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Motivation 
•  FPGAs for embedded systems 

–  In use for glue logic, interfaces, etc. 
–  Would like to do data processing on-chip 

•  Fixed performance requirements 
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Motivation 
•  FPGAs for embedded systems 

–  In use for glue logic, interfaces, etc. 
–  Would like to do data processing on-chip 

•  Fixed performance requirements 
 

•  Options 
–  Custom hardware accelerator 
–  Soft processor 
–  Multiprocessor-on-FPGA 
–  Synthesized accelerator 



4 

Problems… 
•  Custom hardware accelerator cost 

–  Need hardware engineer  
–  Time-consuming to design and debug 
–  1 hardware accelerator per function 

•  Soft processor limited performance 
–  Single issue, in-order 
–  2 or 4-way superscalar/VLIW register file maps inefficiently to FPGA 
–  Expensive to implement CAMs for OoOE  

•  Multiprocessor-on-FPGA complexity 
–  Parallel programming and debugging 
–  Area overhead for interconnect 
–  Cache coherence, memory consistency 
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Problems… 
•  Automatically synthesized hardware accelerators 

–  Change algorithm à regenerate FPGA bitstream 
•  Altera C2H 
•  Xilinx AutoESL 
•  Mentor Graphics Catapult Synthesis 
•  Forte Design Cynthesizer 

–  Parallelism obscured by starting from sequential code 
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Soft Vector Processor 

•  Change algorithm à same RTL, just recompile software 

•  Simple programming model 
–  Data-level parallelism, exposed to the programmer 

•  One hardware accelerator supports many applications 

•  Scalable performance and area 
–  Write once, run anywhere… 
–  Small FPGA: 1 ALU     (smaller than Nios II/f) 
–  Large FPGA: 10’s to 100’s of parallel ALUs 
–  Parameterizable; remove unused functions to save area 



Vector Processing 
•  Organize data as long vectors 

–  Replace inner loop with vector instruction 

 
•  Hardware loops until all elements are processed 

–  May execute repeatedly (sequentially) 
–  May process multiple at once (in parallel) 
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for( i=0; i<N; i++ ) 
  a[i] = b[i] * c[i] 

set vl, N 
vmult  a, b, c 
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Hybrid Vector-SIMD 

for( i=0; i<8; i++ ) { 
    C[i] = A[i] + B[i] 
    E[i] = C[i] * D[i] 
} 
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Vector Processing on FPGAs 
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1st Generation 
Vector 

2nd Gen. 3rd Gen Scalar CPUs 



1st Generation SVPs 

•  VESPA (UofT)/VIPERS (UBC) 
•  Based on VIRAM (2002) 

–  Vector > VLIW/Superscalar for embedded multimedia 
–  Traditional load/store architecture 
–  Fixed # of vector data registers 

•  Maximum vector length 

•  Demonstrated feasibility of SVPs 
– But not specifically architected for FPGAs 
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VEGAS Architecture 

2nd Generation 
 

Better Utilizing On-Chip 
Memory 



VEGAS Architecture 

Scalar Core: 
NiosII/f @ 200MHz 

DMA Engine 
& External 

DDR2 

Vector Core: 
VEGAS @ 120MHz 

Concurrent 
Execution 

FIFO 
synchronized 
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VEGAS: Better Utilizing On-Chip Memory 

•  Scratchpad-based “register file” (2kB..2MB) 
–  Vector address register file stores vector locations 
–  Very long vectors (no maximum length) 
–  Any number of vectors 

(no set number of “vector data registers”) 
–  Double-pumped to achieve 4 ports 

•  2 Read, 1 Write, 1 DMA Read/Write 

•  Lanes support sub-word SIMD 
–  32-bit ALU configurable as 1x32, 2x16, 4x8  
–  Keeps data packed in scratchpad for larger working set 



Scratchpad Memory in Action 
srcA Dest 
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VENICE Architecture 

3rd Generation 
High Frequency, Low Area 



VENICE Overview 
Vector Extensions to NIOS Implemented Compactly and Elegantly 

•  3 Key ideas borrowed from VEGAS 
–  Scratchpad memory 
–  Asynchronous DMA transactions 
–  Sub-word SIMD (1x32, 2x16, 4x8 bit operations) 

•  Optimized for smaller implementations 
–  VEGAS achieves best performance/area at 4-8 lanes 

•  Vector programs don’t scale indefinitely 
•  Communications networks scale > O(N) 

–  VENICE targets 1-4 lanes 
•  About 50% .. 75% of the size of VEGAS 

–  Vector Multiprocessor 
•  N small VENICE processors > 1 big VEGAS processor ? 



VENICE Overview 
Vector Extensions to NIOS Implemented Compactly and Elegantly 

•  Removed vector address register file 
–  Address stored in scalar processor’s registers 
–  Reduces area/control overhead 
–  Now 2 cycle instruction dispatch though 

•  In pipeline vector alignment network 
–  Much faster for convolutions 
–  Low overhead for small number of lanes  
 

•  Single clock domain with master CPU 
–  Deeper pipelining (registers cheap on FPGAs) 
–  Reaches 200MHz, ~50% faster than previous SVPs 



VENICE Overview 
Vector Extensions to NIOS Implemented Compactly and Elegantly 

•  Programming changes 
–  2D/3D vectors for multimedia/linear algebra/etc. 

•  Repeated vector instruction with separate strides for srcA, srcB, and Dest 
•  Reduces instruction dispatch bandwidth requirements 
 

–  C pointers used to index into scratchpad 
•  VEGAS   (old): 
      vegas_set( VADDR, V1, pBufSrc1 ); 
      vegas_set( VADDR, V2, pBufSrc2 ); 
      vegas_set( VADDR, V4, pBufDest ); 
      vegas_vvw( VADD, V4, V1, V2 );      // V4 = V1 + V2 

•  VENICE (new): 
      vector( VVW, VADD, pBufDest, pBufSrc1, pBufSrc2 ); 



VENICE Architecture 
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VENICE Scratchpad Alignment 
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VENICE Fracturable Multiplier 

21 

<<16

<<32

18x18

18x18

18x18

18x18

64

32

32

word

byte 0 /
halfword 0

byte 3 /
halfword 1

byte 2

byte 116

16

36x36

18x18

9x9

9x9

64

16

byte 0 / halfword 0 / word

byte 3

byte 2

byte 1 / halfword 132

16

VEGAS Fracturable Multiplier
efficiently packs into 2 DSP blocks

VENICE Fracturable Multiplier
saves ALMs, packs inefficiently into 3 DSP blocks

2 DSP Blocks + extra logic 2 DSP Blocks (no extra logic) 



Area Breakdown 

VENICE area greatly reduced. 



VENICE Average Speedup vs. ALMs 
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Table III
BENCHMARK PERFORMANCE AND PROPERTIES

Performance (Millions of elem. per second) Speedup Data Type Benchmark Properties
Benchmark Nios II/f V1 V2 V4 V1 V2 V4 In/Out Intermed. Data Set Size Taps Origin

autocor 0.46 5.94 11.11 18.94 12.9 24.2 41.2 halfword word 1024 16 EEMBC
rgbcmyk 4.56 17.68 21.41 22.72 3.9 4.7 5.0 byte 896×606 EEMBC
rgbyiq 5.20 6.74 11.09 15.61 1.3 2.1 3.0 byte word 896×606 EEMBC

imgblend 4.83 77.63 145.57 251.18 16.1 30.1 52.0 halfword 320×240 VIRAM
filt3x3 2.11 16.82 26.95 36.42 8.0 12.7 17.2 byte halfword 320×240 3×3 VIRAM
median 0.10 0.74 1.45 2.69 7.3 14.4 26.6 byte 128×21 5×5 custom
motest 0.09 2.37 4.18 6.29 27.4 48.2 72.4 byte 32×32 16×16 custom

fir 3.32 20.11 34.95 41.67 6.1 10.5 12.5 halfword 4096 16 custom
matmul 11.7 148.20 322.22 593.75 12.6 27.4 50.6 word 1024×1024 custom

Geomean 7.95 13.8 20.6

!"

#"

$!"

$#"

%!"

%#"

!" %" &" '" ("

!"
##
$%

"&
'(
#)
*+

,#
&-.

&/
0.
1&2
23
45&

6#
.7

#*
8&
.4
&9
#8

:;
7
*(
<1
=&

>(#*&'(#)*+,#&-.&/0.1&22345&>?@&:.%8-=&

)*+,"--./"
0*1234"567"
)*+,"--./"
-8493"0:93*12"
;<=>0"
;$?";%?";&"
;<)-5<"
;$?";%?";&"

Figure 6. Speedup (geomean of 9 Benchmarks) vs Area Scaling
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Figure 7. Computational Density with V1 SVPs

VEGAS and VENICE using a small V1 configuration.
Simple benchmarks such as rgbcmyk, rgbyiq, imgblend

and median achieve the smallest performance increase over
VEGAS. These benchmarks have large vector lengths and
no misaligned vectors, and so the speedup comes mostly
from clock speed increase. Convolution benchmarks like fir
and autocor benefit from the lack of misalignment penalty on
VENICE. The 2D vectors accelerate autocor, motest, and fir.
On matmul, using 3D vectors and the accumulators achieves
3.2× the performance of VEGAS.

For one application, rgbyiq, the computational density
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Figure 8. 16-bit 4x4 DCT

falls below 1.0 on VENICE, meaning Nios II/f is better. This
is because the area overhead of 1.8× exceeds the speedup
of 1.3×. The limited speedup is due to a combination of
memory access patterns (r,g,b triplets) and wide intermedi-
ate data (32b) to prevent overflows. However, on average,
VENICE-V1 offers 3.8× greater computational density than
Nios II/f, and 2.3× greater density than VEGAS-V1.

Comparing V4 configuration results (not shown), the
computational density of VENICE is 5.2×, while VEGAS
is 2.7× that of Nios.

D. Case Study: DCT
VENICE was designed to exploit vector parallelism, even

when vectors are short. By remaining small, VENICE can be
efficiently deployed in multiprocessor systems to efficiently
exploit other forms of parallelism (eg, thread-level) on top
of the vector-level parallelism.

In this section, we use VENICE to perform a 4x4 DCT
with 16-bit elements on a total of 8192 different matrices.
Each DCT is implemented using two matrix multiplies
followed by shifts for normalization. Vectors are short,
limited to four halfwords for the matrix multiply.

In Figure 8, the first set of bars shows the benefit of
using 2D and 3D vector operations with a V2 VENICE
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VENICE Computational Density 
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Table III
BENCHMARK PERFORMANCE AND PROPERTIES

Performance (Millions of elem. per second) Speedup Data Type Benchmark Properties
Benchmark Nios II/f V1 V2 V4 V1 V2 V4 In/Out Intermed. Data Set Size Taps Origin

autocor 0.46 5.94 11.11 18.94 12.9 24.2 41.2 halfword word 1024 16 EEMBC
rgbcmyk 4.56 17.68 21.41 22.72 3.9 4.7 5.0 byte 896×606 EEMBC
rgbyiq 5.20 6.74 11.09 15.61 1.3 2.1 3.0 byte word 896×606 EEMBC

imgblend 4.83 77.63 145.57 251.18 16.1 30.1 52.0 halfword 320×240 VIRAM
filt3x3 2.11 16.82 26.95 36.42 8.0 12.7 17.2 byte halfword 320×240 3×3 VIRAM
median 0.10 0.74 1.45 2.69 7.3 14.4 26.6 byte 128×21 5×5 custom
motest 0.09 2.37 4.18 6.29 27.4 48.2 72.4 byte 32×32 16×16 custom

fir 3.32 20.11 34.95 41.67 6.1 10.5 12.5 halfword 4096 16 custom
matmul 11.7 148.20 322.22 593.75 12.6 27.4 50.6 word 1024×1024 custom
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Figure 7. Computational Density with V1 SVPs

VEGAS and VENICE using a small V1 configuration.
Simple benchmarks such as rgbcmyk, rgbyiq, imgblend

and median achieve the smallest performance increase over
VEGAS. These benchmarks have large vector lengths and
no misaligned vectors, and so the speedup comes mostly
from clock speed increase. Convolution benchmarks like fir
and autocor benefit from the lack of misalignment penalty on
VENICE. The 2D vectors accelerate autocor, motest, and fir.
On matmul, using 3D vectors and the accumulators achieves
3.2× the performance of VEGAS.

For one application, rgbyiq, the computational density
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Figure 8. 16-bit 4x4 DCT

falls below 1.0 on VENICE, meaning Nios II/f is better. This
is because the area overhead of 1.8× exceeds the speedup
of 1.3×. The limited speedup is due to a combination of
memory access patterns (r,g,b triplets) and wide intermedi-
ate data (32b) to prevent overflows. However, on average,
VENICE-V1 offers 3.8× greater computational density than
Nios II/f, and 2.3× greater density than VEGAS-V1.

Comparing V4 configuration results (not shown), the
computational density of VENICE is 5.2×, while VEGAS
is 2.7× that of Nios.

D. Case Study: DCT
VENICE was designed to exploit vector parallelism, even

when vectors are short. By remaining small, VENICE can be
efficiently deployed in multiprocessor systems to efficiently
exploit other forms of parallelism (eg, thread-level) on top
of the vector-level parallelism.

In this section, we use VENICE to perform a 4x4 DCT
with 16-bit elements on a total of 8192 different matrices.
Each DCT is implemented using two matrix multiplies
followed by shifts for normalization. Vectors are short,
limited to four halfwords for the matrix multiply.

In Figure 8, the first set of bars shows the benefit of
using 2D and 3D vector operations with a V2 VENICE
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VENICE: Multiprocessor 
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Table III
BENCHMARK PERFORMANCE AND PROPERTIES

Performance (Millions of elem. per second) Speedup Data Type Benchmark Properties
Benchmark Nios II/f V1 V2 V4 V1 V2 V4 In/Out Intermed. Data Set Size Taps Origin

autocor 0.46 5.94 11.11 18.94 12.9 24.2 41.2 halfword word 1024 16 EEMBC
rgbcmyk 4.56 17.68 21.41 22.72 3.9 4.7 5.0 byte 896×606 EEMBC
rgbyiq 5.20 6.74 11.09 15.61 1.3 2.1 3.0 byte word 896×606 EEMBC

imgblend 4.83 77.63 145.57 251.18 16.1 30.1 52.0 halfword 320×240 VIRAM
filt3x3 2.11 16.82 26.95 36.42 8.0 12.7 17.2 byte halfword 320×240 3×3 VIRAM
median 0.10 0.74 1.45 2.69 7.3 14.4 26.6 byte 128×21 5×5 custom
motest 0.09 2.37 4.18 6.29 27.4 48.2 72.4 byte 32×32 16×16 custom

fir 3.32 20.11 34.95 41.67 6.1 10.5 12.5 halfword 4096 16 custom
matmul 11.7 148.20 322.22 593.75 12.6 27.4 50.6 word 1024×1024 custom

Geomean 7.95 13.8 20.6

!"

#"

$!"

$#"

%!"

%#"

!" %" &" '" ("

!"
##
$%

"&
'(
#)
*+

,#
&-.

&/
0.
1&2
23
45&

6#
.7

#*
8&
.4
&9
#8

:;
7
*(
<1
=&

>(#*&'(#)*+,#&-.&/0.1&22345&>?@&:.%8-=&

)*+,"--./"
0*1234"567"
)*+,"--./"
-8493"0:93*12"
;<=>0"
;$?";%?";&"
;<)-5<"
;$?";%?";&"

Figure 6. Speedup (geomean of 9 Benchmarks) vs Area Scaling

!"#$

#$

#!$

#!!$

%&
'()
*$

*+,
(-
./
$

*+,
.01
$

0-
+,
234
5$

62'
78
7$

-3
50%
4$

-)
'39
'$ 6*$

04'
$-
%'-

&2$

+3
)-
3%
4$

!"
##
$%

"&
"#

'&(
)*

&
+'
#,
-.

/#
&01

&2
31
4&5
56
78&

&

:;<=>?:#$ :;@AB;?:#$

Figure 7. Computational Density with V1 SVPs

VEGAS and VENICE using a small V1 configuration.
Simple benchmarks such as rgbcmyk, rgbyiq, imgblend

and median achieve the smallest performance increase over
VEGAS. These benchmarks have large vector lengths and
no misaligned vectors, and so the speedup comes mostly
from clock speed increase. Convolution benchmarks like fir
and autocor benefit from the lack of misalignment penalty on
VENICE. The 2D vectors accelerate autocor, motest, and fir.
On matmul, using 3D vectors and the accumulators achieves
3.2× the performance of VEGAS.

For one application, rgbyiq, the computational density
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Figure 8. 16-bit 4x4 DCT

falls below 1.0 on VENICE, meaning Nios II/f is better. This
is because the area overhead of 1.8× exceeds the speedup
of 1.3×. The limited speedup is due to a combination of
memory access patterns (r,g,b triplets) and wide intermedi-
ate data (32b) to prevent overflows. However, on average,
VENICE-V1 offers 3.8× greater computational density than
Nios II/f, and 2.3× greater density than VEGAS-V1.

Comparing V4 configuration results (not shown), the
computational density of VENICE is 5.2×, while VEGAS
is 2.7× that of Nios.

D. Case Study: DCT
VENICE was designed to exploit vector parallelism, even

when vectors are short. By remaining small, VENICE can be
efficiently deployed in multiprocessor systems to efficiently
exploit other forms of parallelism (eg, thread-level) on top
of the vector-level parallelism.

In this section, we use VENICE to perform a 4x4 DCT
with 16-bit elements on a total of 8192 different matrices.
Each DCT is implemented using two matrix multiplies
followed by shifts for normalization. Vectors are short,
limited to four halfwords for the matrix multiply.

In Figure 8, the first set of bars shows the benefit of
using 2D and 3D vector operations with a V2 VENICE
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16-bit 4x4 DCT 



Conclusions 

•  Soft Vector Processors 
– Scalable performance 
– No hardware recompiling necessary 

•  VENICE 
– Optimized for FPGAs, 1 to 4 lanes 
– 5X Performance/Area of Nios II/f 

•  Future work 
– Hybrid vector/thread architectures 
– Commercial version (VectorBlox Computing) 
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