
A Model of Computation and Compiler For Heterogeneous
Architectures

Kermin Fleming¶ Michael Adler† Joel Emer†¶
†Intel Corporation

VSSAD Group
{michael.adler, joel.emer}

@intel.com

¶Massachusetts Institute of Technology
Computer Science and A.I. Laboratory

{kfleming, emer}
@csail.mit.edu

ABSTRACT
Heterogenous computation plays an important and expanding role
in the modern world. However, developing programs that target
heterogenous systems remains difficult, especially when those sys-
tems involve fine-grained parallel components like FPGAs. De-
sign portability, design virtualization and dealing with complex and
low-level platform interfaces are key challenges in programming
these systems.

In this paper we describe a simple, abstract model of computa-
tion for heterogeneous systems built around the notion of latency-
insensitive programs. This model of computation, which was in-
spired by our experience in developing high-performance applica-
tions for FPGAs, enables automated solutions to many of the prob-
lems facing programmers of heterogeneous systems. We present a
compilation framework that automatically maps high-level latency-
insensitive programs onto a variety of heterogeneous systems. We
then describe several deployments of our compiler in industrial and
academic projects.

1. INTRODUCTION
Heterogeneous computational platforms have become the norm

rather than the exception. Heterogeneity at the low end of the
computational spectrum has long been common: SoCs have in-
cluded special purpose processors and hardware blocks for at least
a decade. A shift towards heterogeneity is now occurring in inter-
mediate and high-end computing, as the marginal utility of each ad-
ditional homogeneous core diminishes. For example, many desk-
top processors include an integrated GPU which can be used for
graphics or for computation. We believe that this trend in system
design will continue into the foreseeable future as system architects
continue to chase power-performance.

In a future comprised of largely heterogeneous computational
systems, the complexity of programming these systems becomes a
fundamental problem. In particular, orchestrating communication
between the various computational platforms within the system is
tedious. Traditionally, this communication has been managed by
unportable, low-level device driver code against which program-
mers write similarly unportable programs. Moreover, these pro-
gramming tasks are extremely error prone, and low-level program-
ming errors of the kind likely to occur in such codes are extremely
difficult to debug. Our own work [4] has focused primarily on pro-
gramming heterogeneous systems of FPGAs and processors. Even
as domain experts with many years of experience, it takes us about
a month to fully debug the low-level drivers involved in such sys-
tems.

The difficulty in programming heterogenous systems has led
to the development of several programming frameworks which
attempt to facilitate writing heterogeneous programs. The best
known of these frameworks is OpenCL [6], which facilitates the

mapping of data parallel kernels across processors, DSPs, and
GPUs. However, fine-grained parallel computation platforms, as
embodied by FPGAs, CGRAs, and accelerators, which can exhibit
highly non-deterministic and autonomous behavior, have not been
well-addressed by OpenCL.

In this paper, we build upon the concept of latency-insensitive
design [2] [3], which we have found enormously useful in pro-
gramming FPGAs. In synchronous systems, latency-insensitive de-
sign seeks to decouple the notion of computation from the physi-
cal details of the system implementation by abstracting the timing
of synchronous execution. We leverage this abstraction heavily to
simplify heterogeneous programming.

First, we propose latency-insensitive programs as a model of
computation for heterogeneous systems. In this model of com-
putation, programs are viewed as sets of latency-insensitive mod-
ules, autonomous execution units, connected by latency-insensitive
channels. Latency-insensitive channels are communications prim-
itives which make some minimal guarantees about message de-
livery. Latency-insensitive modules work well for programming
fine-grained parallel substrates like FPGAs because they separate
the idea of communication from when and how that communica-
tion occurs. From a programming perspective, latency-insensitive
channels insulate modules from the behavior of other modules, im-
proving composability and simplifying the construction of large
systems. From a design automation perspective, the programming
contract of latency-insensitive modules enables the compiler to au-
tomatically solve several challenging design problems, including
orchestrating heterogeneous communication.

Second, we propose an abstract machine model for heteroge-
neous systems, again inspired by latency-insensitive design. In the
past, heterogenous computational environments have been difficult
to understand and describe. Memory-mapped devices, interrupts,
and other system minutiae conspire to complicate the lives of sys-
tem programmers. To alleviate these issues, we present a simple
declarative syntax, based around platform-level latency-insensitive
communications, for describing the heterogeneous execution plat-
forms available within a particular execution environment.

Finally, we unite the latency-insensitive model of computation
and our abstract machine model in a latency-insensitive module
(LIM) compiler, an extensible compilation framework which au-
tomatically maps programs consisting of latency-insensitive mod-
ules onto heterogenous execution environments. Because both the
programming model and machine model are restricted to communi-
cation by latency-insensitive channels, the LIM compiler has broad
freedom in mapping modules to the environment and implement-
ing the network between modules, eliminating many of the design
headaches in programming heterogeneous systems. We conclude
by discussing some concrete applications of the LIM compilation
framework.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

2. PROGRAMMING MODEL
A good programming model for heterogeneous systems must

both admit of many kinds of component platforms and simplify
writing programs spanning those platforms. Latency-insensitive
programs are composed of sets of latency-insensitive modules
communicating by way of latency-insensitive channels. Latency-
insensitive modules are computational entities, for example, a pro-
cess or a hardware block, that communicate with each other only by
way of primitive latency-insensitive channels. Internally, latency-
insensitive modules may have any implementation that the pro-
grammer sees fit so long as that implementation honors the pro-
gramming model. Externally, latency-insensitive modules present
a highly-regular, channel-based interface, enabling automatic so-
lutions to many of the complex design issues present in hetero-
geneous systems. These two properties make latency-insensitive
modules an ideal model of computation for heterogeneous plat-
forms.

Latency-insensitive channels have operating behaviors and in-
terfaces similar to the concurrent FIFO modules commonly avail-
able in hardware and software programming libraries – a simple
enqueue and a simple dequeue operation along with some obser-
vation methods, like notFull and notEmpty, to test the status
of a channel. Unlike these library FIFOs, which have fixed imple-
mentations within a given library, the latency-insensitive channel
denotes abstract communication and makes only two basic guar-
antees. First, the channel guarantees FIFO delivery of messages.
Second, the channel guarantees that at least one message can be
in flight at any point in time. Consequently, a latency-insensitive
channel may have dynamically-variable transport latency and arbi-
trary, but non-zero, buffering. When a programmer instantiates a
latency-insensitive channel, he asserts that these variations do not
impact the functional correctness of his design.

Latency-insensitive channels permit programmers to define
latency-insensitive modules, computational entities that commu-
nicate only by way of latency-insensitive channels. A program
composed of these modules executes on some heterogeneous en-
vironment, with the environment providing some physical commu-
nication primitives to the modules. Latency-insensitive module in-
ternals do not matter from the perspective of the LIM compiler;
rather, it is the latency-insensitive interface that is fundamental.
Internally, modules may be expressed in any programming lan-
guage and have whatever behavior the programmer sees fit, pro-
vided that the internal implementation honors the programming
contract of the external latency-insensitive interface. For example,
in a fixed-function accelerator module, after data arrives through
an interface latency-insensitive channel, it might pass through a
latency-sensitive synchronous pipeline internal to the accelerator.
For latency-insensitive modules described in sequential languages,
the module internals could be implemented as a thread or process.

The latency-insensitive channel abstraction gives the compiler
great freedom in choosing the physical implementation of the chan-
nels carrying data between latency-insensitive modules. For exam-
ple, the compiler may choose to implement the channel using a
fixed-buffer, fixed-latency RTL FIFO. Alternatively, the compiler
is free to choose a more complex implementation, including imple-
mentations in which the endpoints of the latency-insensitive chan-
nel are physically far apart. This freedom of choice permits us to
capture many physical systems within the programming model.

In addition to enabling design automation, the latency-
insensitive modules also provide several other benefits, including
portability and support for virtualization. Since inter-module com-
munications are abstract, modules may be moved to different ex-
ecution platforms of the same type by the compiler. In FPGAs,
which can be area constrained, this frees programmers to scale
their designs arbitrarily. The abstraction of communications also

assists in the virtualization of modules. Because timing does not
impact the functional correctness of latency-insensitive modules,
virtual execution facilities can be added to a given heterogeneous
environment if those facilities are not available natively in the envi-
ronment. For example, if a given latency-insensitive program runs
out of FPGA area, excess modules can be implemented in software
simulation running on an general-purpose processor or a soft-core
within the environment.

Latency-insensitive programs are quite general. Although we
believe that the kernel-based model of computation provided by
OpenCL is too restrictive for fine-grained and potentially au-
tonomous platforms like FPGAs, we point out that latency-
insensitive modules can capture the kernel-based model of compu-
tation provided by OpenCL. Kernel arguments themselves may be
transported over an underlying latency-insensitive network to the
latency-insensitive modules that execute the kernels.

3. ABSTRACT MACHINE MODEL
Once a program has been formulated in terms of latency-

insensitive modules, it must be mapped onto a heterogeneous envi-
ronment for execution. An environment is an aggregation of exe-
cution platforms, each of which can execute some kind of latency-
insensitive module. These platforms are joined together by an in-
terconnect capable of carrying latency-insensitive channel commu-
nication. Thus, our abstract machine model for executing latency-
insensitive programs can be viewed as a graph of platforms con-
nected by reliable communication channels.

The latency-insensitive abstract machine model requires execu-
tion platforms to satisfy a handful of simple requirements, pri-
marily related to inter-platform connectivity. Each platform in
the environment must be connected by a bi-directional transport
link to at least one other platform, and the platform graph implied
by these links must be strongly connected. Furthermore, inter-
platform transport links must provide reliable, in-order delivery of
messages. Examples of acceptable transport layers include PCIe
and QPI for CPU-to-FPGA communication, high-speed SERDES
for FPGA-to-FPGA communication, and UNIX sockets for CPU-
to-CPU communication.

Figure 1 gives an example of the language used in our com-
pilation framework to specify an execution environment. In this
example declaration, there are two FPGA platforms connected by
a single interconnect and a CPU connected to one of the FPGAs.
The platform declaration conveys three important pieces of infor-
mation: the platform type, the platform service description file, and
the inter-platform interconnections declaration.

Much of the previous discussion of latency-insensitive modules
has focused on the structure and properties of the input program.
However, programs do not operate in a vacuum: they require ac-
cess to external physical resources. Physical devices, especially
those attached to FPGAs, do not necessarily conform to the latency-
insensitive model of computation described in Section 2. For ex-
ample, a latency-insenstive program implementing an SSD con-
troller requires a physical, latency-sensitive interface to a set of
flash chips.

Latency-sensitive physical device interfaces cannot be directly
described in the user latency-insensitive programs, since latency-
insensitive modules by definition are prohibited from having ex-
ternal latency-insensitive interfaces. We capture these non-ideal
devices using the platform device description, denoted in the ex-
ample as “*.apm”. The platform device description contains all
device libraries necessary to build an abstract interface to the physi-
cal devices provided by the platform. Within the device description,
latency-senstive devices are wrapped in latency-insensitive inter-
faces. When viewed as an ensemble, the platform device descrip-
tion itself is a latency-insensitive module, although the non-latency

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

platform CPU CPU0 ‘‘drivers_cpu0.apm’’;
FPGA0 -> drivers.fromFPGA0;
FPGA0 <- drivers.toFPGA0;

endplatform

platform FPGA FPGA0 ‘‘drivers_fpga0.apm’’;
FPGA1 -> drivers.fromFPGA1;
FPGA1 <- drivers.toFPGA1;
CPU0 -> drivers.fromCPU0;
CPU0 <- drivers.toCPU0;

endplatform

platform FPGA FPGA1 ‘‘drivers_fpga1.apm’’;
FPGA0 -> drivers.fromFPGA0;
FPGA0 <- drivers.toFPGA0;

endplatform

Figure 1: A sample heterogeneous environment with two FPGA
platforms and a CPU. This environment corresponds to the
FPGA environment used in the SoC modeling case study.

insensitive portions of the device interface tie the device module to
its particular platform.

The intention of the platform device description is to capture
physical devices within the system, including any virtualized plat-
forms like simulators. However, to synthesize a communications
network, a compiler must know how platforms in the environment
are physically connected to one another. We use the arrow notation
to denote specific devices in the platform device description that
can carry LI channel traffic to a specific platform. These devices
have specific and well-known interfaces which may be used by the
compiler.

Our compilation framework currently requires the precise spec-
ification of both the computational infrastructure and resources
available within a target heterogeneous system. If a system has
a processor, we expect the processor to be enumerated explicitly
within the environment description file. Our specification require-
ment is entirely pragmatic – currently, we do very little program
analysis to decide, given an environment or set of environments,
what the best implementation of a given latency-insensitive pro-
gram might be. However, one could imagine compilation tools
playing a larger role in the determination of the environment, par-
ticularly if virtualization mechanisms are available for some of the
physical platforms. For example, a compiler could instantiate soft-
cores within an FPGA to run sequential codes.

Automatic SoC design takes the notion of platform virtualiza-
tion to an extreme. If we consider a suite of latency-insensitive
programs to be run by the SoC, a compiler could provision an SoC
system with different kinds of cores and accelerators to minimize
area while satisfying minimum performance constraints for each
program.

4. LIM COMPILATION FLOW
In the previous sections, we described a programming model

for heterogeneous platforms and an abstract machine model capa-
ble of describing generic heterogenous platforms. In this section,
we will unify these two concepts in the LIM compiler, a frame-
work for compiling heterogeneous programs. Conceptually, the
LIM compiler takes sets of user source, described in terms of a
set of supported programming languages, augmented with latency-
insensitive channel annotations for each language. The LIM com-
piler then invokes an appropriate source compilation flow for each

language, which produces an intermediate representation of the
modules and channels present in the language source. The LIM
compiler then analyzes this program representation, maps the mod-
ules onto a target heterogeneous execution environment, synthe-
sizes a network between the modules, and produces a set of new
programs, one for each platform. Finally, the LIM compiler per-
forms a second compilation pass, producing an executable for each
platform.

4.1 Building a Latency Insensitive Module
Graph

LIM compilation begins with an initial compilation pass over the
user source. During this compilation pass, each source compiler in-
voked by the LIM compiler is responsible for producing meta-data
about the latency-insensitive modules present in that source. Gen-
erally, this requires some stylized syntax within the user source.
For example, an RTL code might include new pragmas for declar-
ing latency-insensitive modules and channels. This initial pass is
similar to the object code generation phase of a normal compiler.

The LIM compiler gathers the meta-data produced by these ini-
tial compilation passes and uses it to produce a graph-based rep-
resentation of the user program: the LIM graph. In this graph,
latency-insensitive modules correspond to vertices and latency-
insensitive channels correspond to edges. This graph will be pro-
cessed by subsequent phases and eventually used to produce a
physical implementation.

4.2 Mapping LIM Graph to Execution Envi-
ronment

Once it has constructed a LIM graph representing a given pro-
gram, the LIM compiler must map this graph to the target execu-
tion environment. Currently, we rely on the programmer to sup-
ply this mapping in the form of a module mapping file. Moving
forward, we envision an automated flow in which the compiler an-
alyzes design properties, including communications patterns and
area, to produce an automatic mapping.

Depending on the underlying implementation of a particular
module, the module may be mapped to a variety of platforms for ex-
ecution using a virtualization layer. For example, software modules
can be executed on a general purpose processor or perhaps a soft-
core on an FPGA. Hardware modules can be mapped to an FPGA
or implemented in silicon. If no FPGA is available or for simula-
tion purposes, hardware modules may also be executed on a gen-
eral purpose processor inside of a hardware simulator. Currently,
the LIM compiler supports mappings if they are user-declared.

4.3 Synthesizing Inter-Module Communica-
tion Network

Once vertices in the LIM graph have been assigned execution
platforms, the compiler must synthesize a communications network
connecting the latency-insensitive modules. This phase of the LIM
compiler resembles the linking phase of a normal compiler.

Portions of the network may be simple: individual latency-
insensitive channels between modules placed on the same platform
can be implemented using the basic FIFO primitives provided by
that platform. For channels connecting modules assigned to differ-
ent platforms, the channels will be mapped to a synthesized shared
network infrastructure generated by the LIM compiler. For exam-
ple, all the channels crossing between a pair of connected FPGAs
share the single, multiplexed physical interconnect between the FP-
GAs. This shared network infrastructure is built on top of the com-
munications primitives declared in the heterogeneous environment
file. Although conceptually simple, generating a high-quality, high-
throughput inter-module network involves significant optimization
effort on the part of the compiler. For example, the LIM com-

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

piler attempts to optimize network packet formats for performance.
In FPGA-to-FPGA networks, the compiler packs data tightly to
conserve communication bandwidth, while in CPU-to-FPGA net-
works, the compiler refrains from optimal packing to simplify the
CPU-side packet decoding logic.

Finally, the LIM compiler generates an executable program for
each platform in the execution environment. The synthesized
programs consist of a source-level representation of the latency-
insensitive modules mapped to the particular platform, the physical
device drivers associated with that platform, and the synthesized
communications network. These programs are passed through a
final source compilation flow to produce executables for each plat-
form in the heterogeneous system. The full system program may
be run using a LIM-provided script which manages the loading of
the various executables.

4.4 Compiler Extension
The LIM compiler currently supports three kinds of execution

platforms (CPU, FPGA, and hardware simulator) and two program-
ming languages (C++ and Bluespec). The LIM compiler can pro-
duce heterogeneous executables targeting any environment consist-
ing of these kinds of platforms and described in these programming
languages.

The LIM compiler has been designed as an extensible compi-
lation framework, recognizing both that new kinds of execution
environments may arise and that heterogeneous platforms may be
programmed using diverse languages. Extending compilation sup-
port to new programming languages involves three activities. First,
libraries for latency-insensitive primitives must be introduced into
the language. In our experience, these libraries are not large, and
the two examples we have produced are around 1000 lines of code
each. Second, a compilation flow must be described for producing
meta-data about the latency-insensitive modules and channels in a
particular language. This flow is usually no more complicated than
a typical enterprise compilation flow. Finally, a function for pro-
ducing an interface between latency-insensitive channels and the
platform interconnect must be provided. This function is invoked
by the LIM compiler to produce the synthesized inter-module net-
work. Adding support for a new kind of execution platform re-
quires programming only language support for that platform and
appropriate platform drivers.

5. USE CASES FOR THE LIM COMPILER
The LIM compiler is currently being used to produce implemen-

tations targeting several kinds of heterogeneous systems. In the
following sections we outline some applications of the compiler.

5.1 High-performance FPGA-based Applica-
tions

As FPGAs have grown in size and capability, they have become
computational platforms in their own right. Rather than solely pro-
totyping ASICs, under this new use case, programs implemented on
FPGAs are intended to compute the result of some algorithm. Un-
like in ASIC prototyping, where the preservation of cycle-accuracy
is paramount, algorithmic compuation requires only that the func-
tion of the algorithm is preserved. The LIM compiler facilitates
the development of FPGA-based applications in two ways. First,
although some FPGA applications are autonomous, most require
at least some software interaction for activities like initialization.
The LIM compiler’s support for heterogeneous CPU-FPGA en-
vironments greatly simplifies these activities. The second way in
which the LIM compiler supports FPGA-based applications is en-
abling large programs. Spatial architectures, like FPGAs, can run
out of execution resources if the program is large. The LIM com-
piler frees programmers from the burden of manually partitioning

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 16 25 36 64 81 100 121

A
g

g
re

g
a

te
 S

im
u

la
to

r
M

IP
S

Number of Simulated CPUs

Single FPGA

Dual FPGA (Max. 16)

Dual FPGA (Max. 64)

Dual FPGA (Max. 121)

Figure 2: Performance results for one FPGA and two FPGA
implementations of HAsim. Scaling HAsim to two FPGAs per-
mits around a 10x increase in the number of cores that can be
modeled.

large designs by enabling them to add more FPGAs to their execu-
tion environment and simply re-target their design.

One example of an FPGA application that benefits from both as-
pects of the LIM compiler is HAsim [7]. HAsim is a framework
for constructing high-speed, cycle-accurate, FPGA-based chip-
multiprocessor (CMP) simulators. By utilizing the FPGA, which
has good support for the fine-grained parallelism common in pro-
cessors, HAsim can simulate processors at speeds several orders
of magnitude faster than detailed software models. HAsim is a
heterogenous simulator: much of the heavy computational work
is conducted on the FPGA, while rare events and instructions are
modeled in software on an accompanying processor.

HAsim was designed in a highly-parametric fashion, enabling
the description of enormous processor designs simply by changing
a handful of parameters. However, large processor models do not fit
on a single FPGA. In the case of HAsim, small CMP models, up to
around 16 cores, can fit on a single FPGA. To study architectures
with more cores, multiple FPGAs are required. When HAsim is
mapped to multiple FPGAs, we are able to simulate CMPs up to
10 times larger than the largest CMPs that fit on a single FPGA, as
shown in Figure 2.

5.2 Rack-level Local Area Network
In addition to offering high performance for fine-grained par-

allel applications, FPGAs are also very good at chip-to-chip
and board-to-board communication. One of the more intriguing
physical features of modern FPGAs is the high-speed SERDES
transceivers. Modern FPGAs come with, at the high-end, dozens
of these transceivers, and the bandwidth, latency, and number of
transceivers appear to be scaling well with process generations.
Due to the high performance of these transceivers and the flexible
support for networking protocols within the logic fabric, FPGAs
can be used to build very high performance local area networks at
a low cost relative to traditional networking equipment.

BlueDBM [1], a distributed, rack-level storage system, high-
lights an emerging class of FPGA-based rack-level architectures
for which the LIM compiler is ideally suited. Each CPU in the
BlueDBM system is attached to an FPGA by way of PCI-E, and

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

 0

 100

 200

 300

 400

 500

0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

B
an

dw
id

th
(M

B
/s

/L
an

e)

A
ve

ra
ge

 L
at

en
cy

 (
us

)

FPGA Hops

Bandwidth(MB/s)

Latency(us)

Figure 3: Network and throughput characteristics of LIM-
generated networks. Networks target the Xilinx ML605 eval-
uation platform SERDES at 5Gbps.

each FPGA has attached an array of flash memory. The FPGAs are
networked together using SERDES transceivers managed by the
LIM compiler. BlueDBM attempts to leverage the relative laten-
cies of flash and the FPGA to achieve the appearance of a large,
shared store with low cost per node. The RTL and software of
BlueDBM use the LIM compiler to generate the middle-ware layer
between FPGAs and CPUs within the rack. Figure 3 summarizes
the performance of the LIM-generated network.

BlueDBM is but one application of FPGAs to rack-level com-
puter architecture. We view FPGA-supported rack-level computa-
tion and communication as a promising new field.

5.3 SoC Software Development Vehicles
In the past, CPUs could be validated using legacy software both

because architectures were relatively stable and because the valida-
tion software was usually not complicated. However, accelerator-
oriented SoCs change architecturally at each generation, resulting
in the need to write and validate complicated new software before
the design can be considered complete. Thus, it is necessary to pro-
vide software developers with high-quality software-development
vehicles (SDVs) as early in the SoC design cycle as possible.

Unfortunately, hardware accelerators are difficult to model and
slow to simulate in software. Fast emulation of most SoC blocks
requires mapping the block to an FPGA. However, existing FPGA-
based system emulation tools, which target cycle-accurate verifi-
cation, tend to be too slow for software development. The slow
execution speed of emulation solutions arises from the communica-
tion and coordination necessary to maintain cycle-accuracy across
a distributed network of FPGAs.

Although most of the blocks in a given SoC are latency-sensitive,
we remark that most inter-block communications in an SoC are
carried over latency-insensitive networks-on-chip (NoC). The LIM
compiler can exploit this property of the NoC to automate the pro-
duction of FPGA-based full-system SDVs by mapping the various
SoC blocks onto as many FPGAs as might be necessary to imple-
ment the system.

In viewing an SoC as a latency-insensitive program, we are trad-
ing system-level cycle accuracy for system-level functional accu-
racy and faster simulation speeds. Fortunately, software developers
have historically been satisfied with functional accuracy as embod-
ied by popular simulators like Simics. Should system-level cy-
cle accuracy be required in late stages of software development

 100

 1000

 10000

 1 10 100

R
un

tim
e

Number of Simulated Cores

1 Process

2 Processes

Figure 4: Parallel simulation improves the simulation speed
of real programs, in this case, HAsim. The overhead of com-
munication dominates for small models, but as compute-to-
communication ratio grows, parallel simulation becomes ad-
vantageous.

and validation, we note that common cycle-accurate simulation
paradigms like SCE-MI [5], which maintains cycle-accuracy algo-
rithmically, can be layered on top of the LIM compilation infras-
tructure.

5.4 Parallel Logic Simulation
Software development notwithstanding, simulation times for

large hardware designs can be quite long. A typical flow for such
a simulation is to load an entire hardware design into some single-
process software simulator. For large designs, this results in very
slow simulation speeds which reduce programmer productivity dur-
ing interactive debugging sessions.

Single process logic simulation is unsatisfying for two reasons:
modern computer architectures offer large numbers of cores and the
underlying simulation target is fundamentally parallel. The LIM
compiler offers the capability to exploit this intrinsic parallelism
by partitioning a latency-insensitive module graph among multiple
simulators.

Figure 4 shows the results of a limit study of parallel simulation.
In this test, a HAsim simulator with various numbers of cores is
split in two and mapped to simulator platforms by the LIM com-
piler. If the amount of simulation work is small, that is, if few cores
are simulated, then single process simulation is faster than paral-
lel simulation due to communication overhead. As the number of
cores is scaled, computation per cycle becomes the simulation bot-
tleneck. In this case, parallel simulation with two processes is as
much as 35% faster than a single-process simulation.

As in the SoC emulation case, our parallel simulator main-
tains only the functional correctness of latency-insensitive designs.
However, by leveraging latency-insensitive modules for parallelism
we have lost complete system-level cycle accuracy, meaning that
the parallel simulator may not expose some erroneous behaviors
that would arise in a cycle-accurate realization of the target sys-
tem. However, because most of the simulation system retains cycle
accuracy and many bugs are function-related rather timing-related,
we believe that parallel simulation provides significant value to de-
velopers, especially in early, highly-interactive stages of the debug-
ging and validation process.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

Support for parallel logic simulation is also useful in construct-
ing FPGA-accelerated SDVs. An important design consideration
in deploying SDVs is cost per programmer. FPGAs tend to be ex-
pensive to deploy and, in a typical industrial setting, there are too
many software developers to make personal FPGA networks or big-
box simulators practical. Here, too, the LIM compiler, through its
support of virtualization, offers a solution: the LIM compiler can
produce programs with some modules executing on an FPGA and
some modules executing in simulation. Since an individual pro-
grammer often targets only a small portion of the SoC-under-test,
we can apply Amdahl’s law and allocated this targeted portion to
a smaller number of FPGAs. Other parts of the SoC can be sim-
ulated by bridging the FPGA and the simulator, as in the parallel
logic simulation case. In this manner, it is possible for a single
programmer to reap the performance benefits of FPGA accelerated
simulation without the high cost typically associated with FPGA-
based emulation.

6. CONCLUSION
Heterogeneity has become ubiquitous in modern computational

systems. In this paper, we presented a general model of computa-
tion, latency-insensitive modules, which we believe is suitable for
writing programs targeting such systems, and we presented a sim-
ple, declarative language for describing these systems. We unite
these two notions in the LIM compiler, a compilation framework
capable of mapping abstract representations of latency-insensitive
programs and mapping them onto various heterogeneous systems.

Most of the discussion presented in this paper has focused on het-
erogeneous systems involving fine-grained parallel systems. How-
ever, nothing in the latency-insensitive model of computation or in
the LIM compiler precludes the inclusion of other kinds of compu-
tational platforms, including GPUs and DSPs. As the architectures
of these platforms trend toward fine-grained interaction with other
system platforms, we believe that latency-insensitive modules will
be an increasingly attractive model of computation for these sys-
tems as well.

7. REFERENCES
[1] Removed, under sumbmission.
[2] Luca P. Carloni, Kenneth McMillan, and Alberto L.

Sangiovanni-Vincentelli. Theory of Latency-Insensitive
Design. IEEE TRANSACTIONS on Computer-Aided Design of
Integrated Circuits and Systems, 20(9), September 2001.

[3] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and
Alexander Taubin. Elastic Circuits. IEEE Transactions on
Computer-Aided Design, 28(10):1437–1455, October 2009.

[4] Kermin Elliott Fleming, Michael Adler, Michael Pellauer,
Angshuman Parashar, Arvind, and Joel S. Emer. Leveraging
Latency-insensitivity to Ease Multiple FPGA Design. In
FPGA, pages 175–184, 2012.

[5] http://www.eda.org/itc/scemi.pdf. Standard co-emulation
modelling interface (sce-mi): Reference manual.

[6] http://www.khronos.org/opencl. The open standard for parallel
programming of heterogeneous systems.

[7] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer.
HAsim: FPGA-Based High-Detail Multicore Simulation
Using Time-Division Multiplexing. In The 17th International
Symposium on High-Performance Computer Architecture
(HPCA), February 2011.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1

