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Abstract—Sensor localization using channel energy measure- of arrival (DOA) or received signal strength (RSS). The first
ments of distributed sensors has been studied in various sce-two are used extensively in radar and sonar applications [1]
narios. However, it is usually assumed that the target does [2], where DOA requires a narrowband signal and, more

not move significantly during the time needed to collect and . . . .
process the data from the sensors. We want to estimate thelmportantly, a spatial receiver array, while TOA requirdaer

trajectory of a moving target using a network of distributed ~@n active setup or highly precise time synchronization betw
sensors that measure only the received signal strength (RSS),the sensors.

sampled and as a function of time, without knowledge of the  Both these requirements are often not met in sensor net-
target amplitude/source level. To reduce the communication load, works [3], as sensors are usually small and simple. Various

sensors communicate a reduced data set to the fusion center h h theref ted alt fi h t
(FC), generated through local processing. It consists of three researc as therefore suggested alternativeé approaones

characteristic parameters: i) the maximum measured amplitude, €Xtract target position information from the observed algn
corresponding to the closest-point-of-approach (CPA); ii) the In [4], [5] it is suggested to use signal Doppler information

corresponding time index; and iii) the time it takes for the jnfer some reduced DOA. In [6], [7] sets of sensors are used to
amplitude to diminish by 6 dB relative to the CPA. To generate form distributed arrays, while information from more dista

the reduced data sets, each sensor calculates a local maximum tribut ing ti diff f arrival
likelihood (ML) estimate of its parameters. The accuracy of these sensors can contribute using time difference of arrivalQR)

local estimates can be reasonably described by their respectiveinformation. Note that the use of Doppler information deggen
Fisher information matrices (FIMs). The FC combines the data strongly on the signal characteristics, coherent proogssi

transmitted by the sensors using a ML-like formulation based on  of distributed measurements needs time synchronization on
the local FIMs. This results in a heavily non-linear least-squares the order of the signal center frequency, while for TDOA

problem, which we initialize via geometrical considerations. This measurements the svnchronization needs to be on the order
approach has a very low communication load, performs com- u Yy 1zatl

parably to a centralized estimator, and due to the modularized ©f the signal propagation time. o ' '
setup, any measurement model at the sensors can be considered Therefore, in passive setups, where distributed inforonati
Index Terms—Source localization, sensor networks, received C&nnot be processed coherently, it has been suggestedko tra
signal strength (RSS), target tracking. targets based on the more easily attained RSS information.
This problem has been addressed in [3], [8]-[15] for source
localization, where commonly it is assumed that i) the targe
o . does not move significantly while the data is collected from
Source localization using sensor arrays has been one of {§g sensors; and ii) a time series of measurements can be
central problems in radar, sonar, navigation, geophysiod, 5 eraged to obtain an RSS measurement more robust with
acoustic tracking. Existing methods are based on threestypgspect to temporal variation. The optimal estimator based
of physical measurements: time of arrival (TOA), direction| sensor measurements is given by the Maximum Likelihood
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September 18, 2009. This work is supported by the Office of NReaearch, linear optimization problem, several works have suggested
grant N00014-07-1-0429. Part of_ this wo'rk was presentethatltith Inter- approaches of solving this challenge: in [9] the authors- con
national Conference on Information Fusion (FUSION), CofagGermany, sider multiple sources and solve the ML formulation usin
July 2008. The associate editor coordinating the reviewhef tmanuscript p - R : g
and approving it for publication was Dr. Brian Sadler. both an expectation-maximization (EM) type algorithm and
Copyrlght@ZOOS IEEE.‘ Person_al use of this material is permltte(_i. Howgnother iterative approach, in [10] the method of pI’OjEEGtiO
ever, permission to use this material for any other purpose$ beusbtained ts (POCS) i lied t Ive th inomati
from the IEEE by sending a request to pubs-permissions@iege. onto-con\_/ex-se_s ( ) is applied to solve the optlm_ma_l
C. Berger was with the Department of Electrical and Computgiigering, problem in a distributed way. To reduce the communication
University of C_onnepncut. He is now with the_ Dep_artmgnt oédtical and load, in [11]-[13] the authors consider the effect of measur
Computer Engineering, Carnegie Mellon University, Pittgiy PA 15213 ment quantization on localization accuracy in varying ssfu
USA (e-mail: crberger@andrews.cmu.edu) q . y ying p
S. Choi, S. Zhou, and P. Willett are with the Department of fieal [11], [13] also derive the Cramer-Rao lower bound (CRLB)

and Computer Engineering, University of Connecticut, 371rfiedd Way, pased on quantized measurements.

U-2157, Storrs, Connecticut 06269 USA (e-mdikoc07002, shengli, wil- . . . .

lett} @engr.uconn.edu) We are also interested in such a scenario, where distributed
Digital Object Indentifier 00.0000/TSP.2009.000000 sensors have access only to energy readings, but do not have

0000-0000/00$00.0®) 2009 IEEE

I. INTRODUCTION



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED)

the capability to acquire any worthwhile angular inforroati four ambiguous solutions, leading to closed form solutions
Instead of considering a relatively slow moving or statigna c.f., [16].
target as in [3], [8]-[13], we are interested in a more dy- We compare our approach to a centralized ML-estimator
namic scenario, where the target moves considerably batwegéd the CRLB based on all raw sensor data. We find the the
measurements. In [15], tracking of a moving target was cofollowing:
sidered, but the centralized algorithm needs sensors trtrep
frequently, each report leading to one position estimaedhn
be fed into a tracking algorithm. In this sense, our sceniario
most similar to [14], where the communication rate of semsor
only allows to transmit limited data, maybe a few data values )
for the whole time the target is passing through the obsézvab
range. In [14] the only parameter extracted from each sensor
was the maximum measured amplitude, correponding to th )
closest-point-of-approach (CPA). We want to extract more
information from the RSS meassurement series, but stij} onl
a few characteristic values, independent of the length ef th
raw measurement data vector. Therefore we include a specific
measurement model and process measurements at each séngderally the approach can work with a minimum of three
while this was assumed to be done already in [14]. sensors to avoid ambiguous solutions, but in case of styongl

The scenario consists of a target moving through a fief@rrupted or distorted observations at the sensors, mosoee
of distributed sensors, emitting a signal of constant ayeradre needed to achieve a solution close to the centralizedBCRL
power, e.g., a jamming signal or engine noise. The targetThe rest of this paper is organized as follows: In Section Il
is assumed to move with constant velocity during this tim&e describe the problem setup. In Section Il we present
interval and we also assume that the signal propagation ti®@i&r approach. Numerical simulation is used to illustrate ou
is negligible compared to the target velocity. We consid@pproach in Section IV. Then we extend our approach to
simple sensors that measure the received energy, recordinfading signal model in Section V, and we conclude in
this information locally over time. Without loss of geneétgl Section VI.
a free-space attenuation model is adopted, where the RSS is
inversely proportional to the distariceThe sensors process
this data to reduce the communication load; after the targtt PROBLEM FORMULATION & CENTRALIZED SOLUTION
has passed by, the sensors transfer a reduced data set '&o
fusion center (FC), which estimates the target trajectdhe
reduced data set consists of three parameters, which in @ target emits or reflects a signal, while moving through a
noiseless scenario (and assuming constant target motidn aBtwork of N sensors. The sensors are simple and can measure
free-space attenuation) would completely describe the@enonly RSS, but no angular information. We assume a constant
observations. The three characteristic parameters are: velocity model, hence the trajectory of the targét) at time

« the maximum measured amplitude, corresponding to th&€an be expressed as

closest-point-of-approach (CPA);

1) The approach has a very low communication load,
as each sensor has to transmit only three parameters,
independent of how many local RSS measurements were
taken.

In comparison to a centralized ML-estimator, having
availableall the raw sensor data, the loss in estimation
accuracy is small.

Due to the modularized setup, any measurement model
at the sensors can be considered, the only necessary
change being the implementation of a local ML esti-
mator at the sensors.

Broblem Formulation

« the corresponding time index; and x(t) = xo + tv. Q)
« the time it takes for the amplitude to diminish by 6 dB
relative to the CPA. Assume that the sensors are locatest %t for k = 1,--- , N.

To generate the reduced data, each sensor calculates theWider @ free-space signal attenuation médﬂe average
estimates of its three parameters based on the received F&FIved amplitude is expressed by the following equation:
data. The accuracy of these local estimates can be reagonabl
described by the CRLB, which can be easily calculated based (%) (¢,) =, ok _ vV G Py = VP )
on a specific measurement model at the sensors. The FC ’ dl(.k)/do || x(t;) —x® I
combines the data transmitted by the sensors using a ML-
like formulation, where we simply treat the processed daVzaheredE’“) =|| x(ti)—xgk) || is the distance to the-th sensor,
as Gaussian noise corrupted, with covariance given by tb¢*) is the gain of thek-th sensor andP, is the emitted
respective CRLBs. This results in a non-linear least-sepiarenergy measured at a reference distasigeTo simplify, we
problem, which we initialize with several simple estimatesssume altz(*) = G are equal and defin® = G Pyd?. Note
generated via geometrical considerations and then applythat this model neglects the signal propagation time, theze
generic gradient based optimization scheme to each swglherent processing across sensors and the use of classical
starting point. The initial estimates are generated baseti® TDOA information is not possible.
fact that in the noiseless case, two sensors are enough to find

2 i I -
1This could be extended to include an arbitrary path lossficieit or even The free space model can be arbitrary with any path-loss rfaéfﬁ x

-« . .
an unkonwn one that would have to additionally estimated. (dgk)> . The form of the ML scheme will change, but the notion does not.
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Fig. 1. Example of a target moving through a sensor field: (a3@elocations relative to target trajectory (target movestfieft to right); and (b) noise-free
plot of sensor amplitude measurements; each sensor by itsgibtaxtract any range information without the unkonwn seuewel, but together we notice
that the target passed the closest to sensor three.

B. Conventional Centralized Solution Matrix (FIM) is
If there is no information about the amplitude/source level *)
of the target, the vector of unknown target stale = Jg=—FE |VgVglog Hf (7} |9)
[P, x¢', vT|T has to containP as an additional nuisance ki
paramtet. The best centralized estimator is given by the 1 (k) (k)
Maximum Likelihood (ML) approach, =) ; [Vga } {Vga } ’ ©)
Ou = argmax [ [ f (T(’f) | 9) . (3) Where we use the gradient of (2) with respec#fo
0 ‘ (3
pul® o)
In this paper, we will consider explicitly two measurement _ ) _ o || =l (xo — x4+ tiv)
models — although the approach could be applied to manya a{cg) o {di ] .
— the additive white Gaussian noise (AWGN) model and a 9 - Z’(‘k/)ﬁa (x0 — x + tv)
Rayleigh fading model (Swerling 1l target). The conditibna { ] 6)

probability density functionf ( r k) | @) will vary with the
model. We will first focus on t e AWGN model and conS|de[II
the more challenging Rayleigh fading model later.

The amplitude measurements under the AWGN model are Slnce in sensor networks we are motivated to reduce the
*) are independent, communication overhead and the related expense of energy

described by-*) = ¢{¥) 2, wherew;,

identical, zgro mearL1 (;razlljgsian noigel of variande The and bandwidth, we would like to locate and track the target

conditional probability density is accordingly: using only a reduced data set of each sensor. In [14], e.g.,
the authors suggested only utilizing the maximum amplitude

E STIMATION WITH REDUCED COMMUNICATION LOAD

1 Ir k) a(;c)‘g measurement of each sensor,
f (Tz(k) | 0) = exp D) .4 (k) (k)

V2mo 20 (may *= MAX a (1), @
which can be inserted into the ML estimator in (3) with th&S it is inversely proportlonal to the distance at the cleses
amplitude,a!™ defined in (2). point-of-approach (CPA)y), i.e,

Given the above definitions, the Cramer-Rao lower bound SQXOC 1/dm|n ®)

(CRLB) on the estimation accuracy of any estimator having
available all the raw measuremel{bék)}k,i can be calculated due to the free-space attenuation model.
in a straightforward fashion [17]; the Fisher Information Using two sensors, the ratio of their maximum amplitudes is
the inverse of the ratio of the minimum distances to the targe
3In the same way it is possible to include an unknown path-lastof o since they share a common, but unknown, source level. The
as another nuisance parameter target trajectory is tangential to two circles centerediacbthe
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Fig. 2. Given the ratio between the points of closest appradid¢wo sensors, the target trajectory has to pass throughobtwo possible pointsg,, pex);
dashed lines are ambiguous solutions (four possible in)total

sensors respectively, their radii given by the minimumatise of how fast the RSS decreases. These parameters imply the
at the CPA, of which we know only the ratio, not their actualelocity of the target. As there are two possible points ilegd
values. As demonstrated in [14], based on a classical gepmeb the same ratio of maximum amplitudes and an ambiguity
theorem by D’Alembert (see e.g. [18]), for a given ratiosthiabout the axis connecting the two sensors (c.f. Fig. 2) wilis
defines two possible points, one of which is part of the targstill leave four ambiguous solutions (the FIM is non-siragul
trajectory (see Fig. 2). Using different combinations obtwas there are only finitely many solutions).
sensors, some information about the target trajectory @n b
obtained. )

The maximum amplitude is related to the minimum dis’l—'\' Local Sensor Processing
tance. However, we believe that more information can be This motivates us to represent the information gathered at
extracted from each sensor. Evaluating the FIM defined @me of the sensor via three parameters. In fact, the projecti
(5) — but for a single sensor only = ky — it is singular. of the target trajectory onto one sensor’s observationespan
This confirms that the information from one sensor only ise easily written as:
not enough to estimate the target state. Two vedioasnd 6’

k
can produce the same measurements at one sensof'e=g., (k) _ VP _ Ao (11)
[@2P, x¥T' + A xT, avT])T, with A,x = (a—1)(x —xgkO)), ! I (xo — xgk)) +tv | 143 EONS
leading to: + ( N )
(ko) VP with the definitions of the closest approach time and the 6 dB
a; "’ = .
I 6o —x{) +tiv | point
_ va2P (10) k), = arg max a® (t) (12)

B | a(xg — xgko)) +t;av ||

(k)
HR) 4 At("')) _ OQmax 13
In words, a “louder”, faster target, farther away leads to the (k) ( max 2 (13)
same measurements as the closer, slower target of |°We‘”‘5°%specting the geometry, c.f. Fig. 3, it can be easily vatifie
level The information from a single sensor has also angulg{¢

uncertainty. These two degrees of uncertainty or ambiguaty

also be observed in the FIM: given a single sensor only, the ® VT (%o fx(k))| k) _ VP
FIM has a rank of three, leaving two dimensions undefined in min vl » Omax = (k)
some equivalent 5-dimensional parameter shace ( min

k
Combining the information of two sensors, the FIM has tE) v = v (%0 — Xs ))7 AR | v = V3d®),
usually full rank (one exeption is if both sensors lie on a vl mn
line parallel to the target trajectory). As stated beforent (14)
the ratio of the maximum amplitudes we can find two poin%here‘? is defined viav™v = 0 and | ¥ || = || v ||

through one of which ihe target has passed. Additionally we Based on the local measurements, each sensor estimates the

can exploit the time corresponding to the CPA and a measure .
P P 9 parameter vectop™ = [a8, t). At(®]. The ML estimate
(k) ;
4Note that we always implicitly assume here that the target hasady of the parameter vectap IS
“passed” the sensor; if the measurements are reported bh#o@HA, the rank (k) (k) k
of the FIM will not change, but practically the quality of tmeeasurements ML = arg maXH f <ri | ¢( )) . (15)
will be low — as reflected by a small magnitude of the values offthé. 1/;“") P
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Note that the cost function (18) is equivalent to assuming
that the local sensor estimat&fﬁ,,kf are corrupted by additive
Gaussian noise, their covariance given by the FIM. This is of
course not correct, but seems to work reasonably in practice
The FIM, J%, is evaluated at the local estimawéﬁ), S0 no

additional data has to be transmitted.

The minimization in (18) is a heavily non-linear least
squares problem. To avoid exhaustive search, we need a good
initial estimate — then we will have a good chance to reach
a global maximum via simple gradient based optimization. In
the following we will find a closed form estimate based on
two sensors, by assuming noiseless measurem&?]ﬂ)sand
solving the geometrical problem.

1) Initial Estimate Based on Two Senso¥ss noted before,
based on two sensors, there are four possible target waject

Fig. 3. Given the target’s initial position and speech(v), as well as ; ; ; ; ; ;
a sensor locatiorxs, the closest-point-of-approach (CPA), defined by correr-les' Two interior solutions, c.f. Fig. 2(a), and two exteri

sponding time fmax, and distancedmin, can be calculated by considering Solutions, c.f. Fig 2(b).

the geometry. a) Interior solutions: The interior intersection poinbi,
can be calculated using the following ratio,
Then each sensor forwards the three dimensional vaistfr = d) 1d3) = a2 /all), (20)
to the FC. the weighted f th locati
The CRLB of the local estimates can be calculated in & '€ Welghted average ot the sensor locations,
similar fashion as the measurement model stays unchanged. 3 dg%xgw + dﬁnl%xf) x4 px? 01
The FIM is ; Pin = d§r11i21 + dg% 140 (21)
(k) _ 1 (k) (k) - . .
Ty =2 Z {Vwai } [Vwai } ; (16) similarly the time when the target would pass through this

point can be calculated from the times of closest approach

with the only difference being the derivatives taken with(t)

respect toy, P t 4t 22)
- % - n 1 + 77] .
o 1+3(t”;i*<2§i> Using this as a reference point, we can find two possible
% Balk (ti—t:) At velocity vectors, c.f. Fig. 2(a); using the definitions i)l
dama - P ——
®) _ | aa® | _ . )\ Tl _ ) Tl _ @
Vwai = S | = |:At(k>\/1+3< m(k)) } . (tﬁ}gX7t§3X> v = vi(xo—xs') Vvi(x0—xs)
9a'™) 300 (109 —1,)? v vl
AALF) — 5 (23)
At<m\/1+3(%) } VT(X(Q) B X(l))
—_ \*s 78 ) 24
an K2 9
=[x —x{V || cos 5 (25)

B. Fusion Center Processing

We would like to formulate a global cost function, similatvhere 3 is the angle between the velocity vectet, and the
to a ML estimator. Then we can choose an estingiatevhich line connecting the locations of the sensots!® — x{).
reproduces all information received from the sensors inesorhurther we can use
closest sense. We define a global cost-function as: {,T(X(?) _ X(‘l))

A (At(l) + At(2)> v)=v3—=—=

- vl

= V3 x® = x| sing  (26)

T
. k) (k) ) (k) < k) (k) )
arg min — (7] J — o)),
1% zk: ( e =¥ (0)) Ty (vme ¥ (0) and we choose such thatv? (xo — x\%) < 0 < v7(xo —

(18) xgl)), which we can since the target is assumed to pass

where the predicted measurements of seksgiven a certain between the sensors (the definitions match Fig. 2(a) / Fig. 3)

imates"” , It follows
target state estlmate/:( )(0), can be found easily from (14): N
A(k) ﬁ tanﬁ — \/gﬁ7 (27)
(k) (zln/l’ax \Vg(xo—xii)ﬂ tmax — tmax
P (0) = tr(nzgx = %ﬁ;‘“) (19) H <@ _ D | N
A V3L G0 —xD)| Ivi= WCOS/B, (28)

ME max
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where the tangent has an ambiguity leading to two possible ‘ ‘
solutions. The original reference point can be reconsdict —— target trajectory

[ee]

based on the velocity vector and the interior point 7t Q  Sensors
{  4th sensor
~ ~ u] 5th sensor
X0 = Pin — tinV. (29) 61 X  6th-10th sensor
. . I . . ¥ 11th-20th
b) Exterior solutions:The exterior intersection point can = 5t sy
be calculated similarly as, =, * x
W _ @) e oy %
~ X — X ©
Pex = %a (30) L3l o
—n 0
with the corresponding time, 2t & OX *
(1) (2)
oy = max — Tlmax (31) 1
L=n
Otherwise the equations stay similar, with a new angle % 2 s 6 8 10
x—axis [km]

(1= ) - I v =1 %2 =% [l eos, (32)
Fig. 4. Overview of the example scenario; the target passesdgh a sensor
but now both sensors lie on the same side of the trajectaifd of roughly4 x 4 km, subsets of the available sensors will be used at first,
(same sign), to compare estimation accuracy in terms of available sensorskering of
sensors 1-3, denoted here as “Sensors”, is identical tolffig.

(Atu) _ At(z)) vi= V3 x® x| siny.  (33)

The solutions are: Measurement
1 2 L A Coarse: (a_,t
tany = ﬁ%, (34) ° ; Coarse: (6 gBm;oint
tmax — Tmax sl A LocalML:(a t )
I Xg2) _ Xgl) I O  Local ML: 6 dB point
Ivili="—g5—z s (35) o 4l Truth
tmax - tmax 'g
and = 3
X0 = Pex — texv. (36) g
2) Multiple Starting Points:Having reduced data s (kL) 2
from two sensors, there are still four ambiguous solutions. !
One variant is to start gradient based optimization fromheac

solution and compare the cost function at the end points. of
Reduced complexity can be achieved by choosing the lowest
cost function among the four starting points, reducing the
complexity spent on the gradient based optimization by a
factor of four, but possibly degrading performance. Fig. 5. Example of local sensor estimates for an SNR of 10 dBwsehare
Consider three sensors; there are three possible sensar péf underlying t(mth' the sensor measurements, the coaiseates, and the
Each pair gives four solutions, leading to a total of twelv¥L estimatesyy, .
initial points. As this number grows exponentially with the
number of sensors, either a clustering algorithm can beexppl . . ]
to reduce cost function evaluations by grouping solutiod@ the figure). As the minimum number of sensors to arrive
together that will converge most likely to the same end poiff @n unambiguous estimate is three, we will start with only

(as in [14]), or a preferable pair of sensors could be chosBHee sensors, gradually increasing this until all tweetysers
for initialization, e.g., based on their FIMs. shown in Fig. 4 are included. This will also indicate a furthe

tradeoff between communication load and estimation acgura

as even in a large sensor field only a subset of sensors could
] o be queried for sensor readings to preserve battery power or
A. Scenario Description available bandwidth.

Based on the previous discussion, each sensor locally esThe range between the sensors and the target is on the order
timates a three-parameter vecmm) and forwards it to the of kilometers, the measurement sampling frequency is 1 Hz
FC. The FC then estimates the target trajectory based on #mal the target's speed is approximatily ||~ 200 m/s, which
data delivered by the sensors as described in Section lll-Bwould be an aircraft in a radar scenario, but could easily be

The scenario we consider for illustration is shown in Fig. Adapted to slower speeds and longer observation inteiiads.
the target passes through a sensor field, where we will censidignal-to-noise ratio (SNR) at a reference distance of 1&m i
a varying number of sensors (indicated by different markedefined asP/o? and is varied between 10-40 dB.

20 25 30 35 40 45 50
time [sec]

IV. NUMERICAL RESULTS
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B. Local Sensor Processing
Each sensor processes its observations locally, gengaatin

ML estimate. Since the function in (15) can be multi-modal, | | | | —‘E—R‘MS Ser;sorl
in a first step coarse estimates are formed by simply taking 100X —9—5 Emg 22222:5 ]

the maximum over the received samples and the point closest
to half this amplitude (c.f. Fig. 5); from this starting pbin
we use a gradient based non-linear least-squares algotithm
converge to a (local) maximum. As can be seen in Fig. 5, even
the coarse estimates are fairly close, so the gradient hdked
search usually converges to a global maximum in the AWGN
case.

Comparing the CRLB as defined in (16) with Monte-
Carlo simulation usingl0® runs, we can see that the local 10
estimates basically reach the bound on estimation accguracy
c.f. Fig 6. For low SNR a more sophisticated local processing

10"

Amplitude

-2

possibly using a starting point based on interpolation ar lo 0 5 10 15 20 25 30 35 40

pass filtered measurements, could improve performance. The SNR [dB] .

estimation accuracy between the three sensors variesyras so (@) RMSE: amplitudex s,

sensors are closer to the target and therefore have a highel 102

received SNR. This is also reflected in the corresponding B— RS Sensor 1

CRLBs. —©— RMS Sensor 2
10 B —&— RMS Sensor 3 | |

C. FC Processing

The FC combines the data generated by sensors and es
timates the trajectory, using the cost function in (18). We
find that in comparison to a centralized ML-estimator having
available all raw sensor measurements, the loss in estimati
accuracy is small.

We start with a setup of three sensors, marked in Fig. 4
as circles; although as discussed previously, an unambgyuo
solution exists, e.g., based on the full ML cost-functior{5in
|t§ estlme}tlon accuracy de§cr|bed by.the CRL!B |n.(3) —to find 03 s 10 15 20 » 30 3=
this solution a five-dimensional non-linear estimationkem SNR [dB]
has to be solved. The same applies to our cost function in
(18). With increasing SNR and number of sensors we expect
for both cost functions to become more “benign”, i.e., effitti 10°
- but sub-optimal - optimization schemes like gradient dase
approaches, will arrive more often at the global optimum.

In any case, efficient solving of these non-linear opti-
mization problems will strongly depend on the initializati
We take the following approach: each possible sensor pair
generates four ambiguous solutions based on the closed form
formulas; then all these tentative estimates are evalustieg)
the cost function in (18), where we expect that solutions con
nected to “mirror” images are discarded; finally the gratlien
based optimization is initialized with the tentative estte |
with the best cost function value. We expect that if we itiz@
the gradient based optimization with an estimate connected
a “mirror” image, the final estimate will be poor. Therefore w 10°
include a separate statistic: how often a “mirror” image was
selected and how good the performance is excluding these
cases.

The three sensor case is shown in Fig. 7, we notice that fag. 6. Root-mean-square error (RMSE) of local sensor estimas
low to average SNR the performance is degraded by Choosmglpariso_n the CRLB for each sensor as defined in (16) is iedlag dashed
a wrong initialization. As comparison we also include a _gscgrr‘ggfr?d'sstga:i'gcéllly met by the local estimates; numbeahgensors
estimate based on the full ML cost-function in (5), initzdd
with the same point - therefore also suffering from bad
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Plot of the RMSE for three sensors; the plots includmse where
wrong initializations are deleted, solutions based on ttal traw sensor
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intialization. Once the initialization errors become ngile,
we see that the full ML solution basically achieves the CRLB,
closely followed by the reduced communication scheme.
When using more sensors, initialization complexity in-
creases, as there are more possible sensor pairs. Stile sin
the initial estimates are based on closed form solutiores, th
complexity is limited. We consider increasing the number of
sensors from three to twenty in several steps, see Fig. 8.
As expected more independent observations lead to improved
estimation accuracy, as reflected in the CRLB, but for the
cases of four or five sensors, the main improvement is related
to better initialization. The CRLB only improves slightly,
while the errors due to wrong initialization are greatlyueed
(position and velocity); we include an additional plot, Féga),
which shows the probability to initialize from a “mirror”
image, instead of including the performance with thesease
removed as before. We find that even a slight increase in the
number of sensors helps strongly to reduce this probapbility
because “mirror” images are not common between sensors.
When using a large number of sensors, estimation accuracy
improves slowly. As the received SNR is inversely propor-
tional to the distance to the target, the sensors which asecl
to the target trajectory dominate the performance. In thise
a dense sensor network simply increases the chance of having
a sufficient number of sensors close to the target trajectory
while not necessarily all sensors need to transmit to the FC.
For example, only sensors with a sufficiently Iad@x could
transmit their data; but we do not pursue this idea furthee.he

V. EXTENSION TO RAYLEIGH MODEL

Assuming a Rayleigh fading signal model (Swerling Il
target), the amplitude measurements are given by
r® = b)) | )

[ [

(37)

where thehEk) and wy“) are zero-mean complex Gaussian
random variables of unit and/, variance respectively. The
measurementsgk) are therefore complex Gaussian, their am-
plitude is Rayleigh distributed

) 2/rt*)| )2
F(IrPlp®) = ——H—exp |~ )
( | ) No + (al™)? No + (atM)2
(38)
while the phase is uniform and holds no information.
The optimal centralized solution is the ML estimate given
by,
O = argmngf (‘ngk)| | 0) , (39)
ki
but the probability density function is now given by (38).€Th
CRLB on the estimation accuracy can be calculated via the
FIM,

Jg=>" _ b 2[V Ml v “”]T (40)
07 N+ @Pyz) 0% TL0%

measurements and the CRLB as defined in (3); the SNR is defined avhere the gradients are unchanged from (5) IntereStiBgly,
reference distance of 1 km.

opposed to the AWGN result, the FIM for a given geometry is
bounded. While in (16) the FIM has a leading term inversely
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Fig. 8. Comparison for varying number of sensors; (a) proliglaf not choosing a “mirror” image for initialization; (b)Y} about five sensors are sufficient
for performance close to the CRLB (dashed lines), while largenbers bring only gradual improvement.

proportional to the noise variance, here the leading termere the definition of the gradiem¢a§k) is in (17). The
approach constant values when the noise variance dimBjisteame observation concerning the noise variance applies as f
therefore for a given geometry the performance will nahe centralized CRLB.

improve beyond a certain point, even for infinite SNR. The estimates are forwarded to the FC as before; the
processing at the FC is not affected by the measurement model
except for the evaluation of the local FIMs, necessary fer th

A. Adapted Sensor Processing ~the _ :
The local sensor processing is the same in principle b(fRSt function in (18). We will study some numerical examples
' the following.

each sensor calculates the ML estimates of the parameter VEC
tor ™) = [ale), tm). At(®)] using the Rayleigh probability

density, B. Numerical Results

(41)  The Rayleigh fading model is in some sense the most
challenging, as our only information about the target is-con
The calculation of the CRLB also uses the Rayleigh prolained in the amplitude - now severely distorted by fading.
ability density; the FIM can be calculated as This is reflected in the CRLB, as even fd¥, — 0, the
CRLB does not improve beyond a certain point, dictated by
the number of measurements and sensors. To achieve any
reasonable performance, we need to increase the measaremen

rate, which we first double to 2 Hz.

(k) _ ()] [ ®)
gav —argrlzl%;l:[f (In®1 ).

Jow =3 20\’ v o™ [v a®]"
Pp® = Z_ NO+(a§k))2 [ P } [ P } ’
(42)
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Fig. 9. Example of the Rayleigh fading model; the amplitude rimfation
is severely distorted making this measurement model very ciugilg.

To visualize this challenging scenario, we plot the same
example from Fig. 5 now for the Rayleigh fading model in
Fig. 9. We immediately notice that the amplitude is barely
observable, noticeable especially at the coarse estimilbes
local processing has to be either performed via a grid search
in three-dimensional space, or improved initial estimdiage
to be acquired using some smoothing operation. To start the
gradient based optimization, we use coarse estimatesebtai
after filtering the received data with a Gaussian shape lassp
filter.

The results for the local processing are shown in Fig. 10(a)-
(c), where in comparison with Fig. 6 we see a very contrasting
behavior in the CRLB. As mentioned before the FIM is
bounded from above for increasing SNR; this is now reflected
in the CRLBs being bounded from below. Generally the
performance is lower than in the equivalent AWGN scenario,
even though we have double the number of measurements.
Still, the local processing achieves the CRLB and can thesef
be characterized by the respective FIMs.

In Fig. 11(a) we plot the estimation accuracy for varying
numbers of sensors; we limit the plot to the initial position
x¢ as the plot for the velocityw has largely similar behavior
and the source leveP is only a nuisance parameter. We see
that the performance does not reach the CRLB, especially so
for small numbers of sensors. As the local estimates are of
low accuracy, the global cost function has many local maxima
of similar height to the true solution. Only for five or more
sensors can a good initialization point be chosen reliagg,

Fig. 11(b).

Next we consider the same setup, but increase the local
sensor measurement rate to 10 Hz. In Fig. 12 we see that
this greatly improves performance; looking at the CRLB we

improve as predicted by a little more than 6 dB, due to havingy 10.

Amplitude

time [sec]

time [sec]
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Plot of local RMSE and CRLB for the Rayleigh measuremen

five times as many measurements, more or less linearly gcalimdel; the performance is generally worse than for AWGN and dmgs
the FIM. Much more important the initialization and g|0ba!;1crease significantly with SNR. Still the local ML estimate® close to the
’ : ounds.

optimization improves so that five or more sensors lead to a
negligible number of bad initializations.
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lines are CRLB) and (b) the probaility of correct initialian for the Rayleigh measurement model with rate of 2 Hz.
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Fig. 12. Increasing the measurement rate to 10 Hz, the perfeengan be improved to values comparable to the AWGN case at 1 Hawamdge SNR
(thick lines are based on reduced data, thin lines are baddlloraw data, dashed lines are CRLB).

VI. CONCLUSION these reduced data sets, using a ML-like approach, which
e initialize using geometric considerations. We find that

We studied a scenario in which a target moves through

sensor field at constant velocity. The sensors are simpleﬂi}lls approach leads to a much reduced communication load,

that they can only measure a received signal strength (R§§ ieves_estimation performance close to the centrglizﬁd €
profile, which is modeled using a free-space attenuationeinod Mt using all raw measurzmlents anddcda_ln be i@s'lé adapted
Subject to a low communication rate, the target trajectott; varying measurement models, e.g., additive white Gaossi

is to be estimated at a fusion center (FC). We suggest %ise (AWGN) or Rayleigh fading. Surprisingly, this apprbac
following approach to this end: the sensors locally proce

sgo benefits from an increased measurement frequency at the
their measurements, extracting three characteristicnpetexs 0

cal sensors, where more raw data is available; although no
using local maximum likelihood (ML) estimtes, namely i) th d?}:t'onal datal IS transmdlttft_ad,ltheflmproved local estemat
maximum measured amplitude, corresponding to the clos g@d 1o a greatly improved Tinal performance.
point-of-approach (CPA); ii) the corresponding time ingaxd
iii) the time it takes for the expected amplitude to diminksh
6 dB relative to that at the CPA. Each sensor only transmits
these three characteristic values to the FC, |ndepender_1t [Qf S. Haykin, Array Signal Processing Englewood-Cliffs, NJ: Prentice-
the number of local raw measurements. The FC combines Hall, 1985.
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