
An FPGA Drop-In Replacement for Universal Matrix-Vector Multiplication

Eric S. Chung‡, John D. Davis‡, Srinidhi Kestur†
‡ Microsoft Research Silicon Valley

† Dept. of Computer Science and Engineering, The Pennsylvania State University
{joda, erchung}@microsoft.com, kesturvy@cse.psu.edu

Abstract—We present the design and implementation of
a universal, single-bitstream library for accelerating matrix-
vector multiplication using FPGAs. Our library handles mul-
tiple matrix encodings ranging from dense to multiple sparse
formats. A key novelty in our approach is the introduction
of a hardware-optimized sparse matrix representation called
Compressed Variable-Length Bit Vector (CVBV), which reduces
the storage and bandwidth requirements up to 43% (on
average 25%) compared to compressed sparse row (CSR)
across all the matrices from the University of Florida Sparse
Matrix Collection. Our hardware incorporates a runtime-
programmable decoder that performs on-the-fly decoding of
various formats such as Dense, COO, CSR, DIA, and ELL.
The flexibility and scalability of our design is demonstrated
across two FPGA platforms: (1) the BEE3 (Virtex-5 LX155T
with 16GB of DRAM) and (2) ML605 (Virtex-6 LX240T with
2GB of DRAM). For dense matrices, our approach scales to
large data sets with over 1 billion elements, and achieves robust
performance independent of the matrix aspect ratio. For sparse
matrices, our approach using a compressed representation
reduces the overall bandwidth while also achieving comparable
efficiency relative to state-of-the-art approaches. Note: this
work was published in FCCM’12 [1].

Keywords-FPGA; dense matrix; sparse matrix; spMV; re-
configurable computing

I. INTRODUCTION

Heterogeneous systems that incorporate GPGPUs and FP-
GAs are potent candidates for improving energy efficiency
while satisfying the ever-increasing demands for perfor-
mance. In the space of heterogeneous computing, FPGAs
offer unique advantages over coarse-grained architectures
such as CPUs and GPGPUs. Aside from vastly lower power
requirements (tens of watts vs. hundreds on the GPU),
FPGAs can generalize more efficiently across application
domains through careful exploitation of fine-grained paral-
lelism and communication.

In this work1, we investigate how FPGAs can be
used to accelerate matrix-vector multiplication (MVM), a
frequently-exercised computation that remains highly rele-
vant in many scientific domains. A major objective in our
effort is to use the FPGA as a drop-in replacement for
existing tuned MVM software libraries such as MKL [2],
cuBLAS [3], and cuSPARSE [4], which support a variety
of matrix inputs, ranging from dense to multiple sparse

1Category 2: This work is published in FCCM’12 [1].

encodings (e.g., Compressed Sparse Row). Another objec-
tive is to exploit the fine-grained capabilities of the FPGA
to improve performance, storage, and bandwidth efficiency
beyond what is possible with conventional, processor-centric
matrix formats and implementations.

To use the FPGA effectively, we concentrate our efforts
on specific optimizations that best exploit the flexibility
of reconfigurable logic. Our design (1) only requires a
single bitstream with a merged datapath to handle both
dense and sparse formats, (2) can support arbitrary matrix
sizes up to the memory capacity of the system, and (3)
is agnostic to the matrix aspect ratio. Furthermore, a key
novelty in our approach is a hardware-optimized format that
minimizes the storage overhead used to encode matrices of
any type. Compared to the traditional Coordinate (COO) or
Compressed Sparse Row (CSR) formats, our Compressed
Variable-Length Bit Vector (CVBV) approach substantially
reduces the storage and memory bandwidth needed to handle
large matrices, on average, saving 25% in bandwidth and
storage across 2547 matrices [5]. This substantially increases
the ceiling of performance beyond what is possible in CPUs
and GPGPUs, given the bandwidth-limited nature of MVM.

The flexibility and scalability of our design is demon-
strated across two FPGA platforms: (1) the BEE3 (Virtex-5
LX155T with 16GB of DRAM) and (2) ML605 (Virtex-
6 LX240T with 2GB of DRAM). For dense matrices, our
approach scales to large data sets with over 1 billion ele-
ments, and achieves robust performance independent of the
matrix aspect ratio. For sparse matrices, our approach using
a compressed representation reduces the overall bandwidth
while also achieving comparable efficiency relative to state-
of-the-art approaches.

Outline. The remainder of this paper is organized as follows.
Section II describes the development of a universal format
decoder designed to handle a wide variety of dense and
sparse matrix formats. Section III presents the design of
the universal MVM library and related results. We offer
conclusions in Section IV.

II. A UNIVERSAL FPGA LIBRARY FOR MVM

Our goal is to develop a single bitstream that can be
treated as a “library” while being agnostic to matrix formats.
Our design incorporates a flexible decoder that enables us

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

Matrix

1 0 4 0
3 7 0 0
0 0 2 9
5 8 0 7

COO

Bit Vector

Compressed Bit Vector

row =

indices =

data =

[0 2 0 1 2 3 0 1 3]

[1 4 3 7 2 9 5 8 7]

[0 0 1 1 2 2 3 3 3]

data = [1 4 3 7 2 9 5 8 7]

data = [1 4 3 7 2 9 5 8 7]

bit vector = [1010110000111101]

cbv = [1 (0,1) 1 (0,1) 1 1 (0,4) 1 1 1 1 (0,1) 1]

data indices

1 4 *
3 7 *
2 9 *
5 8 7

0 2 *
0 1 *
2 3 *
0 1 3

ptr =
indices =

data =

[0 2 4 6 9]

[0 2 0 1 2 3 0 1 3]

[1 4 3 7 2 9 5 8 7]

CSR

ELL

Figure 1. Various Formats Used to Encode Matrices.

to specify the characteristics of a dense or sparse matrix
format at runtime. This unique feature adds a dimension of
flexibility missing from other libraries or previous FPGA-
based MVM kernels restricted to single formats. We first
describe several popular sparse formats. We then present
our hardware-optimized intermediate format, which exploits
the bit-manipulation capabilities of the FPGA. Finally, we
present an in-depth overview of the universal sparse format
decoder.

A. Conventional Sparse Data Formats

A substantial body of literature has explored the optimiza-
tion of sparse formats and algorithms for CPUs [6, 7, 2] and
GPGPUs [8, 9, 10, 11, 12]. In general, these optimizations
aim to minimize the irregularity of the matrix structure by
selecting a format best suited for the matrix kernel. Figure 1
illustrates several well-known formats—COO, CSR, and
ELL—as supported by standard sparse matrix packages like
SPARSKIT [13]. We refer the reader to [1], which explains
each of these formats in more detail.

A key advantage of our new format—Compressed
Variable-Length Bit Vector (CVBV)—is that it can be con-
structed at runtime to reduce the bandwidth requirements
between a host processor and the FPGA. In general, the in-
memory storage requirements of our format are less than
other formats, allowing larger problem sizes given a fixed
amount of DRAM. Further, we can easily convert many
sparse formats into our bit vector format at runtime—
obviating the need for a pre-conversion step.

B. FPGA-Optimized Bit Vector Formats (*BV)

Conventional sparse matrix formats are highly processor-
centric (i.e., employ word-level encodings) and do not
leverage the fine-grained, bit-level manipulation capabilities
of the FPGA. We propose a series of highly compact sparse
matrix storage representations optimized for the FPGA,
which also incur low overheads in encoding and decoding.
All *BV representations are stored in a contiguous array
and not constrained by word-level alignment requirements,
making them ideally suited for manipulation by FPGAs.

Bit-Vector (BV). The first and simplest bit vector (BV)
representation simply encodes the zeros and nonzeros of

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
V

B
V

/C
S

R

Matrix column size

CVBV storage (CSR-normalized) across 2547 matrices

Figure 2. CVBV Storage (normalized to CSR) for all UCF Matrices [5].

a matrix using a dense bitmask, where ‘0’ denotes a zero
value and ‘1‘ denotes a nonzero value in the column and
row location. The storage requirement for BV is 8B ×
NZ+1bit×M ×N . BV has a lower sparse matrix storage
requirement than CSR when the percentage of nonzero
values in the matrix is greater than 3%.

Compressed Bit-Vector (CBV). An optimization of BV
is the Compressed Bit Vector (CBV), where contiguous
sequences of zeros and nonzeros are encoded using a fixed-
width run-length encoding. For example, a single bit can be
used to encode either a ‘0’ (zero) or ‘1’ (nonzero), followed
by a 31-bit field that encodes the number of contiguous zeros
or nonzeros. In the run-length encoding scheme, the 31-bit
field must be large enough to store the largest number of
contiguous values.

Compressed Variable-Length Bit-Vector (CVBV). The
CBV format can be further improved using the Compressed
Variable-Length Bit Vector (CVBV) scheme. In CVBV, the
run-length encoding can be stored using a variable-length
data field, which offers increased storage savings if cluster
sizes tend to be small. In the CVBV scheme, a 4-bit header
is attached to the beginning of a cluster of zeros or nonzeros.
The first bit indicates a zero (0) or nonzero (1) value. The
next three bits indicate how many nibbles (4-bits) are used
to store the count, or up to 4 bytes.

C. Analysis of *BV

To characterize the effectiveness of the various bit-vector
formats, we exhaustively profiled all 2547 matrices from the
University of Florida sparse matrix collection [5]. Table I
compares the storage requirements across all formats for
commonly cited matrices [8, 14] and the entire collection.

A notable result of Table I is that CVBV achieves on
average the lowest storage overhead (75% of CSR) and never
exceeds CSR for any matrix. Across 2547 matrices, the low
standard deviation of CVBV indicates the robustness of the
format. Our analysis found that in many real-world matrices,
the zero and nonzero elements tend to cluster—further, in
all cases, cluster sizes can be encoded with a 31-bit data

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

matrix rows cols nonzeros % nonzeros CSR COO ELL BV CBV CVBV

Selected inputs used in [8, 14]

conf5 0-4x4-10 3072 3072 119808 1.27% 1.0 1.32 0.99 1.47 0.70 0.76
dw8192 8192 8192 41746 0.06% 1.0 1.25 1.47 16 0.69 0.83
psmigr 2 3140 3140 540022 5.48% 1.0 1.33 13.31 0.86 0.77 0.92
scircuit 170998 170998 958936 0.00% 1.0 1.26 59.42 300 0.71 0.83
t2d q9 9801 9801 87025 0.09% 1.0 1.29 0.98 12 0.68 0.76
epb1 14734 14734 95053 0.04% 1.0 1.27 1.03 23 0.68 0.77
raefsky1 3242 3242 294276 2.80% 1.0 1.33 1.19 1.03 0.69 0.71
torso2 115967 115967 1033473 0.01% 1.0 1.29 1.08 131 0.70 0.76

Statistics for all matrices [5]

Mean 361922 361132 4448472 1.82% 1.0 1.26 390 928 0.89 0.75
Median 4182 5300 40424 0.23% 1.0 1.27 2.77 5.03 0.91 0.74
Stdev 3339878 3333546 55947269 6.10% 1.0 0.06 6092 10526 0.09 0.04
Min 2 3 3 0.000002% 1.0 0.85 0.55 0.55 0.64 0.57
Max 118142142 118142155 1949412601 76.0% 1.0 1.33 250108 380151 1.01 0.98

Table I
CHARACTERIZATION OF ALL SPARSE INPUT MATRICES FROM THE UNIVERSITY OF FLORIDA SPARSE MATRIX COLLECTION [5]. STORAGE VALUES

NORMALIZED TO CSR FORMAT.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

O
v
e

rh
e

a
d

 (
re

la
ti
v
e

 t
o

 d
a

ta
)

Matrix column size

CSR, CVBV Overheads vs. Sparsity, Column Size

Denser

Sparser

S
p
a
rs

ity
 In

d
e
x

 CVBV
 CSR

 2

 3

 4

 5

 6

 7

 8

 9

 10

Figure 3. CSR, CVBV Overheads vs. Sparsity, Column Size (across all 2547 UCF Matrices [5]). Sparsity Index = 10 + log(nnz/total).

field. We found that the nonzero cluster size was relatively
small—thus, the version of CVBV and CBV we employ
only encodes the zeros using run-length encoding while the
nonzero values are encoded as single bits.

CVBV vs. CSR. Figure 2 illustrates the storage costs
(including data) of CVBV normalized to CSR across all
2547 matrices. The impact of variable-length encoding using
CVBV dramatically reduces storage overheads compared to
CSR by 25% on average and up to 43% in the best case. In
all cases, CVBV never exceeds the storage requirements of
CSR (0.98). The x-axis of Figure 2 highlights CVBV’s sen-
sitivity to the matrix column size. In general, matrices with
large column dimensions and low percentage of nonzeros
require more bits to encode long sequences of zeros.

Figure 3 offers a more precise characterization of the
overheads of CVBV and CSR with respect to matrix sparsity
and column dimension. Each matrix—represented as a point
along the y-axis—quantifies the overhead of CSR or CVBV
relative to the data. Each matrix in Figure 3 is color-
coded according to a Sparsity Index, which characterizes the
sparsity of the matrix—i.e., log(nnz/total) plus a y-offset
of 10. In general, darker colors indicate sparser matrices,
while lighter colors indicate denser matrices.

When examining CVBV, a general trend emerges. First,

matrices with small column dimensions and high density
incur the lowest overheads (towards the bottom-left of
Figure 3), as fewer bits are needed to encode zeros. On
the other end, matrices that are sparser (darker colors) tend
to incur higher overheads due to longer sequences of zeros.
Finally, sparse matrices with large column dimensions incur
the highest overhead as shown by several data points in the
upper-right of Figure 3.

Discussion. For all *BV representations, we have opted for
a simple encoding and decoding scheme. More advanced
methods for encoding sparse data exist, such as arithmetic
codes, but they have the drawback of being very complex
to encode and decode, making them ill-suited for use at
runtime, and they have much higher hardware implemen-
tation costs. The benefits of CBV and CVBV are two-
fold: (1) compared to CSR, larger problem set sizes can
be stored given a fixed memory capacity and (2) reduced
off-chip bandwidth requirements, which raises the potential
peak performance of a given MVM library. As discussed
in [5], the sparse matrix size continues to grow unabated,
favoring more compact sparse matrix representations.

D. Building a Universal Sparse Format Decoder

Many sparse matrix packages provide the ability to
transform one sparse format into another, generally using

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

an intermediate representation. A unique feature of our
MVM implementation is the ability to process matrices in
multiple sparse formats without an explicit conversion step.
Our design incorporates a runtime programmable decoder
placed between the memory-to-computation datapath. The
key insight behind our universal format decoder is the use of
special format descriptors that enable us to programmatically
convert the meta-data encoded in another sparse matrix
format (i.e., COO, CSR, ELL, DIA) into CBV or CVBV.

Universal Matrix Format Decoder. Algorithm 1 describes
the high-level procedure of the decoder. Any of the con-
ventional sparse formats described in Section II-A can be
characterized by several runtime parameters: (1) number
of rows and columns of matrix A, (2) number of nonzero
values, and (3) up to three streams of data in memory. Within
the procedure, each of the streams are represented as FIFO
objects that contiguously store data and meta-data about a
given sparse matrix. By convention, stream[0] always refers
to the data stream; stream[1] refers to the column stream;
and stream[2], if required by a given sparse format, refers
to the row stream.

Each stream is associated with a collection of bit fields
populated at runtime. These metadata descriptors describe
the meaning of the stream values and how to translate each
nonzero of matrix A into matrix coordinates, which can then
be used to encode the CBV or CVBV. The descriptors define
parameters such as: (1) type of stream data (e.g., a nonzero
value versus metadata), (2) fixed-length streams (e.g., Dense,
ELL, or DIA) vs. variable-length (e.g., COO and CSR), (3)
pointer to the given stream in memory, and (4) whether each
element of the stream is a pointer into another array (e.g.,
row array in CSR) or a direct index into the matrix (e.g.,
column array in CSR).

For brevity, our procedure only considers row-major rep-
resentations, but column-major duals also exist. In the case
of fixed-length representations (e.g., ELL), we specify a K
parameter, the number of elements in the row. Furthermore,
in some cases, representations with fixed length rows have
padded values, which must be stripped out of the FIFO
stream using a pad token. Another descriptor is a pivot value,
which is needed in formats such as DIA. The pivot is used
to translate a relative offset into a real matrix coordinate.
To illustrate how Algorithm 1 operates, we enumerate the
parameter settings needed to support various dense and
sparse formats.

• All. Number of rows, columns, and nonzero elements,
and a streams[0]. Other streams null, unless specified.

• Dense. streams[0] is fixed length of number of
columns.

• COO. streams[2 : 0] are variable length. streams[2 :
1] provide absolute column and row addresses.

• CSR. Same as COO, except streams[2] provides row
pointers. Note that line 6 in Algorithm 1, calculates the

Algorithm 1 Universal Matrix Format Decoder.
Input: queue streams[3]
Output: Compressed data, rows, columns

1: data = streams[0].head
2: cx = streams[1].head
3: rx = streams[2].head

4: rowStream = FixedLenRows? stream[0] : stream[2]
5: for i = 0→ NNZ − 1 do
6: r = RowAddress? rx : ((rowStream.idx-1)/K)
7: c = cx + ((pivot == -1) ? r : pivot)
8: stream[0].dequeue()
9: if stream[1] then

10: stream[1].dequeue()
11: end if
12: if RowAddress then
13: stream[2].dequeue()
14: else if (rx − streams[1].idx) > 1 then
15: stream[2].dequeue()
16: end if
17: end for

correct row index by setting K =1.
• ELL. streams[1 : 0] are fixed length of K and there is

a pad symbol. streams[1] provides column addresses.
• DIA. Same as ELL, pivot value set to -1. Column

addresses are relative to the diagonal.

III. MATRIX-VECTOR MULTIPLICATION
IMPLEMENTATION

Our implementation of the universal MVM library builds
upon the previous work of Kestur et al. [15] to develop
a double-precision BLAS Level 1 and Level 2 kernel. In
the original design, the authors developed a scalable stall-
free accumulator that offered robust, sustained performance
independent of the matrix aspect ratio. However, the original
design could only support problems that fit within on-chip
memory, making it less practical for real-world applications.

In this work, we extend the original BLAS architecture to
support large dense matrix sizes up to the memory system
capacity (in the case of a single BEE3 FPGA, 16GB or over
billion matrix elements, see Figure 4). Implementing this
feature required us to develop a specialized DMA engine
that could support tiled accesses to external memory. Fur-
thermore, the kernel was augmented with additional Block
RAMs to buffer intermediate sub-matrices and vectors and
the necessary control logic to orchestrate streaming of the
tiled data to the functional units.

In addition to supporting large-scale dense matrices, we
also extended the design to support sparse matrices. Begin-
ning with the output of the universal decoder described in
Section II-D, the hardware must: (1) generate and distribute
the matrix rows across multiple pipelines, (2) stream in the
sequential nonzero data, and (3) support random accesses to
the input ‘x’ vector.

Our sparse architecture employs a work stealing queue
and a decentralized control unit that enables decoupled

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

PEs LUT/RAM/DSP GFLOPS BW

% Area Peak Sustained % Peak

Dense V5-LX155T 16 72 / 86 / 88 3.1 0.92 64.7
Dense V6-LX240T 32 71 / 63 / 56 6.4 1.14 80
Dense+Sparse V5 16 74 / 87 / 91 3.1 Table III

Table II
RESOURCE UTILIZATION AND DENSE PERFORMANCE.

random accesses to the input/output vectors to support
efficient sparse matrix-vector multiplication. Because of the
variability in the size and distribution of nonzero values per
row, a mechanism was needed to supply memory pointers
for streaming different rows into the on-chip matrix memory
from contiguous off-chip memory. The work stealing queue
employs three FIFOs used to store the number of nonzero
values per row (NzCnt), the column indices, and the row
pointer. When a pipeline dequeues the work stealing queue,
it also dequeues the NzCnt from the FIFO and dequeues the
corresponding number of column indices and forwards them
to the consuming pipeline (see Figure 5).

The next implementation challenge involves supporting
random accesses to the vector x. Due to memory port
limitations and irregular access characteristics, the pipeline
column address FIFO decouples the pipeline from the
decoder to locally coalesce the column addresses for the
corresponding entries in the matrix memory. A private vector
cache per pipeline is used to request up to 4 or 8 vector
x values needed to compute a dot-product. Using a cache
enables us to capture the spatial locality of nonzero values
observed in many of the sparse matrices.

The combination of support for large-scale dense-only
MVM (DMVM), sparse MVM (SMVM), and universal
decoding offers a single-bitstream solution that can be used
to support a wide variety of inputs in memory—from dense
matrices of arbitrary aspect ratios to sparse matrices with
varying amounts of sparsity. Our design effectively provides
a library comparable to the Intel’s Math Kernel Library
(MKL) [2] or Nvidia’s cuBLAS [3] and cuSPARSE [4]
libraries. Furthermore, we show in this work that our design
is flexible and scalable across different FPGAs and platforms
such as the BEE3 (16GB of DRAM, 32B DDR2 line size)
and the ML605 LX240T Virtex-6 FPGA (2GB of DRAM,
64B DDR3 line size). Our design can be further mapped to
newer systems with increased FPGA capacity and bandwidth
(e.g., BEE4 [16]).

Area and Dense MVM Performance Results. Table II
shows the resources used and dense MVM performance for
several implementations: (1) dense-only MVM on a single
Virtex-5 FPGA of the BEE3, (2) dense-only MVM on the
Virtex-6 FPGA of the ML605, and (3) combined sparse
and dense (unified) MVM on a single Virtex-5 FPGA of
the BEE3. Our reported resources exclude infrastructure-
related overheads such as the memory controllers. As shown
in Table II, the DMVM design offers uniform sustained

GFLOPS / % Peak Bandwidth Used

BEE3 HC-1 (32 PE) [14] Tesla S1070 [14]

dw8192 0.10 / 10.3% 1.7 / 13.2% 0.5 / 3.1%
t2d q9 0.15 / 14.4% 2.5 / 19.3% 0.9 / 5.7%
epb1 0.17 / 17.1% 2.6 / 20.2% 0.8 / 4.9%
raefsky1 0.20 / 18.5% 3.9 / 29.0% 2.6 / 15.3%
psmigr 2 0.20 / 18.6% 3.9 / 29.6% 2.8 / 16.7%
torso2 0.04 / 4.0% 1.2 / 9.1% 3.0 / 18.3%

Table III
UNIFIED MVM ARCHITECTURE PERFORMANCE AND BANDWIDTH

UTILIZATION USING CSR SPARSE INPUTS (BEE3:16-PE,
V5-LX155T).

performance across matrix aspect ratios and for any number
of matrix elements—from 66K to over 1G elements. As
the results show, the sustained performance as a fraction of
peak memory bandwidth is high (64.7% in the BEE3, 80%
in the ML605). The ML605 experiences a slight edge in
performance due to its larger burst length of 8 and increased
horizontal scaling (due to the higher LUT and DSP capacity
of the LX240T). Moving forward, larger Virtex-7 FPGAs or
even ASICs can further enable scaling in compute resources,
performance, and efficiency.

Sparse Performance Results. Table III shows the mea-
sured performance and bandwidth utilization of the BEE3
unified sparse design against previous SMVM implemen-
tations on the Convey HC-1 FPGA platform and Tesla
S1070 GPGPU [14]. It is important to note that the peak
performance numbers between the platforms should not
be compared at face value given that the Convey HC-
1 and Telsa S1070 both possess vastly superior memory
systems relative to the BEE3 (80GB/s on the Convey HC-
1, 102GB/s on the Tesla S1070, and 6.4GB/s on a single
BEE3 FPGA). The LX330T FPGAs on the Convey HC-
1 are also larger than the LX155T FPGAs on the BEE3.
Because SMVM is memory-bound, a more important metric
than peak performance alone is the fraction of memory
bandwidth utilized, which captures the overall efficiency
of the architecture.

Table III shows that our design achieves comparable
bandwidth utilization relative to the state-of-the-art FPGA
and GPGPU results. We note that because of the irreg-
ular memory accesses inherent to sparse matrices, the
achieved efficiency across all platforms is highly sensitive
to clustering and row length. Our current results should
be treated conservatively given that there is further room
for optimization and scaling in the future (e.g., adding a
non-blocking, multi-banked cache, scaling to larger and/or
multiple FPGAs).

From the perspective of area efficiency, Table II shows
that our design does not significantly increase resource
utilization over the DMVM design because the centralized
control is only modified to support a work-stealing queue.
The FIFOs of the work stealing queue increase the BRAM
usage of our design, but do not limit the overall performance.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

Matrix
Memory

Row bank 0

Row bank V-1

Gaxpy PIPE 0

Vector Y
Memory

Gaxpy PIPE 0

Gaxpy PIPE 0

Gaxpy PIPE 0

Vector X
Memory

Ctrl

M
U
X

DMA Engine

Addr Gen

Write Ctrl

Read Ctrl
Gaxpy

Controller

Memory
Block
State

Machine

Memory
Controller

Addr FIFO

Write FIFO

Read FIFO

Memory
Controller

Addr FIFO

Write FIFO

Read FIFO

DDR2
DRAM

DDR2
DRAM

DMA Engine

Addr Gen

Write Ctrl

Read Ctrl

256

256

CLK 2X

128

128

Figure 4. Large-Scale Dense Pipeline Design with New Modules (left).

Gaxpy PIPE 0

Vector Y
Memory

Col Addr FIFO

Vector X0
Cache

Format Converter

Row
Ptr

FIFO

X-addr

Row ID
Y-addr

M
U
X

Sparse Gaxpy pipeline

Matrix
Memory

Row bank 0

Row bank V-1

Col
Addr
FIFO

Nz
Cnt
FIFO

Figure 5. Large-Scale Sparse Pipeline Design.

IV. CONCLUSION

We presented the design and implementation of a univer-
sal matrix-vector multiplication (MVM) library to accelerate
matrix algebra using FPGAs. Our design scales to over a
billion elements and can flexibly support a wide variety
of matrix formats using a single bitstream. Our implemen-
tation further incorporates a novel, runtime reconfigurable
decoder that enables us to handle matrices of all types in
memory, from dense to multiple sparse formats such as
COO, CSR, ELL, and DIA. The single bitstream removes the
prohibitively expensive amount of time needed to configure
the FPGA for different problem classes.

By translating any matrix format into a hardware-
optimized format, we reduce storage requirements by 25%,
on average, and up to 43% compared to the common CSR
format—while still maintaining 100% of peak and up to
25% of sustained throughput (compared to DMVM) for
the sparse matrix examples used in previous studies. The
reduced storage requirements of our CVBV format translates
directly into supporting on average 25% larger problem sizes
compared to using other processor-centric matrix formats.
We demonstrate our design across two platforms: the BEE3

(V5-LX155T) and ML605 (V6-LX240T). Our designs are
shown to be flexible and scalable with respect to resources
and performance, riding the transistor scaling curve for new
generations of FPGAs. In the future, we plan to investigate
ASIC implementations of our universal MVM library in
future heterogeneous devices.

REFERENCES
[1] S. Kestur, J. Davis, and E. Chung, “Towards a Universal FPGA Matrix-

Vector Multiplication Architecture,” in Field Programmable Custom Computing
Machines, 2012. FCCM’12. 17th IEEE Symposium on, april 2012.

[2] “Intel Math Kernel library.” [Online]. Available: http://software.intel.com/en-
us/intel-mkl

[3] “Nvidia CUBLAS.” [Online]. Available: http://developer.nvidia.com/cublas
[4] “Nvidia cuSPARSE.” [Online]. Available: http://developer.nvidia.com/cusparse
[5] T. A. Davis, “University of Florida Sparse Matrix Collection,” NA Digest,

vol. 92, 1994.
[6] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee, “Per-

formance Optimizations and Bounds for Sparse Matrix-Vector Multiply,” in
Supercomputing, ACM/IEEE 2002 Conference, nov. 2002, p. 26.

[7] M. Smith, J. Vetter, and S. Alam, “Scientific Computing Beyond CPUs: FPGA
implementations of common scientific kernels,” in MAPLD, 2005.

[8] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication
on Throughput-Oriented Processors,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ser. SC’09. New
York, NY, USA: ACM, 2009, pp. 18:1–18:11.

[9] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang, “FPGA and
GPU implementation of large-scale SpMV,” in Application Specific Processors
(SASP), 2010 IEEE 8th Symposium on, june 2010, pp. 64–70.

[10] Y. Zhang, Y. Shalabi, R. Jain, K. Nagar, and J. Bakos, “FPGA vs. GPU for
sparse matrix vector multiply,” in Field-Programmable Technology, 2009. FPT
2009. International Conference on, dec. 2009, pp. 255–262.

[11] V. B. Kumar, S. Joshi, S. B. Patkar, and H. Narayanan, “FPGA Based High
Performance Double-Precision Matrix Multiplication,” in VLSID’09: Proceed-
ings of the International Conference on VLSI Design. IEEE Computer Society,
2009, pp. 341–346.

[12] “Supercomputing at 1/10th the cost.” [Online]. Available: http://www.nvidia.com
[13] Y. Saad, “SPARSKIT: a basic tool kit for sparse matrix computations - Version

2,” 1994.
[14] K. Nagar and J. Bakos, “A Sparse Matrix Personality for the Convey HC-1,”

in Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th
Annual International Symposium on, may 2011, pp. 1–8.

[15] S. Kestur, J. Davis, and O. Williams, “BLAS Comparison on FPGA, CPU and
GPU,” in VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on,
july 2010, pp. 288–293.

[16] “BEE4-SOC.” [Online]. Available: http://www.beecube.com

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

