented at theITSIEEE OCEANS Conf., Boston, MA, Sept.
18-21, 2006.

T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothfagdirection-
of-arrival estimation of coherent signal$FEE Trans. Signal Process-
ing, vol. 33, no. 4, pp. 806-811, Aug. 1985.

M. Pesavento, A. B. Gershman, and M. Haardt, “UnitarytfdSIC
with a real-valued eigendecomposition: A theoretical angeexnental
performance study,JEEE Trans. Sgnal Processing, vol. 48, no. 5, pp.
1306-1314, May 2000.

J. A. Tropp and A. C. Gilbert, “Signal recovery from rammd measure-
ments via orthogonal matching pursuitEEE Trans. Inform. Theory,
vol. 53, no. 12, pp. 4655-4666, Dec. 2007.

J. G. ProakisDigital Communications, 4th ed. New York: McGraw-
Hill, 2001.

C. R. Berger, S. Zhou, Y. Wen, K. Pattipati, and P. Wi|l&Optimizing
joint erasure- and error-correction coding for wirelesskea transmis-
sions,” |[EEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4586-4595,
Nov. 2008.

C. R. Berger, S. Zhou, J. Preisig, and P. Willett, “Spachannel
estimation for multicarrier underwater acoustic communicatierom



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH ZD1
subspace methods to compressed sensing,” presented MTHEEEE James C. Preisig(S'79—M’80) received the B.S. de-
OCEANS Conf., Bremen, Germany, May 2009. gree in electrical engineering from the United States

PLACE
PHOTO
HERE

Coast Guard Academy, New London, CT, in 1980,
the S.M. and E.E. degrees in electrical engineer-

PLACE ing from the Massachusetts Institute of Technology,
PHOTO Cambridge, in 1988, and the Ph.D. degree in elec-
HERE trical and ocean engineering from the Massachusetts

Institute of Technology/Woods Hole Oceanographic
e , , . Institution (WHOI) Joint Program in Oceanography
Christian R. Berger (S'05-M'09) was born in and Oceanographic Engineering, Cambridge, MA, in
Heidelberg, Germany, on September 12, 1979. H 1992.
received the Dipl.-Ing. degree from the Univeiit e was a Postdoctoral Investigator at WHOI from 1992 to 1994 an
Karlsruhe (TH), Karlsruhe, Germany in 2005, andy;sjting Assistant Professor at Northeastern UniversBpston, MA, from
the Ph.D. degree from the University of Connecticutjgg4 to 1997. Since July 1997, he has been on the scientifft afta
Storrs, in 2009, both in electrical engineering.  the pepartment of Applied Ocean Physics and Engineering, Wid6d is

In the summer of 2006, he was as a visitingeyrrently an Associate Scientist with Tenure. His resedntdrests are in the
scientist at the Sensor Networks and Data FUsiOBreas of adaptive signal processing, system identificatioderwater acoustic
Department of the FGAN Research Institute, Wachtpropagation modeling, underwater acoustic communications, rmimerical
berg, Germany. He is currently a post-doctoral reépptimization.

searcher at the Department of Electrical and Com- py. preisig is the recipient of the 1999 U.S. Office of Navals@arch

(4]

puter Engineering, Carnegie Mellon University, PittstyrgSA. His research gcean Acoustics Young Faculty Award and is a member of the Atmauis
interests lie in the areas of communications and signal psaegsincluding  gociety of America’s Underwater Acoustics and Signal PrsicgsTechnical
distributed estimation in wireless sensor networks, wilpositioning and committees. He is also an Associate Editor of the IEEE JOURNAE O
synchronization, underwater acoustic communications ahdanking. OCEANIC ENGINEERING and served as a member of the IEEE Sensor

Dr. Berger has served as a reviewer for the IEEEANISACTIONS ONSIG- Array and Multichannel Signal Processing Technical Commiftem 1998
NAL PROCESSING IEEE TRANSACTIONS WIRELESS COMMUNICATIONS, g 2004.

and |IEEE TRANSACTIONSAEROSPACESPACE ANCELECTRONIC SYSTEMS.
In 2008 he was member of the technical program committee andosessi
chair for the 11th International Conference on Informatiasibn in Cologne,

Germany.

PLACE
PHOTO
HERE

holds a United Technologies Corporation (UTC) ProfessprshEngineering
Innovation, 2008-2011. His general research interestsnlighe areas of
wireless communications and signal processing. His receotisfds on
underwater acoustic communications and networking.

Dr. Zhou has served as an associate editor for IEEE Traosactn
Wireless Communications from Feb. 2005 to Jan. 2007, and is @ow
associate editor for IEEE Transactions on Signal Procgssie received the
2007 ONR Young Investigator award and the 2007 Presidefatidly Career
Award for Scientists and Engineers (PECASE).

Peter Willett (F'03) received his BASc (Engineer-
ing Science) from the University of Toronto in 1982,
and his PhD degree from Princeton University in

1986.
Shengli Zhou (M’03) received the B.S. degree in E:_]gcT:Ié He has been a fac_ulty memb‘?’ at the University
1995 and the M.Sc. degree in 1998, from the Uni HERE of Connecticut ever since, and since 1998 has been

a Professor. His primary areas of research have
been statistical signal processing, detection, machine
learning, data fusion and tracking. He has interests in
and has published in the areas of change/abnormality
detection, optical pattern recognition, communica-
dions and industrial/security condition monitoring.
Dr. Willett is editor-in-chief for IEEE Transactions on Ampace and
ectronic Systems, and until recently was associate ethiothree active
urnals: IEEE Transactions on Aerospace and Electrongte®ys (for Data
usion and Target Tracking) and IEEE Transactions on Systbtas, and
Cybernetics, parts A and B. He is also associate editor ferlBEE AES
Magazine, editor of the AES Magazines periodic Tutorialiéss associate
editor for ISIFs electronic Journal of Advances in InformatiFusion, and is
a member of the editorial board of IEEEs Signal Processing klagaHe has
been a member of the IEEE AESS Board of Governors since 2003.dde w
General Co- Chair (with Stefano Coraluppi) for the 2006 IFHEE Fusion
Conference in Florence, lItaly, Program Co-Chair (with Eheg&antos) for
the 2003 IEEE Conference on Systems, Man, and Cyberneticaghigton
DC, and Program Co-Chair (with Pramod Varshney) for the 1908ida
Conference in Sunnyvale.

versity of Science and Technology of China (USTC)
Hefei, both in electrical engineering and information
science. He received his Ph.D. degree in electr
cal engineering from the University of Minnesota
(UMN), Minneapolis, in 2002.

He has been an assistant professor with the D
partment of Electrical and Computer EngineeringEI
at the University of Connecticut (UCONN), Storrs,
2003-2009, and now is an associate professor.




