
CONNECT: Fast Flexible FPGA-Tuned Networks-on-Chip

Michael K. Papamichael
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

<papamix@cs.cmu.edu>

James C. Hoe
Electrical & Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, USA

<jhoe@ece.cmu.edu>

ABSTRACT
In this paper we present CONNECT, a flexible NoC archi-
tecture and RTL generation engine for fast, FPGA-tuned
Networks-on-Chip (NoCs). The CONNECT NoC architec-
ture embodies a set of FPGA-motivated design principles
that uniquely influence key NoC design decisions, such as
topology, link width, router pipeline depth, network buffer
sizing, and flow control. The flexibility, lightweight nature
and high performance of CONNECT-based NoCs makes
them ideal candidates for use in FPGA-based research stud-
ies. We evaluate CONNECT against a high-quality publicly
available synthesizable RTL-level NoC design intended for
ASICs. Our results show a significant gain in specializing
NoC design decisions to FPGAs’ unique mapping and oper-
ating characteristics. For example, in the case of a 4x4 mesh
configuration evaluated using a set of synthetic traffic pat-
terns, we obtain comparable or better performance than the
state-of-the-art NoC while reducing logic resource cost by
58%, or alternatively, achieve 3-4x better performance for
approximately the same logic resource usage. To demon-
strate CONNECT’s flexibility and extensive design space
coverage, we also report synthesis and network performance
results for a variety of different CONNECT networks. This
paper is based on [13] previously published at FPGA 2012.

1. INTRODUCTION
The rapidly-growing capacity of Field Programmable

Gate Arrays (FPGAs), combined with the steady introduc-
tion of hardwired support for a multitude of diverse inter-
faces and functionalities, has promoted FPGAs to an at-
tractive and capable platform for architectural research and
extended System-on-Chip (SoC) prototyping and implemen-
tation. As the scale of designs targeting FPGAs grows,
designers need a systematic and flexible Network-on-Chip
(NoC) infrastructure to support communication between the
tens and in the future potentially hundreds of interacting
modules.

In this paper, we present the CONNECT NoC design
generator that can produce synthesizable RTL-level designs
of multi-node NoCs based on a simple but flexible fully-
parameterized router architecture specifically designed and
tuned for use in FPGA-based environments. The CON-
NECT NoC architecture embodies a set of FPGA-motivated
design principles that uniquely influence key NoC design de-
cisions, such as topology, link width, router pipeline depth,
network buffer sizing, and flow control.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the motivations behind the CONNECT
NoC architecture, and Section 3 presents the architecture of
CONNECT-based routers and NoCs. In Section 4 we evalu-
ate a CONNECT-based 4x4 mesh network against an equiv-
alent NoC implemented using publicly available high-quality
state-of-the-art RTL and show FPGA synthesis and network
performance results for various CONNECT NoC configura-
tions. Finally, we examine related work in Section 5, present

our recently released online NoC generation tool in Section 6
and conclude in Section 7. Readers not familiar with basic
NoC terminology and concepts are encouraged to read the
background section in our related FPGA 2012 paper [13].

2. TAILORING TO FPGAS
Compared to ASICs, an FPGA is a peculiar hardware re-

alization substrate because it dictates a very different set of
design tradeoffs between logic, wires, memory and clock fre-
quency. In this work, we take full consideration of FPGAs’
special hardware mapping and operating characteristics to
identify their own specialized NoC design sweet spot, which
we will show is very different from the conventional wisdom
stemming from NoC designs on ASICs.

Specifically, we focus on these FPGA characteristics that
influence fundamental CONNECT NOC design decisions:
(1) the relative abundance of wires compared to logic and
memory; (2) the scarcity of on-die storage resources in
the form of a large number of modest-sized buffers; (3)
the rapidly diminishing return on performance from deep
pipelining; and (4) the field reconfigurability that allows for
an extreme degree of application-specific fine-tuning.

Abundance of Wires. As previously also noted by other
work [10], FPGAs are provisioned, even over-provisioned,
with a highly and densely connected wiring substrate. As a
result wires are plentiful, or even ”free”, especially relative
to the availability of other resources like configurable logic
blocks and on-chip storage. In CONNECT we make the
datapaths and channels between routers as wide as possi-
ble to consume the largest possible fraction of the available
(otherwise unused) wires. In addition, we also adapt the for-
mat of network packets; information that would otherwise
be carried in a separate header flit is carried through addi-
tional dedicated control wires that run along the data wires.
Finally, we also adapt flow control mechanisms to occupy
fewer storage resources by using wider interfaces (please see
our related FPGA 2012 paper [13] for more information).

Storage Shortage. Modern FPGAs provide storage in
two forms: (1) Block RAMs with tens of kilo-bits of capacity,
and (2) small tens-of-bits Distributed RAMs built using logic
Look-Up Tables (LUTs). Both of these monolithic memory
macros can not be subdivided, which can lead to inefficien-
cies. This sets up a situation where NoCs on FPGAs pay a
disproportionately high premium for storage because NoCs
typically require a large number of buffers whose capaci-
ties are each much bigger than Distributed RAMs but much
smaller than Block RAMs. To make the most efficient use of
storage resources, CONNECT only uses Distributed RAM
and implements multiple logical flit buffers in each physically
allocated buffer on the FPGA. CONNECT does not use any
Block RAMs, which are typically in high demand from the
rest of the FPGA-resident user logic.

Low Clock Frequency. FPGA designs tend to operate
at significantly lower clock frequencies compared to ASIC
designs, which was one of the gaps studied in [9]. This
frequency gap can be attributed to the use of LUTs and

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

long interconnect wires and results in rapidly diminishing
returns when attempting to deeply pipeline a FPGA design
to improve its frequency. To minimize FPGA resource us-
age and network latency, CONNECT routers are based on a
shallow single-cycle pipeline architecture. As we’ll see later,
the single-stage router used in CONNECT reaches lower,
but still comparable frequency as an ASIC-tuned 3-stage-
pipelined router. The FPGA’s performance penalty from
running at a lower frequency can be much more efficiently
made up by increasing the width of the datapath and links
or even switching to an entirely different topology.

Reconfigurabilitiy. Given the flexibility of FPGAs
stemming from their reconfigurable nature, an effective NoC
design is likely to be called to match up against a diverse
range of applications. To cover the needs of such a diverse
and rapidly changing set of applications, the CONNECT
NoC generator is fully parameterized and more importantly
topology-agnostic, which means that individual routers can
be composed to form arbitrary custom network topologies.
Moreover, to minimize changes in the user logic, all CON-
NECT networks adhere to the same simple standard com-
mon interface. From the user’s perspective the NoC appears
to be a plug-and-play black box device that receives and
delivers packets. Rapid prototyping and design space explo-
ration become effortless as any CONNECT network can be
seamlessly swapped for another CONNECT network that
has the same number of endpoints.

3. CONNECT NOC ARCHITECTURE
CONNECT-based NoCs are meant to be part of larger

FPGA-based systems and, as such, must co-exist with the
rest of the FPGA-resident components. This means that
CONNECT NoCs need to balance between two conflicting
goals: (1) provide sufficient network performance to satisfy
the communication requirements of the target application;
and (2) minimize the use of FPGA resources to maximize
the resources available to the rest of the system. CONNECT
addresses both goals by making the NoC implementation
as efficient as possible, following the principles discussed in
the previous section. When compared to ASIC-optimized
NoC designs, in many places, the CONNECT NoC archi-
tecture goes directly against conventional NoC design wis-
dom. These differences can be attributed to two fundamen-
tal CONNECT design decisions, which are summarized be-
low:

• Single pipeline stage. Instead of the typical three to
five stage pipeline found in most contemporary Virtual-
Channel-based router designs, CONNECT employs a sin-
gle stage router pipeline, leading to lower hardware cost,
lower latency and opportunities for simpler flow control
and more efficient buffer usage, due to the reduced round-
trip time between routers.

• Tightly-Coupled Routers. Instead of treating the NoC
as a collection of decoupled routers connected through
narrow links, CONNECT tries to maximize wire usage,
by using wider interfaces, leading to tighter coupling be-
tween routers. This includes carrying flit control infor-
mation (that would traditionally be carried in separate
header flits) on additional wires that run along the data
wires. This decoupling is also the driving idea behind
CONNECT’s “peek” flow control mechanism, that allows
routers to directly peek at the buffer occupancy informa-
tion of their downstream receiving routers and is explained
in more detail in [13].

Driven by the special characteristics of FPGAs, we devel-
oped a simple router architecture to serve as the basic build-
ing block for composing CONNECT networks. Our router
design, shown in Figure 1 was implemented using Bluespec

Out1 (flow ctrl)

OutM (data)

OutM (flow ctrl)

Out1 (data)

…

Flit Buffers

…

VC 0
VC 1

In Ports

In1 (data)

In1 (flow ctrl)

InN (flits)

InN (flow ctrl)

R
o

u
ti

n
g

 A
llo

ca
ti

o
n

Sink

Out Ports

Flit Links

Router Logic

Flit Buffers

Credits

Route Tables

Other Scheduler State

Virtualized Router

Virtual Links

Flit Links

Credit Links

Flit/Credit Conn. Table

Traffic Sources

Traffic Table

≤ 16 BRAMs

≤ 32 BRAMs

≤ 15 BRAMs

≤ 39 BRAMs

≤ 1088 Kbits LUT RAM

≤ 96 Kbits LUT RAM

2 BRAMs

≤ 40% Logic
Runs @ 2-40 MHz

≤ 256 BRAMs

…

VC 0
VC 1 …

VC 0
VC 1 …

R
o

u
ti

n
g

Switch

A
rb

it
ra

ti
o

n

…

Router

Allocation& Flow Control State

VC 0
VC 1

VC 0
VC 1

VC 0
VC 1

Out0 (flow ctrl)

Out0 (data)

In0 (flow ctrl)

In0 (data)

Figure 1: CONNECT Router Architecture

System Verilog (BSV) [3], which allowed us to maintain
a flexible parameterizable design. CONNECT routers are
heavily configurable and among other parameters, they sup-
port:

• Variable number of input and output ports

• Variable number of virtual channels (VCs)

• Variable flit width

• Variable flit buffer depth

• Two flow control mechanisms

• Flexible user-specified routing

• Four allocation algorithms

Below, we focus on some of the most interesting features
of the CONNECT NoC Architecture.

Topology-agnostic. A major benefit of allowing any
number of input or output ports and being flexible with
respect to the routing algorithm is the ability to support
arbitrary topologies. As long as flit widths match, CON-
NECT routers can be hooked to each other and form custom
topologies that can better serve the needs of the application
at hand. Similarly, all CONNECT networks that connect
the same number of endpoints are interchangeable, which
can greatly accelerate design space exploration.

Virtual Channels. In order to meet the diverse commu-
nication requirements of various applications, CONNECT
has support for multiple VCs1 , which, as explained earlier,
are implemented in a very FPGA-efficient manner. Multiple
VCs are fundamental for ensuring deadlock freedom, imple-
menting protocols that require traffic isolation between dif-
ferent message classes (e.g., memory requests and responses)
and can also be used to increase network performance by
reducing the effects of head-of-line blocking [12].

Virtual Links. In order to ease the implementation of
receive endpoints in NoCs that use multi-flit packets and
employ multiple VCs, CONNECT offers a feature called
“Virtual Links”. When enabled, this feature guarantees con-
tiguous transmission and delivery of multi-flit packets. In
other words, this guarantees that once a packet starts being
delivered it will finish before any other packet is delivered.
Enabling virtual links can cause a slight increase in hardware
cost, but, in return, can significantly reduce the reassembly
buffering and logic requirements at the receive endpoints.

1In addition to user-exposed VCs (a.k.a. message classes),
NoCs often also employ a number of internal VCs within
each router to improve network performance. Such VCs are
typically only visible and allocated within the network and
are not exposed to the network clients. To reduce hardware
cost, CONNECT exposes all VC handling to the network
clients. As a result, applications seeking to use additional
VCs for performance improvements need to manually handle
VC allocation at the NoC endpoints.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

4. EVALUATION AND RESULTS
To demonstrate the effectiveness of CONNECT’s FPGA-

centric design choices, we first compare FPGA synthesis
results and network performance of a CONNECT-based
2D mesh NoC against a high-quality state-of-the-art ASIC-
oriented NoC [14] after modifying their ASIC-style RTL for
efficient FPGA synthesis while maintaining bit and cycle ac-
curacy to their original RTL. To further evaluate the CON-
NECT NoC architecture and highlight its flexibility and ex-
tensive design space coverage, we examine multiple CON-
NECT networks and report FPGA synthesis results and
network performance results.

Methodology. Synthesis results are obtained using Xil-
inx XST 13.1i targeting a moderately sized Xilinx Virtex-6
LX240T FPGA (part xc6vlx240t, speed grade -1) and a large
Xilinx Virtex-6 LX760 FPGA (part xc6vlx760, speed grade -
2). To assess network performance, we drive the NoCs with
various traffic patterns and show the resulting load-delay
curves, which are generated through multiple simulations
that sweep a range of different network loads. For more in-
formation on our methodology, please see our related FPGA
2012 paper [13].

4.1 Comparing to ASIC State-Of-The-Art
To put the FPGA hardware cost and network performance

of CONNECT into perspective, we compare it against pub-
licly available RTL of a high-quality state-of-the-art VC-
based router [14], which we will refer to as SOTA. This
router is written in highly-parameterized Verilog and is mod-
eled after the VC-based router described in [4]. SOTA only
supports single or multi-dimensional mesh and torus topolo-
gies, as well as the flattened butterfly topology [8].

We compare the two designs at the network level by us-
ing CONNECT and SOTA routers to build three 4x4 mesh
networks with 4 VCs, 8-entry flit buffers and seperable allo-
cators. Table 1 shows synthesis results for the resulting net-
works targeting Xilinx Virtex-6 LX240T and LX760 FPGAs.
When configured with the same 32-bit flit width (SOTA and
CONNECT 32), the SOTA network is more than twice as
costly in terms of LUT usage, but can achieve approximately
50% higher clock frequency. The potential performance loss
due to the maximum clock frequency difference can be eas-
ily regained by adapting other CONNECT NoC parameters,
such as flit width. To demonstrate this, we also include re-
sults for a 128-bit wide version of the CONNECT mesh NoC
(CONNECT 128), that uses aproximately the same FPGA
resources as its SOTA 32-bit counterpart, but offers three to
four times higher network performance.

Xilinx LX240T Xilinx LX760

4x4 Mesh w/ 4VCs %LUTs MHz %LUTs MHz

SOTA (32-bit) 36% 158 12% 181

CONNECT 32 (32-bit) 15% 101 5% 113

CONNECT 128 (128-bit) 36% 98 12% 113

Table 1: Synthesis Results for CONNECT and
SOTA Mesh Network.

To compare the example CONNECT and SOTA NoCs
in terms of network performance, we examine the load-
delay behavior of the networks under uniform random traffic,
where the destination for each packet is randomly selected,
and an instance of the unbalanced traffic pattern, where a
fraction of the generated packets determined by the Unbal-
ance Factor are local and are sent to neighboring nodes. In
our experiments we set the Unbalance Factor to 90%, which
represents a system where nodes communicate heavily with
their neighbors and occasionally also send packets to other
randomly chosen nodes in the system. We size packets to
half the flit buffer depth, which corresponds to 4 flits, and
pick the VC randomly for each injected packet.

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9

A
vg

. P
ac

ke
t

La
te

n
cy

 (
in

 n
s)

Load (in Gbits/s)

SOTA (@100MHz)

CONNECT_32 (@100MHz)

SOTA_raw (@100MHz)

CONNECT_128 (@100MHz)

same FPGA
resource usage

Figure 2: Load-Delay Curves for SOTA & CON-
NECT @ 100MHz with Unif. Random Traffic.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10

A
vg

. P
ac

ke
t

La
te

n
cy

 (
in

 n
s)

Load (in Gbits/s)

SOTA (@100MHz)

CONNECT_32 (@100MHz)

SOTA_raw (@100MHz)

CONNECT_128 (@100MHz)

same FPGA
resource usage

Figure 3: Load-Delay Curves for SOTA & CON-
NECT @ 100MHz with Unbalanced 90% Traffic.

Since NoCs are typically used within larger systems hosted
on an FPGA, their clock frequency is oftentimes dictated
by other components and constraints in the system. This
is especially true in FPGA environments, where the clock
frequency gains of running each component at its maximum
frequency are likely to be outweighed by the added syn-
chronization latency increase and hardware cost. In this
paper we report network performance results assuming that
all networks are running at a common clock frequency of
100 MHz, possibly dicated by some other system compo-
nent. For additional network performance results that also
consider running each network in isolation at its maximum
frequency please see our related FPGA 2012 paper [13].

All packets in the SOTA network require an additional
header flit that carries control information, which brings
the total number of flits per packet to five; one header flit
and four data flits. CONNECT does not require this ex-
tra header flit; instead it carries flit control information ”on
the side” using wider links. Since the header overhead can
change depending on the specific packet size, we also report
the SOTA raw curve, which eliminates SOTA’s header over-
head and captures raw flit throughput, providing an upper
bound for the fully amortized performance of SOTA.

Figures 2 and 3 present load-delay curves for the CON-
NECT and SOTA networks all running at the same fre-
quency of 100MHz under the two traffic patterns introduced
above. Interestingly, even CONNECT 32, which shares the
same 32 bit flit width with SOTA and occupies about half
the FPGA resources, yields better network performance,
both in terms of latency and saturation throughput. This
is due to the additional header flit overhead on the SOTA
network. When compared to SOTA raw, which excludes the
header overhead, CONNECT’s performance is comparable
to SOTA.

However, notice that in all cases CONNECT 128, which
occupies about the same FPGA resources as SOTA, can eas-
ily outperform all other networks by a wide margin across
all traffic patterns and regardless of frequency adjustments;
it consistently offers three to four times higher saturation
throughput and more than three times lower latency.

Overall, for comparable configurations, CONNECT can
offer similar network performance to SOTA with consistently

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

Network Routers Ports/Router VCs Width

Ring64 64 2 4 128

DoubleRing16 16 3 4 32

DoubleRing32 32 3 2 32

FatTree16 20 4 2 32

Mesh16 16 5 4 32

Torus16 16 5 2 64

HighRadix8 8 8 2 32

HighRadix16 8 9 2 32

Table 2: Sample Network Configurations.

lower latency at approximately half the FPGA resource us-
age. Alternatively, for the same FPGA resource budget,
CONNECT can offer much higher performance than SOTA
– three to four times higher saturation throughput and more
than three times lower latency. In all cases the unbalanced
traffic pattern, which consists of mostly local traffic, in-
creases the saturation throughput across all networks, which
is expected for the mesh topology that performs better under
increased neighbor-to-neighbor traffic.

4.2 CONNECT Network Synthesis Results
In this section, to demonstrate the flexibility and exten-

sive design space coverage of CONNECT, we examine a few
different examples of CONNECT-based networks in terms of
hardware cost and network performance. Table 2 lists the
selected network configurations, which range from a low-
cost low-performance ring network (Ring16) all the way to
a high-performance fully-connected network (HighRadix16),
as well as an indirect multistage network (FatTree16). The
number next to each network name indicates the number
of supported network endpoints. The HighRadix16 network
corresponds to a network with eight fully connected routers,
where each router is shared by two network endpoints, i.e.
with a concentration factor of two.

Table 3 shows synthesis results for these eight sample
network configurations targeting a moderately sized Xilinx
Virtex-6 LX240T FPGA, as well as a larger Xilinx Virtex-6
LX760 FPGA. For each network we report the LUT usage as
a percentage of the total amount of LUTs on the respective
FPGA, as well as synthesis clock frequency.

The synthesis results indicate that all networks easily fit
within both FPGAs, with plenty of room to spare for plac-
ing many other pieces of user logic. In fact, when target-
ing the LX760 FPGA, all networks occupy less than 10%
of the available LUTs. Finally, it is also worth mentioning
that CONNECT networks do not occupy even a single Block
RAM, which leaves a great amount of on-chip storage avail-
able to other FPGA-resident components.

Xilinx LX240T Xilinx LX760

Network %LUTs MHz %LUTs MHz

Ring64 30% 175 9% 200

DoubleRing16 9% 139 3% 158

DoubleRing32 11% 146 4% 169

FatTree16 12% 117 4% 143

Mesh16 15% 101 5% 113

Torus16 25% 91 8% 100

HighRadix8 20% 73 5% 76

HighRadix16 28% 67 9% 75

Table 3: Synthesis results for sample networks.

4.3 CONNECT Network Performance
In this section, we focus on a subset of four networks

(DoubleRing16, Mesh16, FatTree16 and HighRadix16), that
all support 16 network clients, and as such would be inter-
changable when used as the interconnect within an FPGA-
based system. To study network performance we use the
same two traffic patterns described earlier, uniform random
and unbalanced (with an UnbalanceFactor of 90%), which

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. P
ac

ke
t

La
te

n
cy

 (
in

 c
yc

le
s)

Load (in flits/cycle)

DoubleRing16

FatTree16

Mesh16

HighRadix16

Figure 4: Load-Delay Curves for CONNECT Net-
works with Uniform Random Traffic.

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. P
ac

ke
t

La
te

n
cy

 (
in

 c
yc

le
s)

Load (in flits/cycle)

DoubleRing16

FatTree16

Mesh16

HighRadix16

Figure 5: Load-Delay Curves for CONNECT Net-
works with Unbalanced 90% Traffic.

can be thought of as corresponding to two different classes
of FPGA applications, each with different degrees of local
communication. Once again, we size packets to half the flit
buffer depth, which corresponds to 4 flits, and pick the VC
randomly for each injected packet.

Figure 4 shows the load-delay curves for the four selected
networks under uniform random traffic. Given the low bi-
section bandwidth of the double ring topology, the Doub-
leRing16 network is the first to saturate at a load of ap-
proximately 30%. The Mesh16 and FatTree16 networks can
sustain much higher loads before they saturate at roughly
55% load. This can be both attributed to the higher con-
nectivity and bisection bandwidth of the mesh and fat tree
topology, as well as the higher number of VCs in the case of
the Mesh16 network (4 instead of 2). Finally, as expected,
the HighRadix16 network achieves the highest performance,
offering lower latency across all loads and saturating at a
load of 70%. This should come as no surprise, given that the
HighRadix16 network is fully-connected (maintains single-
hop point-to-point links between all routers in the network),
which means that the only source for loss of performance is
output contention [4].

Figure 5 shows the equivalent load-delay curves under the
unbalanced traffic pattern, which favors mostly neighbor-
to-neighbor communication. As expected, the increased lo-
cality allows all networks to perform better, with the Dou-
bleRing16 network experiencing the largest relative perfor-
mance gains. In fact, under unbalanced traffic the DoubleR-
ing16 network outperfoms the more FPGA resource inten-
sive Mesh16 and FatTree16 networks.

Even though these results are mainly presented to demon-
strate the flexibility of CONNECT and, as such, are not ex-
haustive or might omit other implementation details, such as
frequency-related constraints, they do show that NoC per-
formance can be highly dependent on network topology and
configuration, but more importantly on the specific traffic
patterns and requirements of an application. This observa-
tion is especially important in the context of FPGAs, where
NoC topology and configuration can be easily adapted to
suite the requirements of the given application.

5. RELATED WORK
There is only a limited amount of previous studies that fo-

cus on FPGA-tailored NoC architectures to support FPGA-
based architectural research or SoC prototyping.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

Figure 6: Screenshots of our publicly released web-based CONNECT NoC Generator and Network Editor.

In the context of FPGA-oriented NoC architectures, No-
Cem [5] presents a very simple router block that can be
used to compose larger networks on FPGAs. Compared to
CONNECT it lacks more advanced features, such as sup-
port for virtual channels or selectable allocation and flow
control schemes. More importantly, it appears to incur a
much larger number of FPGA resources for equivalent net-
works. PNoC [6] is an interesting proposal for building
lightweight networks to support FPGA-based applications.
Even though PNoC can also yield low-cost FPGA-friendly
networks, the fundamental difference compared to CON-
NECT is that it can only be used to create circuit-switched
networks, instead of packet-based. Circuit-switched net-
works can be useful for those classes of FPGA applications
that have structured non-conflicting traffic patterns and
are willing to tolerate the additional setup and tear-down
delay and connection management associated with circuit-
switched networks.

Finally, there is also a large body of commercial inter-
connect approaches, such as Spidergon STNoC [11], ARM’s
AMBA [2] or even FPGA-specific approaches, such as the
CoreConnect [7] PLB and OPB buses, commonly found in
Xilinx FPGAs, or Altera’s Qsys [1]. CONNECT offers a
more lightweight, fine-grain and flexible FPGA-tailored so-
lution for building soft NoCs, that can synergistically coexist
with the above approaches to cover the diverse communica-
tion needs of FPGA-based research and emerging SOCs.

6. CONNECT ONLINE NOC GENERATOR
In an effort to create a useful research tool we re-

cently released a web-based front-end to CONNECT’s NoC
RTL generation engine, hosted at http://www.ece.cmu.

edu/~mpapamic/connect. Figure 6 shows two screenshots
of CONNECT’s web-based interface. CONNECT supports
a variety of common network topologies, as well as cus-
tom user-configured networks, that can be either specified
through special configuration files or created through a web-
based graphical network editor (Figure 6 - right). A variety
of network and router parameters, such as the number of
virtual channels or allocator type, allow the user to further
customize the network and trade-off between resource us-
age and performance to satisfy application-specific require-
ments.

7. CONCLUSION
In this paper, we presented CONNECT, a flexible and

efficient approach for building NoCs for FPGA-based sys-
tems. CONNECT embodies a set of design guidelines and
disciplines to make the most efficient use of the FPGA sub-
strate and in many cases go against ASIC-driven conven-
tional wisdom in NoC design. We compare a high-quality

ASIC-oriented NoC design against our design both in terms
of FPGA cost, as well as network performance for a similarly
configured 4x4 mesh NoC. Across a wide range of configura-
tion parameters, we find that CONNECT consistently offers
lower latencies and can achieve comparable network perfor-
mance at one-half the FPGA resource cost; or alternatively,
three to four times higher network performance at approxi-
mately the same FPGA resource cost. Moreover, to demon-
strate the flexibility and extensive design space coverage of
CONNECT we report synthesis and network performance
results for a variety of diverse CONNECT-based networks.

8. REFERENCES
[1] Altera. Qsys System Integration Tool. http:

//www.altera.com/products/software/quartus-ii/

subscription-edition/qsys/qts-qsys.html.

[2] ARM. AMBA Open Specifications. http://www.arm.
com/products/solutions/AMBAHomePage.html.

[3] Bluespec, Inc. Bluespec System Verilog.
http://www.bluespec.com/products/bsc.htm.

[4] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2004.

[5] G. Schelle and D. Grunwald. Exploring FPGA
Network on Chip Implementations Across Various
Application and Network Loads. In FPL, 2008.

[6] C. Hilton and B. Nelson. PNoC: A Flexible
Circuit-Switched NoC for FPGA-based Systems. IEE
Proceedings Computers and Digital Techniques, 2006.

[7] IBM. The Coreconnect Bus Architecture.
https://www-01.ibm.com/chips/techlib/techlib.

nsf/products/CoreConnect_Bus_Architecture, 1999.

[8] J. Kim, J. Balfour, and W. Dally. Flattened Butterfly
Topology for On-Chip Networks. In MICRO, 2007.

[9] I. Kuon and J. Rose. Measuring the Gap Between
FPGAs and ASICs. IEEE TCAD, 2007.

[10] J. Lee and L. Shannon. The Effect of Node Size,
Heterogeneity, and Network Size on FPGA based
NoCs. In International Conference on
Field-Programmable Technology (FPT), 2009.

[11] M. Coppola et al. Spidergon: A Novel On-Chip
Communication Network. In SoC, 2004.

[12] M. Karo; M. Hluchyj; S. Morgan. Input Versus
Output Queuing on a Space-Division Packet Switch.
In IEEE Transactions on Communications, 1987.

[13] M. K. Papamichael and J. C. Hoe. CONNECT:
Re-Examining Conventional Wisdom for Designing
NoCs in the Context of FPGAs. In FPGA, 2012.

[14] Stanford Concurrent VLSI Architecture Group. Open
Source Network-on-Chip Router RTL.
https://nocs.stanford.edu/cgi-bin/trac.cgi/

wiki/Resources/Router.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

