
A Stall-Free Real-Time Garbage Collector for FPGAs

David F. Bacon, Perry Cheng, Sunil Shukla
IBM Research

{dfb,perry,skshukla}@us.ibm.com

ABSTRACT
Programmers are turning to diverse architectures such as reconfig-
urable hardware (FPGAs) to achieve performance. But such sys-
tems are far more complex to use than conventional CPUs. The
continued exponential increase in transistors, combined with the
desire to implement ever more sophisticated algorithms, makes it
imperative that such systems be programmed at much higher lev-
els of abstraction. One fundamental high-level language features is
automatic memory management in the form of garbage collection.

We present the first implementation of a complete garbage col-
lector in hardware (as opposed to previous “hardware-assist” tech-
niques), using an FPGA and its on-chip memory. Using a com-
pletely concurrent snapshot algorithm, it provides single-cycle ac-
cess to the heap, and never stalls the mutator for even a single cycle.

We have synthesized the collector to hardware and show that it
never consumes more than 1% of the logic resources of a high-end
FPGA. For comparison we also implemented explicit (malloc/free)
memory management, and show that our collector is between 4%
to 17% slower than malloc, with comparable energy consumption.
Surprisingly, in hardware real-time collection is superior to stop-
the-world collection on every performance axis, and even for stress-
ful micro-benchmarks can achieve 100% MMU with heaps as small
as 1.01 to 1.4 times the absolute minimum.

This reprises work previously published in PLDI [2].

1. INTRODUCTION
FPGAs are now available with over 1 million programmable

logic cells and 8 MB of on-chip block RAM, sufficient for com-
plex computations without going off-chip. However, programming
methodology for FPGAs has lagged far behind their capacity, which
in turn has greatly reduced their application to general-purpose
computing. The most common languages for FPGA programming
are still hardware description languages (VHDL and Verilog) in
which the abstractions are bits, arrays of bits, registers, wires, etc.

Recent research has focused on raising the level of abstraction
and programmability to that of high-level software-based program-
ming languages, in particular, the Kiwi project [4] which uses C#,
and the Liquid Metal project, which has developed the Lime lan-
guage [1] based on Java.

1.1 Background: Garbage Collection
Dynamic memory management provides a way of allocating parts

of the memory to the application whenever requested and freeing
the parts which are no longer in use. In explicit memory man-
agement, the programmer both allocates and frees the memory ex-
plicitly (malloc/free style). However, mistaken invocations of
free can cause very subtle bugs, and omission causes storage
leaks.

Garbage collection [6] is a form of automatic memory manage-
ment where the collector reclaims the objects that are no longer in
use, and free is no longer available to the programmer. Garbage
collection works on the principle of pointer reachability. The reach-
ability is determined through transitive closure on the object graph.

It is assumed that an object in the heap which has no pointer ref-
erence to it from a reachable object or program variables (roots)
can be safely reclaimed as a garbage and added to the pool of free
objects.

Until now, whether programmers are writing in low-level HDLs
or high-level languages like Kiwi and Lime, use of dynamic mem-
ory management on FPGA has only just begun to be explored, and
then only in the context of explicit memory management [3, 7].

Garbage collection can be done either in a way which pauses
the mutator (part of the application which creates objects and mu-
tates the object graph) while collection is going on, known as stop-
the-world (“STW”) collection, or completely concurrently with the
mutator, known as concurrent collection. Regardless of the scheme
chosen for garbage collection, the aim is to keep the mutator pause
time (due to collector activities) to a minimum. Real-time collec-
tors (“RTGC”) go beyond concurrency by also providing determin-
ism (bounding the length of pauses and the distance between them).
Concurrent and real-time collectors are significantly more complex
because they must work correctly even though the object graph they
are tracing is being modifed “out from under them”. For a compre-
hensive overview, see [5].

1.2 Our Contribution
In this paper we present the first garbage collector synthesized

entirely into hardware (both STW and RTGC variants), capable of
collecting a heap of uniform objects. We call such a heap of uni-
form objects a miniheap. By uniform we mean that the shape of
the objects (the size of the data fields and the location of pointers)
is fixed. Thus we trade a degree of flexibility in the memory layout
(relative to what is common for software collectors) for large gains
in collector performance.

Furthermore, the mutator has a single-cycle access to memory,
and the design can actually support multiple simultaneous mem-
ory operations per cycle. Arbitration circuits delay some collector
operations by one cycle in favor of mutator operations, but the col-
lector can keep up with a mutator even when it performs a memory
operation every cycle.

The collector we describe can be used either directly with pro-
grams hand-written in hardware description languages (which we
explore this paper) or as part of a hardware “run-time system”
targeted by a compiler for a C-to-gates [3, 7] or high-level lan-
guage [1, 4] system including dynamic memory allocation. The
latter is left to future work, and we concentrate in this paper on
exploring the design, analysis, and limits of the hardware collector.

We also built an explicit (malloc/free) memory manager for com-
parison. We integrated the three memory managers with two bench-
marks and compared the performance.

This paper is based on work previously published at PLDI 2012 [2].

2. MEMORY ARCHITECTURE
The memory architecture — that is, the way in which object

fields are laid out in memory, and the free list is maintained — is
common to our support of both malloc/free and garbage-collected

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

A

BB

A

000

Pointer to WriteAddr to Read/Write

Address to Clear

Pointer
Memory

Stack Top

Addr Alloc’dAddr to Free

Address Allocated

Pointer ValueAlloc

Free
Stack

Figure 1: Memory module design for malloc/free interface,
showing a single field of pointer type (for heap size N = 8 and
pointer width logN = 3). Block RAMs are in yellow, with the
dual ports (A/B) shown. For each port, the data line is above
and the address select line is below. Ovals designate 3-bit wide
pointer fields; those in blue are in use.

abstractions. In this section we describe our memory architecture
as well as some of the alternatives, and discuss the tradeoffs quali-
tatively. Some tradeoffs are explored quantitatively in Section 5.

Since memory structures within an FPGA are typically and of
necessity far more uniform than in a conventional software heap,
we organize memory into one or more miniheaps, in which objects
have a fixed size and “shape” in terms of division between pointer
and data fields. This is essentially the same design as the “big bag
of pages” (BIBOP) style in conventional software memory alloca-
tor design, in which the metadata for the objects is implicit in the
page in which they reside [8].

2.1 Miniheap Interface
Each miniheap has an interface allowing objects to be allocated

(and freed when using explicit memory management), and opera-
tions allowing individual data fields to be read or written.

In this paper we will consider miniheaps with one or two pointer
fields and an arbitrary number of data fields. This is sufficient for
implementing many stack, list, queue, and tree data structures, as
well as S-expressions. FPGA modules for common applications
like packet processing, compression, etc. are covered by such struc-
tures. Increasing the number of pointer fields is straightforward for
malloc-style memory, but for garbage collected memory requires
additional logic. We believe this is relatively straightforward to im-
plement but the experimental results in this paper are confined to
one- and two-pointer objects.

2.2 Miniheap with Malloc/Free
There are many ways in which the interface in Section 2.1 can

be implemented. Fundamentally, these represent a time/space (and
sometimes power) trade-off between the number of available par-
allel operations, and the amount of hardware resources consumed.

For FPGAs, one specifies a logical memory block with a desired
data width and number of entries, and the synthesis tools attempt
to allocate the required number of individual Block RAMs as ef-
ficiently as possible, using various packing strategies. We refer to
the BRAMs for such a logical memory block as a BRAM set.

In our design we use one BRAM set for each field in the object.
For example, if there are two pointer and one data field, then there
are three BRAM sets.

The non-pointer field has a natural width associated with its data
type (for instance 32 bits). However, for a miniheap of size N ,
the pointer fields must only be dlog2Ne bits wide. Because data
widths on the FPGA are completely customizable, we use precisely
the required number of bits. Thus a larger miniheap will increase

in size not only because of the number of entries, but because the
pointer fields themselves become larger.

As in software, the pointer value 0 is reserved to mean “null”,
so a miniheap of size N can really only store N − 1 objects.

A high-level block diagram of the memory manager is shown
in Figure 1. It shows the primary data and control fields of the
memory module, although many of the signals have been elided to
simplify the diagram. For clarity of presentation it shows a single
object field, of pointer type (Pointer Memory), which is stored in
a single BRAM set. A second BRAM set (Free Stack) is used to
store a stack of free objects.

For an object with f fields, there would be f BRAM sets with
associated interfaces for the write and read values (but not an addi-
tional address port). And of course there is only a single free stack,
regardless of how many fields the object has.

The Alloc signal is a one-bit signal used to implement the malloc
operation. A register is used to hold the value of the stack top.
Assuming it is non-zero, it is decremented and then presented on
port B of the Free Stack BRAM set, in read mode. The resulting
pointer to a free field is then returned (Addr Alloc’d), but is also
fed to port B of the Pointer Memory, in write mode with the write
value hard-wired to 000 (or “null”).

To free an object, the pointer is presented to the memory manager
(Addr to Free). The Stack Top register is used as the address for
the Free Stack BRAM set on port B, in write mode, with the data
value Addr to Free. Then the Stack Top register is incremented.
This causes the pointer to the freed object to be pushed onto the
Free Stack.

In order to read or write a field in the Pointer Memory, the Addr
to Read/Write is presented, and, if writing, a Pointer to Write. This
uses port A of the BRAM set in either read or write mode, returning
a value on the Pointer Value port in the former case.

Note that this design, by taking advantage of dual-porting the
BRAMs, can allow a read or write to proceed in parallel with an
allocate or free.

3. GARBAGE COLLECTOR DESIGN
We now describe the implementation of both a stop-the-world

and a fully concurrent collector in hardware. In software, the ar-
chitecture of these two styles of collector are radically different. In
hardware, the differences are much smaller.

The concurrent collector has a few extra data structures (imple-
mented with BRAMs) and also requires more careful allocation of
BRAM ports to avoid contention, but these features do not neg-
atively affect the use of the design in the stop-the-world collec-
tor. Therefore, we will present the concurrent collector design,
and merely mention here that the stop-the-world variant omits the
shadow register(s) from the root engine, the write barrier register
and logic from the trace engine, and the used map and logic from
the sweep engine.

Our collector comprises three separate components, which han-
dle the atomic root snapshot, tracing, and sweeping.

3.1 Root Snapshot
The concurrent collector uses the snapshot-at-the-beginning al-

gorithm. Yuasa’s original algorithm [10] required a global pause
while the snapshot was taken by recording the roots; since then
real-time collectors have endeavored to reduce the pause required
by the root snapshot. In hardware, we are able to completely elimi-
nate the snapshot pause by taking advantage of the parallelism and
synchronization available in the hardware.

The snapshot must take two types of roots into account: those in
registers, and those on the stack. Figure 2 shows the root snapshot
module, simplified to a single stack and a single register.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

A

B

Stack Top

Push/PopGC

Scan Pointer

Push Value Pop Value Root to Add

Shadow Register

Mutator Register

Write Reg Read Reg

MUX

Mutator
Stack

Figure 2: Single-Cycle Atomic Root Snapshot Engine

The snapshot is controlled by the GC signal, which goes high
for one clock cycle at the beginning of collection. The snapshot is
defined as the state of the memory at the beginning of the next cycle
after the GC signal goes high.

The register snapshot is obtained by using a shadow register. In
the cycle after the GC signal goes high, the value of the mutator
registers is copied into the shadow registers. This can happen even
if the register is also written by the mutator in the same cycle, since
the new value will not be latched until the end of the cycle.

The stack snapshot is obtained by having another register in ad-
dition to the Stack Top register, called the Scan Pointer. In the
same cycle that the GC signal goes high, the value of the Stack
Top pointer minus one is written into the Scan Pointer (because
the Stack Top points to the entry above the actual top value). Be-
ginning in the following cycle, the Scan Pointer is used as the
source address to port B of the BRAM set containing the muta-
tor stack, and the pointer is read out, going through the MUX and
emerging on the Root to Add port from the snapshot module. The
Scan Pointer is also decremented in preparation for the following
cycle.

Note that the mutator can continue to use the stack via port A
of the BRAM set, while the snapshot uses port B. And since the
mutator can not pop values off the stack faster than the collector can
read them out, the property is preserved that the snapshot contains
exactly those roots that existed in the cycle following the GC signal.

Note that the values from the stack must be processed first, be-
cause the stack snapshot technique relies on staying ahead of the
mutator without any explicit synchronization.

If multiple stacks were desired, then a “shadow” stack would
be required to hold values as they were read out before the mutator
could overwrite them, which could then be sequenced onto the Root
to Add port.

As will be seen in Section 3.3, collection is triggered (only) by an
allocation that causes free space to drop below a threshold. There-
fore the generation of root snapshot logic only needs to consider
those hardware states in which this might occur. Any register or
stack not live in those states can be safely ignored.

3.2 Tracing
The tracing engine, along with a single pointer memory (corre-

sponding to a single pointer field in an object) is shown in Fig-
ure 3. It provides the same mutator interface as the malloc/free
style memory manager of Figure 1: Addr to Read/Write, Pointer to
Write, and Pointer Value – except that the external interface Addr
to Free is replaced by the internal interface (denoted in red) Addr
to Clear, which is generated by the Sweep module (below).

The only additional interface is the Root to Add port which takes
its inputs from the output port of the same name of the Root Engine

A

A

B

000
Barrier Reg

Pointer
Memory

Mark
Map

Addr to Clear Pointer to Write

1 Mark Queue

Pointer Value Root to Add

Pointer to Trace

B

MUX

M
UX

Addr to Read/Write

Figure 3: Tracing Engine and a Single Pointer Memory

in Figure 2.
As it executes, there are three sources of pointers for the engine

to trace: externally added roots from the snapshot, internally traced
roots from the pointer memory, and over-written pointers from the
pointer memory (captured with a Yuasa-style barrier to maintain
the snapshot property). The different pointer sources flow through
a MUX, and on each cycle a pointer can be presented to the Mark
Map, which contains one bit for each of the N memory locations.

Using the BRAM read-before-write mode, the old mark value
is read, and then the mark value is unconditionally set to 1. If
the old mark value is 0, this pointer has not yet been traversed,
so the negation of the old mark value (indicated by the bubble) is
used to control whether the pointer is added to the Mark Queue
(note that this means that all values in the Mark Queue have been
filtered, so at most N − 1 values can flow through the queue). The
Mark Queue is a BRAM used in FIFO (rather than random access)
mode.

Pointers from the Mark Queue are presented as a read address
on port B of the Pointer Memory, and if non-null are fed to the
MUX and thence back to the marking step.

The write barrier is implemented by using port A of the Pointer
Memory BRAM in read-before-write mode. When the mutator
writes a pointer, the old value is read out first and placed into
the Barrier Reg. This is subsequently fed through the MUX and
marked (the timing and arbitration is discussed below).

Given the three BRAMs involved in the marking process, pro-
cessing one pointer requires 3 cycles. However, the marking en-
gine is implemented as a 3-stage pipeline, so it is able to sustain a
throughput of one pointer per cycle.

3.2.1 Trace Engine Pairing
For objects with two pointers, two trace engines are paired to-

gether to maximize resource usage (this is not shown in the figure).
Since each trace engine only uses one port of the mark map, both
engines can mark concurrently.

Furthermore, the two mark queues are MUXed together and the
next item to mark is always taken from queue 0 (the queue into
which new roots are placed), unless it is empty in which case it is
taken from queue 1. Using this design, we provision each of the
2 queues to be of size N/2, which guarantees that the queues will
never overflow.

On each cycle, one pointer is removed from the queues, and the
two pointers in the object retrieved are examined and potentially
marked and enqueued.

The final optimization is that since there are now two write bar-
rier registers and two mark queues, the write barrier values are not
processed until there are two of them. This means that the mark
engines can make progress every other cycle even if the application
is performing one write per cycle.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

B

A

Stack Top

Alloc

Address Allocated

Sweep
Pointer

Mark
Map

GC

Address to Free

Free
Stack

M
UX

Addr Alloc’d Addr to Clear

=10?

Used
Map

Figure 4: Free Stack and Sweeping Engine

3.3 Sweeping
Once tracing is complete, the sweep phase begins, in which mem-

ory is reclaimed. The high-level design is shown in Figure 4. The
sweep engine also handles allocation requests and maintains the
stack of pointers to free memory (Free Stack). The Mark Map
here is the same Mark Map as in Figure 3.

When an Alloc request arrives from the mutator, the Stack Top
register is used to remove a pointer to a free object from the Free
Stack, and the stack pointer is decremented. If the stack pointer
falls below a certain level (we typically use 25%), then a garbage
collection is triggered by raising the GC signal which is connected
to the root snapshot engine (Figure 2).

The address popped from the Free Stack is returned to the mu-
tator on the Addr Alloc’d port. It is also used to set the object’s
entry in the Used Map, to 01, meaning “freshly allocated”. A
value of 00 means “free”, in which case the object is on the Free
Stack.

When tracing is completed, sweeping begins in the next machine
cycle. Sweeping is a simple linear scan. The Sweep Pointer is
initialized to 1 (since slot 0 is reserved for null), and on every
cycle (except when pre-empted by allocation) the sweep pointer is
presented to both the Mark Map and the Used Map.

If an object is marked, its Used Map entry is set to 10. If an
object is not marked and its used map entry is 10 (the and gate
in the figure) then the used map entry is set to 00. The resulting
signal is also used to control whether the current Sweep Pointer
address is going to be freed. If so, it is pushed onto the Free Stack
and also output on the Addr to Clear port, which is connected to
the mark engine so that the data values being freed are zeroed out.

Note that since clearing only occurs during sweeping, there is
no contention for the Pointer Memory port in the trace engine
between clearing and marking. Furthermore, note that an alloca-
tion and a free may happen in the same cycle: the top-of-stack is
accessed using read-before-write mode and returned as the Addr
Alloc’d, and then the newly freed object is pushed back.

When an object is allocated, it is not marked. Thus our collec-
tor does not “allocate black”. This means that the tracing engine
may encounter newly allocated objects in its marking pipeline (via
newly installed pointers in the heap), albeit at most once since they
will then be marked.

4. EXPERIMENTAL METHODOLOGY
Since we have implemented the first collector of this kind, we

can not simply use a standard set of benchmarks to evaluate it.
Therefore, we have implemented two micro-benchmarks intended
to be representative of the types of structures that might be used
in an FPGA: a doubly-ended queue (deque), which is common in
packet processing, and a binary tree, which is common for algo-

rithms like compression.
A given micro-benchmark can be paired with one of the three

memory management implementations (Malloc, stop-the-world GC,
and real-time GC). Furthermore, these are parameterized by the
size of the miniheap, and for the collectors, the trigger at which
to start collection (although for most purposes, we simply trigger
when free space falls below 25%). We call these design points.

Our experiments are performed using a Xilinx Virtex-5 LX330T [9].
The LX330T has 51,840 slices and 11,664 Kb (1.4 MB) of Block
RAM. For each design point, we perform complete synthesis, in-
cluding place-and-route (PAR). We used Xilinx ISE 13.4 for syn-
thesizing the designs.

4.1 Description of Benchmarks
Our first benchmark is a binary search tree which is standard

member of a family of binary trees data structures including vari-
ants like red-black trees, splay trees, and heaps. Though all the
standard operations are implemented, the benchmark, for simplic-
ity, exports only three operations: insert, delete, and traverse. The
benchmark can be run against a workload containing a sequence
of such operations. Our workload generator is configured to keep
the maximum number of live nodes to 8192 while bursts of inserts
and deletes can cause the instantaneous amount of live nodes to
fall to 7/8 of that. The burstiness of the benchmark necessitates
measuring the allocation rate dynamically through instrumentation
but provides a more realistic and challenging test for our collector.
Traversal operations are included to confirm that our collector is
not corrupting any data as the heap size is reduced. The allocation
rate of the binary tree is proportional to the tree depth and could be
characterized as intermediate for micro-benchmarks. In the context
of a complete program, the final allocation rate is potentially even
lower.

The second benchmark is a deque (double-ended queue). The
doubly-linked list can be modified by pushes and pops to either the
front or back. As before, our workload consists of a random se-
quence of such operations while keeping the maximum amount of
live data to 8192. To contrast with the previous benchmark, there
are no deliberate bursts which makes the allocation rate more con-
sistent but also keeps the amount of live data always quite close
to the maximum. Because there is no traversal or computation, the
allocation rate is much higher and stresses the collector much more.

5. EVALUATION

5.1 Static Measurements
We begin by examining the cost, in terms of static resources, of

the 3 memory managers – malloc/free (“Malloc”) , stop-the-world
collection (“STW”), and real-time concurrent collection (“RTGC”).
For these purposes we synthesize the memory manager in the ab-
sence of any application. This provides insight into the cost of
the memory management itself, and also provides an upper bound
on the performance of actual applications (since they can only use
more resources or cause the clock frequency to decline).

We evaluate design points at heap sizes (in objects) from 1K to
64K in powers of 2. For these purposes we use an object layout
of two pointers and one 32-bit data field. The results are shown in
Figures 5 to 7.

5.1.1 Logic usage
Figure 5 shows the utilization of logic resources (in slices). As

expected, garbage collection requires more logic than Malloc. Be-
tween the two collectors, RTGC requires between 4% to 39% more
slices than STW. While RTGC consumes up to 4 times more slices
than Malloc in relative terms, in absolute terms it uses less than

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

Figure 5: FPGA Logic Resource (slice) Usage

Figure 6: Block RAM Usage, including fragmentation wastage

0.7% of the total slices even for the largest heap size so logic con-
sumption for all 3 schemes is effectively a non-issue.

5.1.2 Memory usage
Figure 6 shows BRAM consumption. At the smaller heap sizes,

garbage collectors consume up to 80% more BRAMs than Malloc.
However, at realistic heap sizes, the figure drops to 24%. In addi-
tion, RTGC requires about 2-12% more memory than STW since it
requires the additional 2-bit wide Used Map to cope with concur-
rent allocation. Fragmentation is noticeable but not a major factor,
ranging from 11-31% for Malloc and 11-53% for garbage collec-
tion. As before, at larger heap sizes, the fragmentation decreases.
Some wastage can be avoided by choosing heap sizes more care-
fully, not necessarily a power of 2, by noting that BRAMs are avail-
able in 18Kb blocks. However, some fragmentation loss is inherent
in the quantization of BRAMs as they are chained together to form
larger memories.

5.1.3 Clock frequency
Figure 7 shows the synthesized clock frequency at different de-

sign points. Here we see a significant effect from the more complex
logic for garbage collection: even though it consumes relatively lit-
tle area, clock frequency for garbage collection is noticeably slower
(15-39%) than Malloc across all design points. On the other hand,
the difference between STW and RTGC is small with RTGC of-
ten faster. Regardless of the form of memory management, clock
frequency declines as the heap becomes larger.

5.2 Dynamic Measurements
So far we have discussed the costs of memory management in

the absence of applications; we now turn to considering what hap-
pens when the memory manager is “linked” to the microbench-
marks from Section 4.1. Unlike the previous section, where we
concentrated on the effects of a wide range of memory sizes on
static chip resources, here we focus on a smaller range of sizes us-
ing a trace with a single maximum live data set of m = 8192 as
described previously. We then vary the heap size N from m to 2m
by intervals of 1/10 (including full synthesis at each design point),

Figure 7: Synthesized Clock Frequency

to evaluate what happens to the memory managers as memory pres-
sure varies from moderate to impossibly tight.

5.2.1 Throughput
Figure 8 shows the throughput of the benchmarks as the heap

size varies for Malloc, STW, and RTGC. To fully understand the
interaction of various effects, one must understand the throughput
both in the duration in cycles (graphs (a) and (b)), but also, since
the synthesizable clock frequencies vary, in physical time (graphs
(c) and (d)).

The Binary Tree benchmark goes through phases that are allocation-
and mutation-intensive, and those that are not. As a result its allo-
cation rate α is 0.009 objects/cycle, and its mutation rate µ is 0.02
pointer writes/cycle, when considered over a window size of m cy-
cles. Because of these relatively low rates, the duration in cycles
in Figure 8(a) of both Malloc and RTGC stays constant from 2m
all the way down to 1.1m. RTGC actually consumes slightly fewer
cycles since it does not need to issue explicit free operations. Be-
cause STW pauses the mutator, each collection increases the total
number of cycles required. As the heap gets tight, the duration in
cycles for STW rises quickly.

However, when we obtain the physical time by dividing total
duration in cycles by synthesized clock frequency, as shown in Fig-
ure 8(a), things become less cut and dried. Although Malloc alone
can be synthesized at considerably higher frequencies than STW or
RTGC (Figure 7), it is often the application rather than the memory
manager that becomes the limiting factor on clock speed. There-
fore, the differences between the three memory managers is mini-
mal and slightly chaotic due to variation in the synthesis tool.

The Deque benchmark shows a different behavior. With much
higher allocation and mutation rates (α = 0.07 and µ = 0.13), it
is much more sensitive to collector activity. As seen in Figure 8(b),
even at heap size N = 2m, STW consumes noticeably more cy-
cles, rising to almost double the cycles at N = 1.1m. By contrast
RTGC consumes slightly fewer cycles than Malloc until it begins
to experience stall cycles (non-real-time behavior) at N = 1.4m
because it can not keep up with the mutator.

The Deque benchmark is considerably simpler than Binary Tree
in terms of logic, so it has a correspondingly lower impact on syn-
thesized clock frequency. The effect is seen clearly in Figure 8(d):
Malloc synthesizes at a higher frequency, allowing it to make up
RTGC’s slight advantage in cycles and consume 25% less time on
an average. STW suffers even more from the combined effect of
a lower clock frequency and additional cycles due to synchronous
collection. On average, RTGC is faster than STW by 14% and of
course does not interrupt the application at all.

These measurements reveal some surprising trends that are com-
pletely contrary to the expected trade-offs for software collectors:
RTGC is actually faster, more deterministic, and requires less heap
space than STW! There seems to be no reason ever to use STW.

Furthermore, RTGC allows applications to run at far lower mul-

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

(a) Execution duration in cycles of Binary Tree (b) Execution duration in cycles of Deque

(c) Execution time in milliseconds of Binary Tree (d) Execution time in milliseconds of Deque

Figure 8: Throughput measurements for the Binary Tree and Deque Microbenchmarks. Because energy consumption is dominated
by static power, which is virtually constant, graphs (c) and (d) also show energy in millijoules; the curves are identical.

tiples of the maximum live set m than possible for either real-time
or stop-the-world collectors in software. RTGC is also only mod-
erately slower than Malloc, meaning that the cost of abstraction is
considerably more palatable.

5.2.2 Energy
Energy is a product of average power dissipation and physical

time. The average power dissipation, as reported by the XPower
tool from Xilinx, across all design points and memory managers
remains almost constant and is dominated by the static power con-
sumption which accounts for more than 90% of the total power.
Hence the energy plot simply follows the physical time plot with
scaling. The secondary vertical axis in Figure 8 (c) and (d) shows
the energy consumption for binary tree and deque respectively.

For the Binary Tree benchmark, the average energy consumption
(averaged over all the design points) for RTGC is lower than STW
by 6% and higher than Malloc by 8%. For the Deque benchmark,
on average RTGC consumes 14% less and 34% more energy than
STW and Malloc respectively.

The analysis shows that the energy consumption is highly application-
dependent. For both the benchmarks we considered it is safe to
say that RTGC is a better choice than STW as far as energy con-
sumption is considered. The average total energy consumption of
Malloc is smaller than RTGC for both the benchmarks. However,
as the complexity and size of benchmark increases the energy con-
sumption gap between RTGC and Malloc diminishes.

6. CONCLUSION
We have described our design, implementation, and evaluation

of the first garbage collectors to be completely synthesized into
hardware. Compared to explicit memory management, hardware
garbage collection still sacrifices some throughput in exchange for
a higher level of abstraction. It may be possible to narrow this gap
through more aggressive pipelining. However, the gap in space
needed to achieve good performance is substantially smaller than

in software. For the first time, garbage collection of programs syn-
thesized to hardware is practical and realizable.

7. REFERENCES
[1] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a

Java-compatible and synthesizable language for
heterogeneous architectures. In OOPSLA, pp. 89–108, Oct.
2010.

[2] D. F. Bacon, P. Cheng, and S. Shukla. And then there were
none: A stall-free real-time garbage collector for
reconfigurable hardware. In PLDI, June 2012.

[3] B. Cook et al. Finding heap-bounds for hardware synthesis.
In FMCAD, pp. 205 –212, Nov. 2009.

[4] D. Greaves and S. Singh. Kiwi: Synthesis of FPGA circuits
from parallel programs. In FCCM, 2008.

[5] R. Jones and R. Lins. Garbage Collection. John Wiley and
Sons, 1996.

[6] J. McCarthy. Recursive functions of symbolic expressions
and their computation by machine. Commun. ACM,
3(4):184–195, 1960.

[7] J. Simsa and S. Singh. Designing hardware with dynamic
memory abstraction. In FPGA, pp. 69–72, 2010.

[8] G. L. Steele, Jr. Data representation in PDP-10 MACLISP.
Tech. rep., MIT, 1977. AI Memo 420.

[9] Xilinx. Virtex-5 family overview. Tech. Rep. DS100, Feb.
2009.

[10] T. Yuasa. Real-time garbage collection on general-purpose
machines. J. Systems and Software, 11(3):181–198, Mar.
1990.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 2

http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://dx.doi.org/10.1109/FMCAD.2009.5351120
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2008.46
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/1723112.1723125
http://doi.acm.org/10.1145/1723112.1723125
http://dspace.mit.edu/handle/1721.1/6278
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

	Introduction
	Background: Garbage Collection
	Our Contribution

	Memory Architecture
	Miniheap Interface
	Miniheap with Malloc/Free

	Garbage Collector Design
	Root Snapshot
	Tracing
	Trace Engine Pairing

	Sweeping

	Experimental Methodology
	Description of Benchmarks

	Evaluation
	Static Measurements
	Logic usage
	Memory usage
	Clock frequency

	Dynamic Measurements
	Throughput
	Energy

	Conclusion
	References

