
FPGA Prototyping of Manycore Multinode Systems for
Irregular Applications

Marco Ceriani, Gianluca Palermo
DEIB - Politecnico di Milano

Milano, Italy
{mceriani,gpalermo}@elet.polimi.it

Simone Secchi
DIEE - Università di Cagliari

Cagliari, Italy
simone.secchi@diee.unica.it

Antonino Tumeo
Pacific Northwest National Laboratory

Richland, WA, USA
antonino.tumeo@pnnl.gov

Oreste Villa
NVIDIA

NVIDIA, CA, USA
ovilla@nvidia.com

Abstract—Knowledge discovery applications are an emerging class of
irregular applications that exploit graph-based data structures, present
poor locality and analyze very big data sets that require multi-node
systems for processing. Current commodity clusters, which exploit cache-
based processors, usually perform poorly with these applications. To
address their requirements, full-custom machines, like the Cray XMT,
or software approaches, such as several distributed graph libraries have
been proposed. In this paper we discuss a set of hardware and software
components that makes manycore architectures, composed of off-the-shelf
cores, more efficient with these applications. The components enable
support for latency tolerance, scrambled global address space, fine-
grained synchronization, and software multi-threading with hardware
scheduling. We validate our approach with a 4-node FPGA prototype
that enables exploring tradeoffs among network bandwidth, number of
cores per node and threads per core. The prototype has been presented
in various FPGA-related venues. We employ two typical irregular kernels
(pointer chasing and Breadth First Search), showing that the the proposed
components allow higher utilization of the network bandwidth with fine-
grained transactions and better multinode scaling.

I. INTRODUCTION

Social network analysis, data mining, semantic databases and in
general, knowledge discovery, constitute a new class of irregular
applications. Such applications exploit pointer or linked-list based
data structures, such as graphs, unbalanced trees and unstructured
grids, which present poor locality, require fine grained memory and
network accesses and generate unpredictable memory and network
transactions. These applications employ very large datasets, which
require significantly more memory than that available on a single
node server, and are difficult to partition among multiple nodes in
a balanced way. Modern high performance systems are optimized
for regular workloads. They integrate multicore processors with
complex cache hierarchies and high flop ratings, and exploit locality
and regular computation to increase performance. Furthermore, their
interconnection networks are optimized for large batched transfers
and have significantly lower bandwidth with respect to node-local
memory. Because of the unpredictable memory access pattern, the
performance of irregular applications is substantially limited by the
sustained memory and network bandwidths for fine-grained accesses.

Architectures such as the Sun Niagara-based processors [1], the
Tera MTA, the Cray MTA2, XMT and Urika [2] are more suited
to irregular workloads, because they focus on tolerating, rather
than reducing, memory access latencies through multi-threading. In
particular, the Cray XMT is a supercomputer specifically designed
to address the issues of irregular applications. It integrates custom
multithreaded processors (ThreadStorm) with a large number of
hardware contexts, allowing it to tolerate not only node-local memory
but also network latencies. It also supports a global address space
across nodes with address randomization (fine grain scrambling) to
reduce network hot-spots in presence of fine-grained network transac-
tions. Finally, it includes fine grain synchronization support through

full/empty bits associated with each memory word. These features
simplify the development of irregular applications with large datasets
using a system-wide shared memory programming model, without
the need to worry about data location. On the other hand, several
software infrastructures specifically targeted at crunching large graphs
on commodity clusters have appeared. The majority of the tools
exploits map-reduce approaches, while others integrate support for
a Partitioned Global Address Space (PGAS) programming model
with lightweight multi-threading to hide communication latencies.
However, they are mainly targeted to graph crawling rather than to the
wider class of irregular applications, and have limited performance
scaling.

In this paper we present an intermediate approach between full-
custom hardware systems and full-software tools. We describe an
architecture designed starting from off-the-shelf components, and
integrate a set of hardware and software custom components that en-
able efficient support of irregular applications, following an approach
similar to many IP-based design companies. Considering the current
trend towards manycore processors, we build an architecture that
exploits multiple simple cores interconnected together, with memory
controllers and network interfaces in a system-on-chip fashion. We
propose three components that can be enabled or disabled only when
required: the Global Memory Access Scheduler (GMAS), the Global
Network Interface (GNI) and the Global SYNChronization module
(GSYNC). These components provide support for global scrambled
address space across nodes and for fine-grained synchronization.
Furthermore, they assist lightweight software multi-threading, which
allows tolerating network access latency. To validate our approach, we
exploit prototyping on Field Programmable Gate Arrays (FPGAs). We
implemented a multi-node FPGA design integrating the off-the-shelf
components offered in the Xilinx toolchain with our own components.
We use the prototype to explore system trade-offs such as number of
threads and number of cores with respect to the network bandwidth
and latency, using typical irregular applications. This paper discusses
material presented in [3], [4], and [5], providing significantly more
details on the architectural design of the components.

Using a prototype, instead of simulation approaches, provides
several benefits. The validation of the hardware components is
stronger, because they are directly designed at the register transfer
level. This also allows capturing primary performance issues and ex-
posing hardware implementation challenges. The prototype provides
higher performances than a simulation infrastructure. It allows faster
iterations between hardware and software, so that the software layer
can be progressively evaluated with the development of the hardware.

The paper proceeds as follows. Section II presents the related work.
Section III provides a general overview of the architecture and the
rationale behind its design. Section IV discusses the design of the
components that enable efficient execution of irregular applications

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 



on many-core designs. Section VII deals with the experimental
evaluation. Finally Section VIII concludes the paper.

II. RELATED WORK

Efficiently executing irregular workloads on multi-node machines
require support for global address space, for fine-grained synchro-
nization and for tolerating memory and network latency when data
are retrieved.

Modern processor architectures exploit large and complex multi-
level caches, data pre-fetching and memory operation reordering to
reduce data access latencies. These techniques increase the perfor-
mance of regular applications, which exhibit predictable data access
patterns and high spatial temporal locality. However, they may be
detrimental for irregular applications, because their accesses cannot
be predicted. Multithreading, which tolerates access latencies by
switching to other thread contexts while data are loaded or stored,
appears more suited to these applications. Among multithreaded
machines, only the Tera MTA, and its successors Cray MTA-2, Cray
XMT and Cray Urika [2], provide system-wide latency tolerance
features for multi-node systems. The ThreadStorm processors in
the Cray XMT, with up to 128 thread contexts, can tolerate the
latency to cross the network and access memory on the other nodes.
Furthermore, the XMT implements in hardware a scrambled global
address space across nodes and full/empty bits for each memory word
to support fine-grain synchronization.

Software multi-threading also enables latency tolerance. The
APRIL processor in the Alewife machine exploited very fast con-
text switching routines to implement software block multithreading.
Qthreads [6] is a software library that implements software fine-
grained multithreading and XMT-like full/empty bit semantics on
various architectures (POWER, x86, SPARC, Tilera). However, these
approaches have not been thoroughly explored on multi-node ma-
chines with global address spaces.

Partitioned Global Address Space (PGAS) programming models
implement a shared address space across multi-node machines with-
out neglecting data or thread locality. Languages such as Unified
Parallel C (UPC) [7], Co-Array Fortran [8], Titanium [9], X-10 [10],
Chapel [11] or libraries such as Global Arrays [12] and GASNet [13],
are progressively gaining traction in High Performance Computing
because they can reduce the effort for programming large-scale
machines without trading off too much performance. However, these
approaches are still mostly software-based, and the runtimes can still
generate significant overheads. The Cray Gemini interconnect [14]
has direct hardware support for PGAS programming models, allowing
pipelining of remote references. [15], instead, describes a hardware
communication engine that enables the shared address space across
multiple nodes of a commodity cluster. Out approach is different,
because it works at the chip level and looks at extending the on-chip
interconnect protocol of a manycore design.

The GRAPPA [16] runtime integrates PGAS and lightweight
software multi-threading to hide communication latency. It aims at
increasing the performance of graph crawling on commodity x86
clusters. Other tools, such as Pregel [17], Giraph and GraphLab,
instead, exploit bulk synchronous parallel models (such as map-
reduce) through vertex programs that run on each vertex and interact
along edges. Interactions either use messages (Pregel and Giraph)
or shared states (Graphlab). Our objective is not to implement a
software library for graphs, but rather to propose a set of hardware
and software components to enable efficient execution of irregular
applications on many-core processors. While our approach also

Fig. 1. Node architecture overview

exploits software multi-threading, it is only a part of the set of the
components that we integrate in the architecture.

Our prototyping methodology is inspired to RAMP [18]. The
RAMP project developed various FPGA-based systems to eval-
uate transactional memory systems [19], thousand-core designs
(RAMP Blue) [20] and to accelerate architectural simulation (RAMP
Gold) [21]. Our approach, in particular, follows RAMP Blue and At-
las, where FPGA-based prototypes allow the evaluation of interesting
modifications to multi- and many-core designs and early software
implementation.

III. ARCHITECTURE DESIGN

We identified the set of features that can enable better support
for irregular applications on general purpose architectures. First, a
global address space across nodes eliminates the need to partition
the data. If the global address space is scrambled, it also makes the
network traffic more uniform, thus reducing the occurrence of hot-
spots. Second, multithreading allows tolerating the latency of remote
memory accesses by switching to other threads while the memory
operation is performed. Finally, hardware support for synchronization
allows implementing faster and finer grain synchronization. These
features are also implemented in custom machines for irregular ap-
plications such as the Cray XMT, which supports a scrambled global
address space, uses massively multithreaded processors (128 threads)
and implements fine grained synchronization through full/empty bits
associated with each memory word.

Figure 1 shows an overview of the proposed architecture. We
start from an off-the-shelf architecture composed of simple, in-order
cores and an on-chip interconnection. The on-chip interconnection
interfaces the processing core with the memory controller for the
external memory (DDR3) and the shared I/O peripherals. We add
three custom components: the Global Memory Access Scheduler
(GMAS), the Global Network Interface (GNI) and the Global SYN-
Chronization module (GSYNC). The GMAS enables support for the
scrambled address space. It also implements part of the support for
latency tolerance, storing remote memory operations, and acts as
a scheduler for the lightweight software multithreading. The GNI
interfaces the on-chip interconnection with the external network. The
GSYNC enables support for fine grain synchronization. Each core
in the architecture attaches to a GMAS. The GMAS also needs to
connect to an interrupt port of the core. Each node only includes one
GNI and one GSYNC. Part of the external DDR memory is exposed
as node-local memory, shared among all the cores in the node, while
part is exposed as global address space, accessible by all the nodes
of the system. Cores can include instruction caches, as they are read

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 



only and do not require coherency. Data caches, instead, works only
for private data or, if coherency is supported, for data shared at the
node level. The global address space is, instead, uncacheable, as
accesses of irregular applications are unpredictable and coherency
across nodes would be too expensive in terms of overheads. The
cores also support private scratchpads, useful for storing the contexts
of the lightweight threads, enabling fast switching. If scratchpads are
not present, pinning the thread contexts in the L1 caches may achieve
similar effects.

A. Prototype

We implemented a prototype of the proposed architecture ex-
ploiting the Xilinx ISE Embedded Design Suite version 13.4. We
employed four Xilinx ML605 boards, each mounting a Virtex-6
LX240T FPGA. Each board prototypes a node of the system. The
boards communicate through the RocketIO GTX transceiver in a fully
interconnected topology (i.e., each board is directly connected to all
the other three). Since the boards only feature one pair of differential
signaling coaxial interconnections, we added a daughter board to each
of them with two additional pairs of coaxial interconnections. Data
is exchanged on the links using the Aurora protocol, a lightweight
link-layer protocol, exploiting an 8B/10B encoding. Each node hosts
multiple 32-bit MicroBlaze cores, the highly customizable Xilinx
soft-cores. We configured the cores with a 3-stage pipeline, including
the hardware multiplier and the barrel shifter. As this work looks at
irregular applications, which are mainly memory intensive, we did not
implement the floating point unit and the branch prediction logic. We
also did not implement the memory management unit, as function-
alities for managing the global address space can be implemented
separately from it. These choices limit the area footprints of the
cores to the minimum, allowing to increase the number of cores, and
consequently the injection rate of memory operations, inside a single
node. We enabled L1 instruction caches for the external memory,
allowing to use applications of arbitrary size without performance
penalties. However, we did not enable the L1 data caches because of
the lack of cache coherency. The MicroBlazes are connected together,
to the shared DDR3 RAM controller and to the other components
through the ARM AXI4 bus included in the Xilinx toolchain. As
this implementation only supports up to 16 masters on a single bus
segment, we implemented a two-level hierarchy of buses to allow
scaling to higher number of cores. We found that AXI segments with
up to 4 cores each offer the best trade-off in terms of area and timings.
We included the proposed components in this basic architecture. The
GMAS is interposed between the data port of each core and the AXI
bus, to analyze every memory operations exiting the core. The GNI
and the GSYNC, together with the DDR memory controller and the
other peripherals, are instead connected to the last, shared level of
the AXI hierarchy.

B. Programming model

The proposed system provides a global address space, implement-
ing a shared-memory programming model on top of a distributed
memory machine. The application developer can transparently allo-
cate and free memory areas in the global address space by using
standard memory allocation primitives. We specialized the standard
malloc and free primitives to support both allocation in the shared
global memory space and the node-local memory space of the system.
After data allocation, the developer simply uses pointers as she or he
would normally do on a shared memory system. The system supports
multithreading and lock-based synchronization. We implemented
an Application Programming Interface (API) that provides basic

POSIX-like thread management and synchronization routines. Thread
management primitives include thread creation, thread joining, and
thread yield. Thread yield allows forcing a context switch at the
software level. In all the other cases, thread switching is triggered
only to tolerate the latency of remote memory accesses. Applications
are developed in a Single Program Multiple Data (SPMD) fashion,
where each thread executes the same code on different elements
of the datasets. The synchronization primitives provide try-locks
(spinning locks), unlock and barriers that exploit the GSYNC. To
minimize thread switching latency, every core has its own private set
of thread contexts. In the current prototype, contexts of the threads
are stored in private scratchpads and do not migrate across nodes
and cores. Load balancing across threads and cores is thus duty of
the application developer. However, implementing work stealing is
feasible, by exploiting the same communication features that enable
the global address space at the price of slower context switching
delays. This can be mitigated by employing context prefetch in the
private memories.

IV. COMPONENT DESIGN

In this section, we present the implementation details of the
hardware components that enable support for irregular applications.

V. GMAS

The GMAS enables the support of the global address space across
all the nodes of the system, manages long latency memory operations
and provides hardware support for scheduling the lightweight threads.
Figure 2 shows the structure of the GMAS. The GMAS connects
as a slave to a core and as a master to the AXI bus. It intercepts
all the load/store operations that a core issues towards the external
memory and the on-chip peripherals, and distinguishes which ones
are node-local and which ones, instead, are operating on the global
address space. As previously described, the cores also access privately
a scratchpad for the thread contexts. Thread contexts can also be
allocated in the node-local memory and pinned into the caches,
as they are private per core and do not require cache coherency,
which the MicroBlazes do not support. The global address space
is scrambled across the DDR memories of all the nodes in the
system: logically consecutive addresses are physically distributed on
the various boards. The size of the scrambling is configurable. The
GMAS also contains some registers for interfacing with the GSYNC,
because the AXI bus in the Xilinx implementation does not support
atomic transactions.

When a core issues a memory reference, the GMAS analyzes it.
If it is directed towards the node-local address space (node-local
portion of the DDR3 memory or node-shared peripheral), the GMAS
simply forwards the memory reference to the AXI bus. Instead,
if it is directed towards the global address space, the GMAS first
de-scrambles the address, identifying the destination node. If the
destination is the local node, it forwards the operation to the local
memory controller without further processing. If the destination is
a remote node, the GMAS sends the reference to the GNI for
transmission into the external network. At the same time, the slot
of the load/store queues (LSQs) pertaining to the thread that emitted
the reference is updated with the related information. The LSQs have
as many slots as the supported software threads. The pending bit of
the slot is also set. The GMAS then sends an interrupt to the core,
triggering the thread switching routine. Since the MicroBlaze pipeline
remains stalled if a memory operation does not complete, the GMAS
also replies with a canary value, allowing the interrupt routine to
start. To signal that the GMAS returned a canary value, the redo bit

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 



Fig. 2. GMAS internal structure

in the related slot is also set. The thread switching routine selects
another thread, getting its identifier from the GMAS scheduler. The
scheduler chooses the new thread following a round robin policy
among the active threads that do not have or have completed any
pending remote memory operation.

When the remote memory reference completes, the response
(acknowledge in case of a store, data in case of a load) reaches
the GMAS. The GMAS stores the reply in the related slot of the
LSQs, and resets the pending bit. The thread that generated the
remote reference can now be scheduled again. When the scheduler
selects that thread, the interrupt routines forces it to repeat the remote
memory operation, allowing the core to read the correct value from
the LSQs. After the memory operation completes, the redo bit is
reset and the GMAS can reuse the slot for another remote memory
operation of the same thread.

We designed the GMAS trying to minimize the added latency
overhead for memory accesses. To do so, we used only combinatorial
logic for all the components that a reference traverses before the
GMAS generates the interrupt towards the core. The time interval
between the issuing of a memory reference and the sensing of the
interrupt adds to the overall latency of the memory reference. The
rest of the time spent that a reference spends in the GMAS is instead
already hidden through multi-threading, and thus it does not requires
specific optimizations.

VI. GNI

The GNI interfaces the on-chip interconnection with the external
network. It decodes and encodes memory transactions, encapsulates
them in network packets, routes the packets across the network
and translates the addresses and identifiers between the on-chip
interconnection and the network format. We decided to implement
translation because we want to completely decouple the on-chip
interconnection protocol from the external network interconnection.
In the case of AXI, we cannot directly forward AXI transactions as
they are on the other nodes. In fact, transaction identifiers on the
AXI bus are limited only to 16 bits (65K transactions), but we want
a system able to scale in the number of nodes, potentially managing
millions of references flowing into the external network.

Figure 3 shows the organization of the GNI. The GNI connects to
the AXI bus both as a master and as a slave. Thus, it can redirect
memory references from/to the on-chip interconnection and to/from
the external network. The GNI receives outgoing requests on the on-
chip slave interface, and sends them to the external network through
the sender channel (TX). It receives incoming requests from the
external network through the receiver (RX) channel and routes them
into the on-chip interconnection through the master interface. On

Fig. 3. GNI internal structure

the other hand, the GNI receives outgoing responses from the on-
chip master interface and sends them through the TX channel. It
receives incoming responses through the RX channel and routes them
into the on-chip interconnection through the master interface. The
TX and RX channels of the GNI connect to a switch, which routes
the packets through the nodes of the system. The GNI performs the
translation on the data crossing the master interface (i.e., on incoming
requests from the external network and on outgoing responses to the
external network), through an integrated translation table. The switch
interfaces the GNI with the three network ports, and performs the
requested routing depending on the destination node.

When a core issues a load/store operation toward an address in the
global space, the GMAS de-scrambles and determines its destination
node. If the operation is directed towards an address in the memory
space of another node, the GMAS generates an AXI transaction with
the GNI as the destination. The transaction is associated with an
identifier that contains the identifiers of both the core and the thread
emitting the operation. When the GNI receives the transaction, it
starts creating the network packet. It inserts the network address
of the source and of the destination node into the packet header,
adds the received transaction as the payload, and then sends the
packet to the switch, which routes it accordingly to the address of
the destination node into the external network. At the destination
node, the destination GNI receives the transaction, and prepares to
generate an AXI transaction towards the memory of the node exposed
as global address space. First, the GNI stores the transaction identifier
of the received memory operation, along with the network address
of the source node, in the translation table, and generates a new AXI
transaction identifier, which is a composition of the identifier of the
GNI itself with a unique pending transaction counter. It then extends
the physical memory address found in the network packet with the
necessary bits to address the memory of the node, and injects the
transactions into the on-chip interconnect. When the memory access
completes, the GNI at the destination node receives the reply. It then
retrieves the source node of the memory operation and its original
identifier from the translation table, composes the network packet
with the reply using this information, and sends the reply back to the
source node. The GNI at the source node receives the network packet,
disassembles it, and injects it directly in the on-chip interconnect,
because the proper transaction id is already contained in the memory
operation, thanks to the translation. Thus, the reply can finally reach
the GMAS, concluding the remote memory access.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 



A. GSYNC

The GSYNC, together with the synchronization interface in the
GMAS, implements fine-grain synchronization for the global address
space. The GSYNC is a memory-mapped slave component, which
integrates a lock table of configurable size. Each entry has a size of
one bit. Each node of the system hosts a GSYNC, and each GSYNC
manages synchronization only on the memory addresses, part of the
global address space, of its own node. The entries of the lock table
are associated with the local addresses of the global address space
through direct mapping. Multiple memory addresses share the same
lock bit, because the number of entries in the lock table is small with
respect to the size of the memory. Thus, a lock request for an address
can fail if the location is already locked for an aliased address.

To lock/unlock an address, the programmer employs a lock rou-
tine that writes the address into the dedicated memory-mapped
lock/unlock registers of the GMAS. The write returns immediately.
The GMAS identifies if the requested address pertains to the local
node or to a remote node. If the address resides on the local node,
the GMAS issues an operation towards the local GSYNC, addressed
to the lock bit associated with the corresponding memory address.
When the requested synchronization operation is a lock, the GMAS
issues a load towards the GSYNC. The GSYNC handles the load as
a 1-bit swap, replacing the value in the addressed lock bit with a 1,
and returning the previous value. If the returned value is 0, the lock
is taken. Otherwise, the lock is not taken. If the requested operation
is an unlock, the GMAS simply issues a store with value 0 for the
addressed lock bit. This approach allows implementing lock/unlock
operations without requiring support for specific atomic instructions
in the cores, the on-chip interconnect and the external network. If
the requested address of the global address space is located on a
remote node, the load/store operation associated with the lock/unlock
operation is treated like any other remote memory operation, only
addressing the memory-mapped registers of the GSYNC on the
remote node. The operation is thus sent to the GNI of the source node,
which encapsulates and injects it into the network. The GNI on the
receiving node disassembles the packet, and sends the operation to
the GSYNC of the node, which provides the reply. The reply is then
sent back to the source node. In presence of a remote synchronization
operation, the GMAS also sends to the core the interrupt that triggers
thread switching for hiding the latency, like all remote memory
operations. In software, the lock routine is implemented with busy
waiting. If the lock is not taken, the routine keeps repeating the
operation. The unlock is, instead, non-blocking.

The GSYNC also includes two memory-mapped registers set to
zero, in hardware, at system boot. These registers allow implementing
hardware barriers for initial inter-node synchronization.

VII. EXPERIMENTAL EVALUATION

We synthesized four-node architectures including 1 to 32 cores
per node, each one implementing up to 4 threads. We set the basic
frequency of the prototype at 100 MHz. Each node hosts 512 MB
of DDR3 memory. Of these, 32 MB are node-local, while the rest is
exposed in the global address space, for a total of 1920 MB of shared-
memory across the four nodes. The scrambling is at a granularity
of 8 bytes (2 memory words, as the MicroBlaze is a 32-bit core).
The GSYNC lock tables have 8096 entries. The GTX transceivers
provide a usable bandwidth of 500 Mbit/s each. We measured a non-
contended round-trip time of 403 cycles, which is the same for all the
nodes, because they are in a fully connected mesh. Thread contexts
are allocated in private scratchpads for each MicroBlaze. The thread
switching time is 232 cycles, composed of 41 cycles to launch the

Fig. 4. Pointer chasing bandwidth utilization

Interrupt Service Routine (ISR), 65 cycles for saving the old context,
20 cycles for loading the scheduler, 50 cycles to load the new context,
24 cycles for resetting the interrupt and exiting the switching function,
and 32 cycles for exiting the Interrupt Service Routine.

We executed two typical irregular kernels on the prototype. Given
the unpredictability of network accesses, and the memory scram-
bling, reaching the maximum performance for irregular applications
on multi-node systems means maximizing the network bandwidth
utilization.

The first kernel is pointer chasing. In this benchmark, every thread
performs a full exploration of a vector of pointers that randomly
redirect one to the other. We explore configurations from 4 to 32 cores
per node, each with 1 to 4 threads. Figure 4 shows the bandwidth
utilization. As previously stated, the available network bandwidth is
1.5 Gbps (500 Mbit per channel). However, there is a 1/3 overhead
due to the network packet headers, so the effective bandwidth is 1
Gbps. The graph shows that the bandwidth utilization increases with
the number of cores implemented in the architecture, because more
cores increase the injection rate into the network. Thread switching
also allows increasing bandwidth utilization up to three threads per
core. When increasing the number of threads from one to two,
the increase in bandwidth utilization is more significant, because
the ratio between the RTT and the switching delay allows issuing
another reference. However, the system still allows an increase in
bandwidth utilization with three threads per core, as they allow a
better distribution of the network accesses on the three available
network channels (one for each other node). The utilization provided
with four threads is, instead, substantially identical to the utilization
with three threads per core. With three and four threads, there is a
slight decrease in the utilization when moving from 16 to 32 cores,
because the contention in the internal interconnection is higher.

The second kernel is the Breadth First Search (BFS) exploration
of a graph. We adapted the code from a standard queue based,
level synchronous implementation for the Cray XMT [22], exploiting
the threading and synchronization API of the prototype. The graph
has size 100,000 vertices, each with 80 neighbors in average, for a
total of 3,998,706 traversed edges. Figure 5 shows the throughput
(in Traversed Edges Per Second - TEPS) of the algorithm when
increasing the number of cores from 4 to 32 per node and the
number threads from one to four per core. The throughput increases
while increasing the number of cores, because they increase the
injection rate of references into the network, maximizing network
utilization. We see the biggest performance increase when increasing
the cores from 4 to 8 per node. The system keeps increasing the

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 



Fig. 5. Performance of the BFS in Traversed Edges Per Second (TEPS)

throughput up to 32 cores, but the slope of the curves from 8 to 32
reduces. Increasing the number of threads from one to two increases
the throughput, because thread switching allows injecting further
memory references into the network when waiting for remote memory
operations to complete. Like in the pointer chasing, there still is a
slight benefit in increasing the number of software threads to three,
because of a better distribution of the network accesses. However,
when increasing the number of threads to four, the throughput
reduces, and is identical to two threads for 4 and 8 cores, and to
one thread for 16 and 32 cores. The BFS implementation exploits
a lock for the queue containing the next vertices to explore that is
contended by all the threads. Thus, increasing the number of threads
increases the contention on the GSYNC containing such lock. From
an inspection of the system counters, we also see a slightly higher
amount of network traffic directed towards node 2, because of the
presence of such a lock and of the lock used to implement the level-
synchronous barrier.

VIII. CONCLUSION

In this paper, we presented an architecture targeted at efficiently
executing irregular applications. Rather than focusing on full-custom
architectures or on completely commodity systems with ad-hoc
runtimes, we propose a set of hardware and software components
that can extend many-core architectures designed with off-the-shelf
cores and IPs. The hardware components include a module for
enabling a scrambled global address space across nodes and support
for long latency remote memory operations (GMAS), a module
for implementing fine-grained hardware synchronization (GSYNC)
and an integrated network interface that translates between address
domains and injects network packets into the internal network (GNI).
The software components implement multi-threading, supported by a
hardware scheduler integrated into the GMAS. We validated these
components and explored basic trade-offs in terms of bandwidth,
cores-per-node and threads-per-core with a 4-node FPGA prototype.
We executed two typical irregular kernels on the prototype (pointer
chasing and BFS) and verified scaling in terms of bandwidth utiliza-
tion and performance when increasing the number of cores and the
number of threads.

REFERENCES

[1] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachandran, and
D. Greenhill, “Implementation of an 8-core, 64-thread, power-efficient
sparc server on a chip,” Solid-State Circuits, IEEE Journal of, vol. 43,
no. 1, pp. 6 –20, jan. 2008.

[2] J. Feo, D. Harper, S. Kahan, and P. Konecny, “ELDORADO,” in CF ’05:
International Conference on Computing Frontiers, 2005, pp. 28–34.

[3] M. Ceriani, S. Secchi, A. Tumeo, and O. Villa, “Prototyping hardware
support for irregular applications,” in Proceedings of the 2013 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools,
ser. RAPIDO ’13, 2013, pp. 4:1–4:8.

[4] M. Ceriani, G. Palermo, S. Secchi, A. Tumeo, and O. Villa, “Exploring
manycore multinode systems for irregular applications with fpga proto-
typing,” in Field-Programmable Custom Computing Machines, Annual
IEEE Symposium on, 2013, p. 238.

[5] S. Secchi, M. Ceriani, A. Tumeo, O. Villa, G. Palermo, and L. Raffo,
“Exploring hardware support for scaling irregular applications on multi-
node multi-core architectures,” in Application-Specific Systems, Architec-
tures and Processors (ASAP), 2013 IEEE 24th International Conference
on, 2013, pp. 309–313.

[6] K. Wheeler, R. Murphy, and D. Thain, “Qthreads: An API for program-
ming with millions of lightweight threads,” in MTAAP ’08: Workshop
on Multithreaded Architectures and Applications, 2008, pp. 1–8.

[7] “Upc language specifications, v1.2,” UPC Consortium, Lawrence Berke-
ley National Lab, Tech. Rep. LBNL-59208, 2005.

[8] “Co-array fortran. available at: http://www.co-array.org.”
[9] A. Krishnamurthy, A. Aiken, P. Colella, D. Gay, S. L. Graham, P. N.

Hilfinger, B. Liblit, C. Miyamoto, G. Pike, L. Semenzato, and K. A.
Yelick, “Titanium: A high performance java dialect,” Concurrency:
Practice and Experience, vol. 10, no. 11-13, 1998.

[10] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, “X10
language specification version 2.2,” July 2012.

[11] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, 2007.

[12] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà, “Advances, Applications and Performance of the Global Arrays
Shared Memory Programming Toolkit,” International Journal of High
Performance Computing Applications, vol. 20, no. 2, pp. 203–231, 2006.

[13] D. Bonachea, “GASNet Specification, v1.1,” CS Division, EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/CSD-02-1207,
October 2002.

[14] “Cray gemini interconnect. available at:
http://www.cray.com/products/xe/technology.aspx.”

[15] H. Froning and H. Litz, “Efficient hardware support for the partitioned
global address space,” in CAC 2010: 10th Workshop on Communication
Architecture for Clusters, in IPDPS ’10, 2010, pp. 1–6.

[16] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze, C. Ebeling,
D. Grossman, S. Kahan, and M. Oskin, “Crunching large graphs with
commodity processors,” in HotPar ’11: 3rd USENIX conference on Hot
topic in parallelism, 2011, pp. 10–10.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD ’10: ACM International Conference on Management of
data, 2010, pp. 135–146.

[18] D. Patterson, “RAMP: research accelerator for multiple processors - a
community vision for a shared experimental parallel HW/SW platform,”
in ISPASS 2006: International Symposium on Performance Analysis of
Systems and Software, 2006, p. 1.

[19] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C. Kozyrakis, and
K. Olukotun, “ATLAS: a chip-multiprocessor with transactional memory
support,” in DATE ’07: Conference on Design, Automation and Test in
Europe, 2007, pp. 3–8.

[20] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P. yves Droz,
“Ramp blue: a message-passing manycore system in FPGAs,” in In
FPL’07: International Conference on Field Programmable Logic and
Applications, 2007, pp. 27–29.

[21] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovic, and D. A.
Patterson, “A case for fame: Fpga architecture model execution,” in
ISCA, 2010, pp. 290–301.

[22] D. A. Bader and K. Madduri, “Designing Multithreaded Algorithms for
Breadth-First Search and st-connectivity on the cray MTA-2,” in ICPP
’06: International Conference on Parallel Processing, 2006, pp. 523–
530.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 




