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ABSTRACT 
 

We consider a feature selection method to detect skin tumors on chicken carcasses using hyperspectral reflectance 
data.  This allows for faster data collection than does fluorescence data.  A chicken skin tumor is an ulcerous lesion 
region surrounded by a region of thickened-skin.   Detection of chicken tumors is a difficult detection problem because 
the tumors vary in size and shape; some tumors appear on the side of the chicken.  In addition, different areas of normal 
chicken skin have a variety of hyperspectral response variations, some of which are very similar to the spectral 
responses of tumors.  Similarly, different tumors and different parts of a tumor have different spectral responses.  Thus, 
proper classifier training is needed and many false alarms are expected.  Since the spectral responses of the lesion and 
the thickened-skin regions of tumors are considerably different, we train our feature selection algorithm to detect lesion 
regions and to detect thickened-skin regions separately; we then process the resultant images and we fuse the two HS 
detection results to reduce false alarms.  Our new forward selection and modified branch and bound algorithm is used to 
select a small number of λ spectral features that are useful for discrimination.  Initial results show that our method offers 
promise for a good tumor detection rate and a low false alarm rate.  
 
Keywords: chicken tumor detection, feature reduction, feature selection, hyperspectral data, product inspection, tumor 
detection. 
 

1. INTRODUCTION 
Hyperspectral (HS) image data is high-dimensional data that contains more than a hundred images in narrowly 

spaced spectral bands (λ).  It has been shown that use of hyperspectral information is useful for detection of objects in 
military applications such as detecting military vehicles [1, 2, 23] and mines [3, 23], for land use applications [4], and 
for many USDA product inspection applications [5-12]. This occurs since HS data provides spectral information that 
uniquely characterizes and identifies the chemical, moisture, and physical properties of the constituent parts of an input 
object, scene region, or an agricultural product.  Hyperspectral data has successfully classified: internal-damaged 
almonds from normal ones [5, 24], aflatoxin-infested corn kernels from good ones [6-8], scab vomitoxin and ergosterol 
in single wheat kernels [9], and fecal contaminated chicken carcasses from clean ones [10-12]. 

One of the main problems in the classification of high-dimensional data is that there are often not enough samples 
in the training data.  It is generally accepted that the required number of training samples must be at least ten times the 
number of features (or in this case input λ spectral samples per class) [13] if one wants to be able to accurately predict 
the class of an unknown sample.  This phenomenon is known as the curse of dimensionality.  Thus, use of hyperspectral 
data requires more than a thousand training samples per class in order to cope with the curse of dimensionality.  In 
general, this number of samples is quite difficult to obtain.  Thus, it is necessary to reduce the number of features by 
either feature extraction or feature selection techniques.  Feature extraction refers to algorithms that map all of the 
original features into a few features (each of which is a function of all original features), and feature selection refers to 
algorithms that select a small subset of the input feature set (use of only several λ features) to use for classification. 
Feature selection is preferable because it provides faster data acquisition and a less expensive system.  We consider a 
new feature selection algorithm developed earlier at Carnegie Mellon University [5]  

In this paper, we consider the use of feature selection on hyperspectral images for the detection of skin tumors in 
HS reflectance images of chicken carcasses.  A chicken skin tumor is a round ulcerous lesion region surrounded by a 
region of thickened-skin [14].  Figs. 1 and 2 show the 486.9 nm wavelength band images of three chicken carcasses with 
all tumors numbered and marked by rectangles.  The images in HS data are gray-scale; the image in each λ spectral band 
is affected by the skin color, shading, and slope of each local region of the carcass.  Figs. 3a to 3d are enlarged images of 
4 tumors in Fig. 1.  The lesion regions of chicken skin tumors in Figs. 1-2 vary in size from 2×4 pixels to more than 



25×15 pixels.  In a single gray scale HS image at one λ, such as Fig. 1, the central ulcerous lesion region of a tumor 
appears as a dark-gray region, as seen in Figs. 3a to 3d, and the thickened-skin region immediately surrounding the 
lesion region appears as bright rings.  When tumors occur on the side of the carcass, they appear elliptical and are very 
small.  Such tumors are tumors numbered 4 and 5 in Fig. 2.  Thus, detecting chicken skin tumors is a difficult problem.   

 

   
   Figure 1: The 486.9 nm wavelength band image of first HS images     Figure 2: The 486.9 nm wavelength band image of second HS  
            with all 7 tumors numbered and marked by rectangles.             images with all 14 tumors numbered and marked by rectangles. 
 

                                   
      (a)                  (b)                (c)                (d) 

Figure 3: Enlarged images of the tumors numbered 1, 3, 4 and 6 respectively in Figure 1. 
 

Prior work on detection of chicken skin tumors using HS data considered statistical properties of HS image local 
regions in three selected bands (λ) [15].  Principle component analysis was applied to hyperspectral images of normal 
and tumor regions on 8 chicken carcasses. The first 10 PCA eigenimages were calculated for each of the 8 chicken HS 
image sets.  The eigenimage with the best contrast and difference between the tumor and normal regions was chosen and 
the three bands in its eigen decompositions with the largest coefficients were used as the selected bands.  The 465 nm, 
575 nm, and 705 nm bands were used.  These bands lie in the B, G, and R portions of the spectrum, allowing use of a 3-
color camera for detection with ±10nm filters in each region.  A square grid with a local mesh size of 64×64 pixels was 
placed over each final combined image with each pixel corresponding to a sample area of 0.1 mm2.  Statistical features 
(mean, skewness, kurtosis, and coefficient of variation, defined as (standard deviation / mean)×100) were calculated for 
the pixels in each square in this grid and used as inputs to fuzzy classifiers [15].  The training set for the fuzzy classifiers 
consisted of 100 normal and 52 tumor regions (each was 64×64 pixels).  The fuzzy classifiers classify each grid region 
as normal or tumorous skin.  Use of three features (coefficient of variation, skewness, and kurtosis) gave detection rates 
of 91% and 86% for normal and tumorous skin tissue region, respectively (44 of 51 test set tumors were detected).  We 
found the grid size too large, since the lesion regions of 5 of the 21 skin tumors in our database consist of only 8 to 20 
pixels.  This emphasizes the need to classifying each pixel individually in our data.  Kim et al [16] approached the 
problem differently using HS fluorescence imaging.  They computed the maximum intensities, slopes, and ratios of 
maximum intensities in several specific wavelength bands for each pixel and used them as features for a linear classifier.  
They used 48 tumor and 65 normal skin pixel samples for training the spectral classifier.  Their three λ features were 
chosen by inspection of the training data; as a result, these features are not guaranteed to give the best solution.  A 

 



simple unspecified linear classifier was used to classify image pixels into either tumor or normal class.  We note that the 
data may not be linearly separable.  Normal-class pixels that were misclassified by the linear classifier as tumor-class 
pixels are referred to as false alarms.  Spatial image processing (size and ratio of major and minor axis of blob regions) 
was applied to the resultant binary 2-class image to remove false alarms.  31 of 41 skin tumors (76%) in 10 HS image 
sets were detected with 12 false alarm regions.  Our 2 images of 3 carcasses were in their set of HS images; but a 
different HS system (reflectance rather than fluorescence) was used for our data as more light results. 

Our database contains HS reflectance images in the first 65 spectral bands (λ) out of 112 ranging from λ = 447.3 to 
733.5 nm.  We show (in Fig. 4) the spectral responses of four of the tumors and four of the normal skin regions of the 
carcass in Fig. 1.  These are the responses at one pixel in the lesion regions of tumors numbered 1, 3, 4 and 6 in Fig. 1 
(or Figs. 3a to 3d, respectively) and in various normal skin regions of Fig. 1.  From Fig. 4, we see that the spectra of the 
lesion regions of tumors have similar relative shapes but varying intensities.  This is expected because tumors on the 
side of the carcass (e.g. tumor number 6) reflect the incident light away from the HS sensor, resulting in lower intensity 
responses than those from tumors in the middle of the carcass (e.g. tumors numbered 1, 3, and 4).  This emphasizes the 
need to normalize the response at every pixel in the database before training or testing.  Thus, the response at each data 
pixel is normalized by dividing its response by its average response over all wavelengths.  Fig. 5 shows the normalized 
version of the spectra in Fig. 4.  The spectral responses of the lesion regions of tumors and the normal skin regions are 
different.  The spectral response from other normal skin regions is much closer to the lesion response curves.  We found 
that the spectral responses of the lesion regions of different tumors are not exactly the same.  We found that the 
responses of different normal skin regions vary considerably; thus one must carefully select the training set pixel 
database to represent normal skin regions. 

 

   
              Figure 4: Unnormalized spectra from Figure 1.            Figure 5: Normalized version of the spectra in Figure 4. 

Band Band

 
We were unable to detect only the tumor regions using HS data with a single set of λ bands without a large number 

of false alarms.  Thus, we use HS processing to separately detect the central lesion regions and the outer thickened-skin 
regions of the tumors.  A binary image was produced for each case.  These images were then fused and morphologically 
processed to produce our final images.  Fusion was found to be necessary to reduce false alarms.  The use of fusion is 
new and has not previously been employed in HS data processing.  Fig. 6 shows the normalized spectra of some pixels 
in the lesion and thickened-skin regions of tumor 1 in Fig. 1.  It is clear from Fig. 6 that the lesion and thickened-skin 
regions of tumors have different HS responses. Thus, we use different sets of feature bands to detect each.  To do this, 
we select a portion of the lesion region and normal skin region pixels from the chicken images as the pixel training/test 
set or the lesion pixel database. We also create a thickened-skin pixel database that includes a portion of the thickened-
skin region and the normal skin region pixels from the chicken images; this is the pixel training/test set for thickened-
skin.  We train our feature selection algorithm on the lesion pixel database and on the thickened-skin pixel database; the 
results are used to detect the lesions and the thickened-skin regions of tumors, respectively.   

We must first select the optimal features (λs) to use.  The only optimal feature selection algorithms are exhaustive 
search and branch and bound (BB) [17].  An exhaustive search finds the best subset of m features out of n by evaluating 
a criterion function J for all possible feature combinations and selects the best set.  In many hyperspectral image cases 
that have more than a hundred features (λs), an exhaustive search is very time consuming and prohibitive.  The BB 
algorithm is more efficient because it avoids an exhaustive search of the whole search space by rejecting many subsets 

 



that are guaranteed to be sub-optimal, and it guarantees that the selected subset is the globally optimal solution for any 
criterion function that satisfies monotonicity.  A modified branch and bound (MBB) algorithm developed by Casasent 
and Chen [5] modifies the feature ordering and the BB algorithm and provides a more efficient way to search the 
subsets.  Thus, it is faster than BB and much faster than an exhaustive search.  However, for general HS data with more 
than a hundred feature bands (λ), the computational load for the BB and MBB algorithms is also impractical for feature 
selection.  This emphasizes the need to reduce the dimensionality of the problem before we apply the BB or MBB 
algorithms.  We use the forward selection (FS) algorithm [18, p. 490] to select 30 initial features and then use the MBB 
algorithm to select a number of final features (three or four features at most) to use.  This is our FS/BB algorithm [5].  
Different features (λs) were used to detect lesion and thickened-skin regions of the tumors.  We use a KNN classifier to 
obtain classification rate (PC) pixel data and to obtain pixel images for lesion and thickened-skin processing. 

Sect. 2 describes the database used.  Sect. 3 discusses the feature selection algorithms used.  Methods and test 
results are presented in Sects. 4 and 5. 

 

Band 
Figure 6: Normalized spectra of pixels in the lesion and thickened-skin regions of tumor 1 in Figure 1. 

 
2. DATABASE 

Chicken carcasses with skin tumors were sent for HS processing to the ARS Instrumentation and Sensing 
Laboratory (ISL) in Maryland.  The hyperspectral (HS) imaging system used consisted of a CCD camera, a 
spectrograph, a sample transport mechanism, and lighting sources [15].  More details on the ISL hyperspectral imaging 
system are provided elsewhere [19].  The locations of tumors were verified by a Food Safety and Inspection Service 
(FSIS) veterinarian.  Two HS cubes were provided to us for initial testing (a HS cube contains a series of images in 
narrowly spaced spectral bands (λ), where each image corresponds to the image obtained at one specific frequency 
band.)  Each HS cube consists of 65 spectral band images ranging from λ = 447.3 to 733.5 nm.  The first HS cube 
contains two chicken carcasses with a total of 7 tumors on them.  The size of each image is 460×600 pixels; the 465 nm 
wavelength band image from this HS cube was shown in Fig. 1.  The second HS cube has a chicken carcass with 14 skin 
tumors.  The size of each image is 460×400 pixels; the 486.9 nm wavelength band images were shown in Figs. 1 and 2.  
Tumor number 14 in Fig. 2 was identified by the FSIS veterinarian as normal tissue, but Kim et al [17] stated in their 
paper that it was a tumor.  We agree (so does our feature selection algorithm).  Several tumors in the second HS cube in 
Fig. 2 are small (the lesion regions of tumors 4 and 5 contain only 8 pixels), compared to those in the first HS cube (Fig. 
1).  Thus, we do not expect our feature selection algorithm to detect them. 

In general, one could select the pixel training and test set pixel database from one HS cube and train the feature 
selection algorithm on them.  One could then apply the feature selection results to the second HS cube, that has not been 
trained on before.  However, our database is limited; we have only three chicken carcasses available for training and 
testing.  We thus selected a portion of the skin tumors from only the first HS cube and the normal skin regions from both 
HS cubes for pixel training and testing.  This was necessary to reduce false alarms in the second image, since some 
normal skin regions in the second HS cube have very different spectral responses from those in the first HS cube.  
Therefore, it is necessary to select normal skin region training data from both HS cubes.  The tumor regions in both 
images seem to have similar spectral responses.  We want to have a number of tumors (with no training set pixels in 
them used) present.  For the lesion pixel database, we extracted the 65 λ band spectral responses for 50 pixels from 4 of 

 



the 7 ulcerous lesion regions of the tumors numbered 1, 3, 4, and 6 in Fig. 1, since the regions of these tumors are more 
well-defined.  We labeled them as “tumor” class, and used them for the pixel training set.  The 65 λ band spectral 
responses for 50 pixels from the lesion regions of 3 different tumors  (2, 5, and 7 in Fig. 1) were used for the pixel test 
set of target (tumor) pixel data.  With 50 tumor pixels for the pixel training set and 65 spectral features, this represents 
high-dimensional data.  We extracted the 65 λ band spectral responses for 360 pixels from normal skin regions of 2 of 
the 3 carcasses and labeled them as “normal” class (no training samples were taken from the left carcass in HS image 1).  
Since different areas of normal chicken skin have different spectral responses, we used more normal-class samples than 
tumor-class samples.  We used half (180 samples) of these normal samples as the pixel training set and half (180 
samples) in the pixel test set for normal class pixel data.  300 of the 360 normal samples were selected from various 
normal skin regions of the carcass in HS cube 2 that have very different spectral responses.  These regions include pale 
skin, pinkish skin, skin covering bony joints, and the shadow area under the wings.  60 of the 360 normal skin samples 
were chosen from the normal skin regions of the right carcass in the first HS cube, since this carcass displays the side of 
the chicken.  Thus, some regions in this carcass are not present in other carcasses, and they have different spectral 
responses.   

For the thickened-skin pixel database, we extracted the 65 λ band spectral responses for 50 pixels from the 
thickened-skin regions surrounding the same four tumors chosen for the pixel training set for the lesion pixel database, 
labeled them as tumor class, and used them for the thickened-skin pixel training set.  We extracted 65 λ band spectral 
responses for 50 pixels from the thickened-skin regions surrounding the same three tumors chosen for the pixel test set 
for our lesion pixel database, and used them for our thickened-skin pixel test set.  The normal skin pixel training and test 
set pixel databases were the same for the lesion and thickened-skin case.   
 

3. FEATURE SELECTION ALGORITHMS 
3.1 Forward selection (FS) algorithm 

We assume that a maximum of 3 spectral (λ) bands will be used.  The FS method first selects the best single feature 
and then adds one feature at a time, which in combination with the first selected feature maximizes some criterion 
function J, etc.  We use the Bhattacharya distance as the criterion function, i.e.,  
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where μ1 and μ2 are the mean vectors for the tumor-class and normal-class training samples, and C1 and C2 are the 
covariance matrices for the tumor-class and normal-class training samples, respectively [20, p. 48].  The Bhattacharya 
distance is large if the mean difference between two classes is large (the first term in J) and if the variances of the two 
classes are different (the second term in J).  To select the best subset of m features out of n original features, the number 
of subsets searched by the FS algorithm is [(2n−m+1)m]/2, which is much smaller than the number of subsets evaluated 
in an exhaustive search (n!/[m!(n−m)!]) or in the branch and bound method.  For example, to select the best subset of 3 
features out of 65, the FS algorithm requires searching [(2×65−3+1)×3]/2 = 192 subsets, whereas an exhaustive search 
requires searching 65!/[3!(65−3)!] = 131,040 subsets.  However, the FS method does not examine all possible subsets, 
so the resulting subset is not guaranteed to produce the optimal set of features nor the best classification rate PC.  The FS 
method also has the nesting problem, i.e. the subset of four best features chosen by FS contains the subset of three best 
features chosen by FS, etc.  In practice, the best four features may not contain any of the best three features, etc.  Recall 
that the FS algorithm produces a set of ordered features.  We thus use the FS algorithm to select 30 initial features (more 
than the final number of 3 features that we desire to use); and we use the MBB algorithm to select the optimal subset of 
final features (3 features at most) out of these 30 FS features to use in our classifier. This is our FS/MBB algorithm [5]. 
3.2 Modified branch and bound (MBB) algorithm 

Since the modified branch and bound (MBB) algorithm developed at CMU [5] uses modifications to the basic 
branch and bound (BB) algorithm, we thus give a brief description of the basic BB algorithm.  To select the best set of 
m features out of n original features, the BB algorithm selects the n − m features to be discarded.  It creates a search tree 
with n − m levels with one feature being omitted at each level of the tree.  The problem is to select the best path through 
the tree that yields the largest J.  The BB algorithm assumes monotonicity of J, i.e. J decreases as we move down the 
tree; this is logical because more features are omitted as we move down the tree.  We use the Bhattacharya distance in 
(1) as the criterion function.  The BB algorithm starts the search at the top of the tree, and all nodes at level-1 are 
analyzed.  For a given level-1 node, it has several nodes below it.  The successor node below the level-1 node with the 
largest J is analyzed further.  The search continues until it reaches the bottom of the tree, the n - m level, resulting in one 
full path through the tree with an initial estimate (a bound B) for the criteria function J.  J is then evaluated at other 

 



level-1 nodes and the process is continued to lower levels of the tree; if J < B for a given node, then J does not have to 
be evaluated at successor nodes under that node, because J decreases as we proceed down the tree.  This causes the BB 
algorithm to be fast, as large portions of the tree need not be searched.  If J > B for a given node (larger J values are 
better), paths from that node to the bottom of the tree are explored (as long as their J remains larger than B).  When a 
mother node has a low J < B, its successor nodes need not be analyzed.  Omitting evaluation of J for a set of successor 
nodes (when J < B at some mother nodes) speeds up the search, and thus BB is more efficient than an exhaustive search.  
If a new different full path with a J > B is found, the bound B is updated with the new larger value.   

A new BB algorithm improvement in the MBB algorithm is to obtain a good initial estimate of B [5].  If we can 
obtain a good, high initial B, many more subsequent J values higher up in the tree are less likely to give a J > B.  
Therefore, calculations of J for many paths can hopefully be omitted.  The MBB also uses FS or other sub-optimal 
algorithms to order all n features from best to worst, and the tree is then constructed with this ordered featured set. An 
initial estimate of B is calculated using the m best features ordered by FS.  This B bound estimate is higher than one 
estimated by using non-ordered features.  We thus expect a low J to be obtained at many mother nodes where the better 
FS features are omitted.  When this occurs, a search of all subsets of features below these nodes can then be omitted, and 
this speeds up the search.  Another MBB modification is to use jump starting search levels.  The motivation for this is 
that at the upper levels of the search tree, we do not expect J < B, since only one or two features are omitted.  In MBB, 
we thus start the BB search (J evaluation) at level (n − m)/4, because we only expect J to be less than a good initial B 
estimate when some reasonable number of features are omitted.  J is evaluated for all nodes at this level.  If all nodes 
give J > B, we jump to level (n − m)/2, calculate J for all of its nodes, and apply the BB search to nodes below all nodes 
with J > B.  If any node at some level such as (n − m)/4 has J < B, we apply the BB algorithm to all nodes below nodes 
at that level with J > B.  If all nodes at level (n − m) have J > B, then we know that we would have had to evaluate J at 
all nodes above that level.  This “jump search” algorithm thus saves searching J at all nodes above that level [5].  
 

4. METHODOLOGY 
First, the background around the carcass must be removed.  We do this by calculating a mask whose value is one 

(white) on the carcass and zero (black) on the background.  To obtain this, we first obtain the unnormalized spectra of 
the background and several skin regions on the carcass.  Unlike the spectral responses of tumors and normal skins, the 
spectral response of the background does not noticeably vary over all 65 spectral bands.  From these training data, we 
chose to form the difference in responses at each pixel in two bands (bands 30 and 60) that have large differences in 
their carcass responses.  We calculated this difference for each image pixel, formed a pixel difference image, and set the 
pixels with an unnormalized intensity difference less than 750 to zero and other pixels to one.  A similar method was 
also used for background removal in [15, 16].  We removed some residual background blob regions by retaining only 
connected regions with more than 500 pixels (chicken carcasses have more than 500 pixels).  We then perform 
morphological processing to fill in small holes (less than 15 connected pixels) to produce the final mask. 

Second, we select the spectral bands to use to locate the lesion and thickened-skin regions of tumors and separate 
them from normal skin regions.  We train our feature selection algorithm on the lesion pixel database and the thickened-
skin pixel database; these are used to detect the lesion and thickened-skin regions of tumors, respectively.  We use 
forward selection (FS) to select the 30 best λ features out of the 65 available ones, and we then apply the modified 
branch and bound algorithm to select a number of final features (FS/MBB algorithm).  For this database (with only 65 λ 
features), it is possible to apply the MBB algorithm directly to the original databases without first reducing the number 
of features by FS.  In general, we do not expect this to be the case.  We show in Sect. 5.1 that the two methods (MBB 
and FS/MBB) give the same set of final features for our pixel databases.  To select the best four features out of all 65 
features, MBB took more than two hours, while the FS/MBB algorithm (MBB applied to 30 FS features) took less than 
two minutes on a Pentium IV 1.8GHz computer.  Thus, the proposed FS/MBB algorithm is preferable for many HS 
applications that need to select at least 3 or 4 best features.  The MBB algorithm solution is optimal, whereas the 
FS/MBB algorithm solution is sub-optimal because FS/MBB only gives the best set of 30 features (by FS) and these are 
not necessarily the optimal set of 30 features.  We hope they contain the 3 best features overall.  In such cases, we find 
small differences in the different spectra chosen.  This FS/MBB result is expected, since feature selection is an N-P 
complete problem [21], and only a search over the entire database can give the best solution.   

We now address the image processing applied to the binary image produced after selecting the features from the 
FS/MBB algorithm and applying them (for each image pixel) to a K-nearest neighbor (KNN) classifier.  A binary image 
results, with each pixel classified as one for the tumor class and zero for the normal skin class.  We refer to this as the 
binary pixel classification image.  We expect false alarms because normal chicken skin has a variety of hyperspectral 
responses, some of which are very similar to the spectral responses of tumors at the few λs used.  In addition, we expect 

 



to have a higher false alarm rate in the binary pixel classification image than in our final classification image result 
(after morphological processing).  This occurs, since the normal skin training samples in the pixel databases do not 
represent all of the normal skin regions in a full image.  Nevertheless, these normal skin false alarms should not occur at 
a number of adjacent pixels, if we train our system properly.  Since a tumor is not a single pixel but is a region that we 
assume to consist of at least 13 pixels for the lesion region and at least 5 pixels of thickened-skin region, we thus 
analyze the blob colored [22] version of the binary pixel classification image and omit any pixel blobs that form 
connected regions with twelve or less pixels for the lesion regions and four or less pixels for the thickened-skin regions.  
We thus do not expect our feature selection algorithm to detect tumors with small lesion regions (less than 13 pixels) 
such as tumors 4 and 5 in Fig. 2.  This is necessary to reduce false alarms.  Furthermore, we use the fact that we do not 
expect to detect tumors on the edge of the chicken images (we refer to these rules as post processing).  We remove such 
potential false alarm blobs that appear within 10 pixels of the edge of the chicken in the pixel classification images.  The 
two post-processed binary images for the lesion and thickened-skin cases are then fused; the fusion rule is that if any 
pixel in the lesion pixel image is within 2 pixels of a pixel in the thickened-skin pixel image, we keep and merge the 
blobs associated with those pixels and we assume those regions are skin tumors.  We allow a separation of 2 pixels, 
since the thickened-skin region does not overlap the lesion region for all tumors and since all lesion and thickened-skin 
pixels are not expected to be detected.  These blobs are the final fused classification image result.  Results are shown in 
Sect. 5.2.   

 
5. RESULTS AND DISCUSSION 

5.1 Feature selection pixel database results 
5.1.1 The lesion pixel database results 

We used the FS algorithm to reduce the number of original pixel database features from 65 to 30 and then used the 
MBB algorithm to select the best subsets of one to three features from these 30 FS features (this is our FS/MBB 
algorithm).  We must also decide what K to use in our KNN classifier. To select K, we keep only one final FS/MBB 
feature and increase K to find the best K to use in the KNN classifier.  To quantify performance, the scores for 
PC(percentage of tumor and normal skin pixels correctly classified), PD(percentage of tumor pixels detected), and 
PFA(percentage of normal skin pixels misclassified as tumor pixels) are given. The lesion pixel database results are 
shown in Table 1.  From the training set data in Table 1, we chose K = 3 for the KNN classifier for the lesion pixel 
database, since it gave the PC(train) score at the lowest K (this gives the lowest online calculations).  Our objective was 
to keep K as small as possible to allow for faster implementation.  Table 2 shows the features selected by the FS 
algorithm (from all 65 original features), the MBB algorithm (applied to all 65 original features), and our FS/MBB 
algorithm (applied to the 30 FS features) for the lesion pixel database.  As seen, the MBB and FS/MBB algorithms 
select the same features for discrimination.  An exhaustive search also gives the same set of features.  Thus, our 
FS/MBB algorithm selects the optimal set of λ features for this pixel database.  We note that the features selected by the 
FS algorithm are very different.  We also note that none of the three best features ordered by the FS algorithm in Table 2 
are present in the best subset of three features selected by the FS/MBB algorithm.  This is the nesting problem that the 
FS algorithm has.  The best subset of three features (features 11, 18, and 29) does not contain any feature in the best 
subset of two features (features 24 and 31) or one feature (feature 17) chosen by the optimal MBB or FS/MBB 
algorithm.  The FS algorithm cannot handle such cases.  Thus, an optimal feature selection algorithm (such as the MBB 
or the FS/MBB algorithm) is needed and the initial λ feature reduction algorithm (such as the FS algorithm) should 
provide a number of starting features that is much larger than the number of final features considered.  Thus, one cannot 
select the best features using only the FS algorithm.   

 
Table 1. PC results for different Ks for the KNN classifier using one FS/MBB feature for the lesion pixel database 

K      1           3            5             7            9          11        13 
PC(train)% 
PC(test)% 

    87         88          88          88           86          88       88 
    85         85          85          86           85          83       83 

 
Table 2. Best features chosen by three feature selection algorithms for the lesion pixel database. 

The number of features             FS                       MBB                        FS/MBB 
1 
2 
3 

17                          17                              17 
17, 65                     24, 31                          24, 31 

17, 36, 65               11, 18, 29                    11, 18, 29 
 

 



 
 
After using the FS/MBB algorithm to reduce the number of features from 65 to a low-dimensional space of 1 to 3 

features, each sample in the training and test pixel database is fed to the KNN classifier (using the training set pixels as 
the KNN database), and the classification rates PC for the training and test pixel sets are obtained.  In obtaining training 
set PC, the training set sample being classified is of course removed from the NNB classifier.  Table 3 shows the scores 
for PC(percentage of lesion and normal skin pixels correctly classified), PD(percentage of lesion pixels detected), and 
PFA(percentage of normal skin pixels misclassified as tumor pixels) for the pixel test data using the features chosen by 
the FS and the FS/MBB algorithms as the number of final features is increased.  When 2 or 3 features are used, the test 
set PC scores (90% and 94%) using our FS/MBB algorithm are noticeably higher than those (PC =  84% and 90%) using 
the features selected by the FS algorithm.  Thus, our optimal FS/MBB feature selection algorithm is needed and does 
provide better PC etc results. We keep three final FS/MBB features for the lesion pixel database, 4 features may produce 
higher PC scores.  From Table 3, we note that low PFA scores of 2-3% are obtained.  Image results are presented and 
discussed in Sect. 5.2.   

 
Table 3. Pixel test data results for features chosen using the FS and FS/MBB algorithms for the lesion pixel database 

# features FS algorithm 
PC%           PD%          PFA% 

FS/MBB algorithm 
PC%             PD%          PFA% 

1 
2 
3 

84               42               4 
84               40               4 
90               62               2 

84               42               4 
90               62               3 
94               84               3 

 
5.1.2 The thickened-skin pixel database results 

Table 4 compares the PC scores (percentage of thickened-skin and normal skin pixels correctly classified) using the 
best feature selected by the FS/MBB algorithm as K in the KNN classifier is increased for the thickened-skin pixel 
database.  In obtaining training set PC, the training set sample under test is removed from the NNB classifier.  From 
Table 4, the PC score for the training set pixels is highest when K is 9, 11, or 13.  We use the lowest K (K=9) choice to 
reduce online calculations.  For the thickened-skin pixel database, Table 5 compares the features selected by: the FS 
algorithm (from all 65 original features), the MBB algorithm (applied to all 65 original features), and our FS/MBB 
algorithm (from the best 30 FS features).  As we can see from Table 5, the same best single feature (feature 34) is 
chosen by all algorithms; but for future choices, the features chosen differ, but not as much as in Table 2.  For all 
choices, the MBB and FS/MBB algorithms yield the same features and (for this database) our algorithm is again 
optimal.  When three features are used, the FS algorithm chose only one (feature 11) of the optimal features chosen by 
the FS/MBB algorithm, but the other two features are close in λ (feature 18 vs 16 and feature 33 vs 34).  We also see the 
nesting problem in the FS algorithm; the best subset of three features (features 11, 16, and 33) chosen by the MBB or 
FS/MBB algorithm does not contain any feature in the best subset of two features (features 18 and 61).  The FS 
algorithm cannot make such choices.  Table 6 compares the scores for PC, PD, and PFA for the pixel test data using the 
features chosen by the FS and the FS/MBB algorithms as the number of final features selected is increased.  PC (test) 
score are all better (or comparable) for our FS/MBB algorithm. We note that all scores increases as the number of 
features (λ) used increases.  We expect that the use of four or more FS/MBB features will increase PC further.  However, 
we set a maximum of three wavelength bands for real-time implementation.   

 
Table 4. PC results for different Ks for the KNN classifier using one FS/MBB feature for the thickened-skin pixel database 

K      1           3            5             7            9          11        13 
PC(train)% 
PC(test)% 

    70         74          75          79           80          80       80 
    74         76          78          79           78          79       80 

 
Table 5. Best features chosen by three feature selection algorithms for the thickened-skin pixel database. 
The number of features              FS                       MBB                        FS/MBB 

1 
2 
3 

34                          34                              34 
18, 34                     18, 61                          18, 61 

11, 18, 34               11, 16, 33                    11, 16, 33 
 
 

 



 
 

Table 6. Pixel test data results for features chosen using the FS and FS/MBB algorithms for the thickened-skin pixel database 
# features FS algorithm 

PC%           PD%          PFA% 
FS/MBB algorithm 

PC%             PD%          PFA% 
1 
2 
3 

82               30               4 
85               64               9 
87               68               8 

82               30               4 
86               68               9 
90               70               4 

 
5.2 Image detection results  
5.2.1 The first HS image cube 

The three chosen features (features 11, 18 and 29) from Table 2 for the lesion pixel database and the KNN classifier 
(K=3) were applied to all pixels in the first HS images.  Fig. 7a shows the binary classification image using the lesion 
features for HS image one.  We blob color this image, analyze the pixel size of each blob, omit blobs < 13 pixels in size 
and blobs that lie within 10 pixels of the edge of the chicken (there are 30 such blobs in Fig. 7a), since we do not expect 
to detect tumors on the edge of chicken images.  The resultant image is shown in Fig. 7b (detected tumors are noted by 
rectangles).  The number of false alarms in Fig. 7a is significantly reduced in Fig. 7b.  In Fig. 7b, all 7 of the tumors are 
detected, but 15 false alarm regions are still present.  Thus, use of the thickened-skin pixel features is necessary to 
reduce false alarms.  Using only the lesion pixel database or the thickened-skin pixel database for training and testing is 
not recommended.   

The three chosen features (features 11, 16, and 33) from Table 5 for the thickened-skin pixel database were used in 
the KNN classifier (K=9) and applied to the first HS images.  Thickened-skin regions of each tumor vary in size from 5 
to 100 pixels.  Thus, we omit any white pixels in the binary classification image which are part of a connected region of 
four or less pixels.  The same binary processing was used.  Figs. 8a and 8b show the binary classification results before 
and after binary image processing using the thickened-skin pixel features.  The number of false alarm regions in Fig. 8a 
is greatly reduced to 95 in Fig. 8b.  In Fig. 8b, all 7 tumors are again detected and marked by rectangles.  There are more 
false alarms in the binary pixel classification output image for the thickened-skin features (Fig. 8a) than for the lesion 
features (Fig. 7a), as we expected from its higher PFA score on the pixel database.  We then fuse the post-processed 
binary classification image results for the two feature cases (Figs. 7b and 8b) to reduce FAs.  We retain pixel blobs in 
the binary lesion image that are within 2 pixels of pixel blobs in the thickened-skin binary image and call this a skin 
tumor.  Using this rule, we obtain the final classification image result in Fig. 9.  In the final classification image in Fig. 
9, we have detected all 7 tumors marked by rectangles and have only two false alarms marked by circles.  From an 
analysis of the color version of this chicken image, we believe that the false alarm at the bottom right in Fig. 9 is in fact 
a tumor, but the FSIS veterinarian failed to verify it.  Fusion of the binary pixel classification images significantly 
reduces the number of false alarms from more than 15 in Fig. 7b and more than 95 in Fig. 8b to only 2 in Fig. 9.   

 

  
(a) Before binary processing              (b) After binary processing 

Figure 7: Detection results using the lesion features on the first HS image with detected tumors marked by rectangles.  

 



   
(a) Before binary processing           (b) After binary processing 

Figure 8: Detection results using the thickened-skin features on the first image with detected tumors marked by rectangles. 
 

    
Figure 9: Final fused classification image results for the first HS image with detected tumors marked by rectangles and false alarms 

marked by circles. 
 
5.2.2 The second HS image cube 

The chosen features for the lesion pixel database, the thickened-skin pixel database and the KNN classifier are now 
applied to the pixels in the second HS image.  None of the 14 tumors in this image (Fig. 2) were used in training.  We do 
not expect our feature selection algorithm to detect tumors 4 and 5, because their lesion regions contain only eight 
pixels.  Fig. 10 shows the binary classification image after post processing obtained for HS image 2 using the lesion 
features.  Tumor number 4 (left center) in Fig. 2 was missed as expected; it lies on the side of the chicken and has a 
small lesion region (only 8 pixels), and only four of these pixels were detected by our lesion feature selection algorithm; 
and it was later removed by out post-processing rule (thus, it is not present in Fig. 10).  Tumor number 5 in Fig. 2 is also 
missed.  It is small and also lies on the side of the chicken carcass; our feature selection algorithm detected only 2 of its 
8 pixels.  We expect to miss these tumors, since we omit any pixel blob with 12 or less pixels in order to reduce false 
alarms.  In Fig. 10, we detected 11 of the 14 tumors using lesion features; these are marked by rectangles; but 17 false 
alarms are also present.  Thus, use of the thickened-skin pixel features is again necessary to reduce false alarms.  Fig. 11 
shows the binary classification image using the thickened-skin features after post processing.  It has more false alarms 
than the image for the lesion features (Fig. 10).  Only 2 thickened-skin pixels were detected on tumors 4 and 5 (in Fig. 2) 
and they are thus removed in our blob analysis leading to Fig. 11.  In Fig. 11, we detected 12 of the 14 tumors; they are 
marked by rectangles.  The 2 missed tumors (numbers 4 and 5 on the left side) are expected, as discussed earlier.  Fig. 
12 shows the final fused classification image result for this second HS image after fusion of Figs. 10 and 11.  As seen, 

 



11 of the 14 skin tumors are detected and marked by rectangles with no false alarms.  Fusion of the binary classification 
results reduces the number of false alarms from 17 in Fig. 10 and 60 in Fig. 11 to zero.  Tumor 13 (lower right) is 
detected by the thickened-skin features (Fig. 11) but is missed by the lesion features (Fig. 10).  The tumor has a small 
lesion region (16 pixels), but only 10 of these pixels are detected by our lesion feature selection algorithm and it was 
thus removed by our blob analysis in Fig. 10.  As a result, it is not detected in the final fused classification image in Fig. 
12.  Tumors (4 and 5) were missed, since they have small lesion regions (as noted earlier). 

 

   
     Figure 10: Detection result for the                Figure 11: Detection result for the              Figure 12: Final fused classification image  
lesion features on the second HS image        thickened-skin features on the second HS image     result on the second HS image with          
with detected tumors marked by rectangles.     with detected tumors marked by rectangles.      detected tumors marked by rectangles. 
 

6. CONCLUSIONS 
Since the spectral responses on the lesion and thickened-skin portions of tumors are different, we train our feature 

selection algorithm to detect lesion and thickened-skin regions separately; we then process the resultant images, and we 
fuse the two detection results to reduce false alarms.  Our recent FS/MBB feature selection algorithm was used.  HS data 
was shown to be useful for detecting chicken skin tumors.  Our feature selection algorithm used only 5 bands (features 
11, 16, 18, 29, and 33) of HS data, thus making a fast and inexpensive HS sensor system possible.  Our initial test result 
is promising with 18 of 21 skin tumors detected with only 2 false alarms.  Others have performed much worse on such 
chicken images.  Two of the three misclassified tumors are very small or have small lesion and thickened-skin regions 
and thus were expected to be missed (for data at the present resolution).  One of the three misclassified tumors was 
detected in the thickened-skin features but missed in the lesion features .   

Much more extensive tests are needed on much more data.  The database should also consider higher resolution, so 
that there are more pixels on each tumor.  Creating a training and test set database is difficult because exact pixel tumor 
locations and sizes are not clear in the present data.  Their locations should be carefully addressed.   
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