
1

An Architecture & Mechanism for Supporting Speculative Execution of a
Context-full Reconfigurable Function Unit

Tao Wang, Zhihong Yu, Yuan Liu, Peng Li, Dong Liu, Joel S. Emer

wangtao@ieee.org, {zhihong.yu, yuan.y.liu, peng.p.li, dong.liu, joel.emer}@intel.com

Intel Corporation

ABSTRACT
Recently researchers have shown interest in
integrating Reconfigurable logic into conventional
processors as a Reconfigurable Function Unit (RFU).
A context-full RFU supports holding intermediate
results inside itself, which eliminates some data
movement overheads and has some other benefits.
Most contemporary processors support out-of-order
execution and speculation. When a context-full RFU
is integrated into a speculative processor, if a
speculative RFU instruction has modified the RFU
context but cannot be committed in the end, the RFU
context must be recovered. Traditional mechanisms to
handle speculative execution of instructions cannot
effectively address this issue. Because of the design
complexity, previous proposals did not support
context-full RFUs in speculative processors. In this
paper, we propose an architecture & mechanism for
supporting speculative execution of a context-full
RFU in in-order issue, out-of-order execution
processors. It does not require too much extra space
for the RFU context storage and the performance
penalty shown to be low in practice.

1. INTRODUCTION
Reconfigurable Logic (RL) has the capability of
providing custom operations and has more flexibility
than fix-function logic. Then compared to
conventional fixed function ISAs, an ISA augmented
with RL has the potential to provide much better
performance for a variety of computations. Since the
1990s [1], researchers have explored integrating RL
into conventional processors as a reconfigurable
function unit (RFU) to get
both a performance gain
over conventional fixed-
function ISAs and faster
time-to-feature than fixed-
function logic, as is
illustrated in figure 1.

Different kinds of RFUs
can either support the
notion of context or not. Context is a portion of the
local states of an RFU that can be observed by the
components outside the RFU. A simple example of

context is the accumulated sum inside an RFU when
the RFU provides a vector sum operation. In our
definition, an RFU is called context-full RFU if it
supports such an internal context.

A context-full RFU has at least three advantages: 1) it
eliminates some data movement overhead by saving
intermediate results into the RFU context; 2) it
enables a way of handling more and/or wider
inputs/outputs than the standard operands of
instructions; 3) RFU context can serve as a look-up
table for various computations, for example, as a
DFA (Deterministic Finite Automaton) state
transition table. We believe that the advantages of
having RFU context can justify the cost of the
incoming additional storage and architectural
complexities.

Many contemporary high-performance processors
support out-of-order execution and speculation. When
a context-full RFU is integrated into a speculative
processor, if an RFU instruction has modified the
RFU context but was mis-speculated and cannot be
committed in the end, the RFU context must be
recovered as if the instruction had not been executed.

Traditional mechanism to handle speculative
executions of instructions cannot effectively address
this issue. As the total size of the architecture
registers in a processor is fixed and is not very large,
we can build a reorder buffer or a physical register
file with reasonable size to save the outputs of the
speculative executions of the instructions. But in a
context-full RFU, the size of the RFU context varies
with different computations and the number of
speculative updates on the RFU context may be large,
so in the worst case the total storage for the RFU
context could be unacceptably large for all the
speculative updates to be saved inside the RFU before
they are committed. So considering the cost, we do
not believe it feasible to track each update to the RFU
context on a per-RFU-instruction basis.

It is also not feasible either to save the RFU context
in the conventional register file at the update on the
RFU context, both due to the inadequate space in the
register file and due to the communication overhead

Figure 1: RFU in processor

Fetch

Decode

Op

MEM

WB

Integer

FP

SSE

RFU

Processor

core

Fetch

Decode

Op

MEM

WB

Fetch

Decode

Op

MEM

WB

Integer

FP

SSE

RFU

Processor

core

2

between the RFU and the register file. Though the
approach of a shadow register [16] partly addresses
this issue, it cannot be fully deployed for context-full
RFUs.

Because of this complexity, previous approaches
which integrated RFUs into processors either did not
support context-full RFUs in speculative processors
[2, 3, 9], or did not employ speculative processors as
the base processors [4], or did neither of them [1].

In this paper, we propose an architecture and
mechanism for supporting speculative execution of a
context-full RFU in an in-order issue, out-of-order
execution processor. It does not require too much
extra size for the RFU context storage and the
performance penalty is low in practice.

2. RELATED WORK
The most widely used type of RL is its fine-grain
representative – FPGA. Some publications proposed
coarser-grain RL, such as MATRIX [5] and
PipeRench [6], to achieve higher performance in
some computations. MATRIX was an array of 8-bit
function units with configurable network. PipeRench
consisted of many stripes, each of which had 16 8-bit
processing elements. These RL systems were not
designed to be integrated into processors.

In order to leverage advantages of both processors
and RL, many researchers have tried to integrate RL
into processors since the 1990s, for example PRISC
[1], DISC [7], Garp [4], MorphoSys [8], OneChip [9],
Amalgam [10], Chimaera [2, 3], AMBER [11].

PRISC [1] was one of the early attempts of the
integration. It integrated an RFU into “a mythical
200MHz MIPS R2000 datapath”. The RFU was
composed of an array of look-up tables (LUTs)
evaluating 32-bit binary functions. PRISC claimed
that on average it could accelerate SPECInt92 by
22%. It did not provide context support inside the
RFU nor did it have a speculative processor as its
main processor.

Garp [4] integrated an RFU into a simple MIPS II
processor. The RFU normally composed of 32 rows,
each of which could support 32-bit operations. Garp
claimed 2-24x speedups for some applications over an
UltraSPARC processor. It supported RFU context but
did not support speculative execution.

Chimaera [2, 3] integrated an RFU into an aggressive,
dynamically-scheduled MIPS superscalar processor.
The RFU was a reconfigurable array containing

multiple rows. Each row contained multiple LUT-
based reconfigurable blocks and supported up to 32-
bit bit-level operations. Chimaera resulted in 21%
performance improvements for MediaBench and
Honeywell [2], speedup of two or more for some
general-purpose computations, and a potential
speedup of 160 for some hand-mapped applications
(e.g. Game of Life) [3]. Though Chimaera employed
a speculative processor as its base processor, the
authors indicated that due to the complexity of
possible speculative updates on the context and some
other reasons, they did not support RFU context [3].

Cong et al. proposed an approach of using shadow
registers to selectively copy the execution results of
an RFU in the write-back stage, which could
efficiently reduce the communication overhead
between the processor core and the RFU [16].
However, they assumed that the required number of
shadow registers was usually much smaller than the
register file, which is not the case for a context-full
RFU. Another constraint in their approach was that a
shadow register should remain at its proper value
(without being overwritten by other instructions)
during the time when the RFU reads that register and
the time when it completed. A context-full RFU does
not have such constraint as the RFU context is inside
the RFU and cannot be written by other instructions.

3. DESCRIPTION OF THE PROPOSED
ARCHITECTURE & MECHANISM
In a processor with a context-full RFU, any RFU
instruction could read/write the context, so RFU
instructions themselves should be executed in
program order. In the proposed architecture and
mechanism, snapshots of the execution context are
saved periodically inside the RFU and speculatively
executed RFU instructions are logged. When an
incorrect speculation is detected, the execution
context must be rolled back with a correct snapshot
and then the logged instructions (except the mis-
speculated instruction) can be replayed to update the
execution context to a state immediately before the
execution of the incorrectly executed instruction.

An elaborate design is required to make this idea
correct and efficient. In the implementation, we
propose three kinds of context storage to support this
idea.

The Execution Context is the architecturally-visible
context, which is updated by an RFU instruction. We
built components to periodically save snapshots of it

3

for potential roll-backs. One important snapshot is
Committed Context, where all the RFU instructions
that contributed to this context have already been
committed. With this snapshot, we can restore the
Execution Context to an older but error-free state
when necessary. The Committed Context has a
special indicator called Committed Context Owner,
which indicates the most recently committed RFU
instruction that has updated the Committed Context.

In order to replay the necessary RFU instructions
during the roll-back process, we build a structure
called Inst Queue. In an in-order issue processor, an
RFU instruction is inserted into the Inst Queue in-
order when it arrives at the RFU; and it is deleted
when it is no longer younger than the Committed
Context Owner or when it is directly or indirectly
killed. During the roll-back process, the instructions
in the Inst Queue will be replayed, and their outputs
are ignored except the updates to the RFU context.
And in the non-RFU roll-back process, the register
file outside the RFU can be restored as usual and the
non-RFU instructions can be replayed outside the
RFU.

A first thought for generating the data of the
Committed Context might be copying the value of the
Execution Context when an RFU instruction X is
committed. But this may not be correct, because there
is some latency between the completion of X’s
execution and its commitment, the RFU instructions
younger than X may have updated the Execution
Context before X is committed; then when X is
committed, the Execution Context may no longer
reflect the effect made by X and might be incorrectly
updated by some incorrectly speculatively executed
RFU instruction younger than X.

The solution is to keep another snapshot of the
Execution Context. This snapshot may reflect the
effect of a speculatively executed RFU instruction.
We call this snapshot Speculation Context.

The Speculation Context is updated periodically
(after a predefined number K RFU instructions are
committed; the exact value of K depends on the
implementation optimization) with the value of the
Execution Context. It also has a special indicator
called Speculation Context Owner, which indicates
the most recent RFU instruction having executed that
may reflect the update of the Speculation Context.

When the Speculation Context Owner is committed,
the Committed Context can be updated with the value

of the Speculation Context. As the Speculation
Context Owner is the youngest instruction that may
update the Speculation Context and it has already
been committed at that time, the Committed Context
is guaranteed to have a version of context where all
the RFU instructions having updated it have
committed.

When the roll-back process is triggered by an
incorrect speculation, the Execution Context will be
recovered with the value of the Committed Context,
and then the logged instructions in the Inst Queue can
be replayed to update the Execution Context to a state
immediately before the execution of the incorrectly
speculatively executed RFU instruction.

Figure 2 shows a
high-level diagram
on the relationship
among those three
RFU context
components.

Note that at any
time, the
architecturally-
visible context is always the Execution Context. The
Speculation Context and the Committed Context take
effect only in the roll-back process.

Figure 3 shows all the architecture components for
supporting speculative execution of RFU instructions.
An RFU instruction contains a tag, operation (op),
source operands values (src) and return destination
(dest) fields. An RFU COMMIT message is sent by
the ReOrder Buffer to the RFU when an RFU
instruction is committed. It contains the tag of an
RFU instruction. The Counter is inside the RFU and
is increased by one every time the RFU receives an
RFUCOMMIT message. When it reaches a
predefined number K, the Speculation Context is
updated with the value of the Execution Context, and
then it will be reset to 0. It will also be reset to 0
when an RFU instruction is killed.

There might be three kinds of penalties introduced by
the proposed architecture & mechanism. The first one
is the storage penalty. It is mainly from the cost for
the Speculation Context and the Committed Context,
so the total additional space requirement is two times
that of the Execution Context, which is within a
reasonable scope.

The second kind of penalty is the performance
penalty by the additional logic for handling the

Figure 2: High-level diagram on the
relationship among the three contexts.

Execution
Context

Committed
Context
Owner

Speculation
Context

with Owner

Copy after the
Speculation Context
Owner is committed

Copy when roll-back
process happens

Copy when K
Instructions have
been committed

4

copying of the contexts. Since this logic is within the
RFU and is invisible to the components outside the
RFU, we can hide the latency of this logic, so this
kind of penalty should be negligible.

The third kind of penalty is the performance penalty
which comes from the roll-back process. Since in
contemporary speculative processors the speculation
error rate is very low, for example normally less than
5% in branch predictions [12], this kind of penalty is
effectively low in practice.

4. EVALUATION
In order to get a credible result in the performance
evaluation, we employed a cycle-accurate simulation
methodology to evaluate workloads on the proposed
architecture and mechanism.

ASIM is a cycle-accurate system-level simulation
framework/system [13]. In ASIM, we used a
processor core module reflecting the most recent Intel
processor Core i7 with a slight difference. The
frequency was 2.4 GHz. The system memory size was
16GB, and the operating system was Linux 2.6.5. For
simulating the RFU, we wrote an RFU sub-module
into the processor core module. The RFU was located
between the reservation station and the reorder buffer
and it acted like a normal function unit. It worked in a
fixed frequency which would divide exactly into the
frequency of the processor.

The performance was measured in CPU cycles. New
RFU instructions were added and we normalized the
RFU cycles to the CPU cycles considering the
difference between the CPU frequency and the RFU
frequency. We modified the C source code for the
workloads into C codes with embedded assembly
language codes using RFU instructions. In the
simulation, an RFU instruction was dispatched into

the RFU for execution. In the experiment, the value of
K was set to 5.

We had three sets of data in the evaluation: 1) the
data for the workloads on an architecture without
handling any incorrect RFU context update by the
speculative execution of the RFU instructions
(labeled as SPEC_INCO). In this case, the workloads
might have incorrect result; 2) the data for the
workloads on architecture without the speculative
execution of the RFU instructions (labeled as
NONE_SPEC). In this case, the workloads would
have correct result but would run slower; 3) the data
for the workloads on the proposed architecture and
mechanism (labeled as PROPOSED). In this case, the
workloads would generate correct results and we will
see that the performance penalty is negligible,
especially when the speculation error rate is low.

The first workload was a toy program. It conditionally
incremented the RFU context by 1 using an RFU
instruction. In the evaluation, we adjusted the
speculation error rate to be: 0%, 1%, 3%, 5%, 7% and
10%. The iteration count was set to 10,000.

In table 1, we show the RFU roll-back times in
PROPOSED, the count of replayed RFU instructions
in PROPOSED, the execution cycle numbers on
different architectures, and the speedup of
PROPOSED over NONE_SPEC. Note that with
different speculation error rates, the RFU instructions
were executed different numbers of times. In
SPEC_INCO the program may execute incorrectly
with a wrong instruction flow, so the execution cycle
numbers in PROPOSED were sometimes less than
those in SPEC_INCO while at other times they were
greater, and sometimes they happened to be equal.
From the performance point of view, we can see that
PROPOSED got significant speedups over
NONE_SPEC.

Context-full RFU

Reservation
Station

ReOrder
BufferExecution

Context

Committed
Context with

Owner

Speculation
Context with

Owner

RFU inst2

tag

RFU inst3
tag op src dest

RFU inst4

tag op src dest

Inst
Queue

inst1
inst2
inst3

Issues RFU
instructions

Finishes RFU
instructions

RFU inst1

tag

Message of an RFU instruction’s
commitment (RFUCOMMIT)

Updates context

Inserts

Counter

Rolls back

Re-exec

Context-full RFU

Reservation
Station

Reservation
Station

ReOrder
Buffer

ReOrder
BufferExecution

Context

Committed
Context with

Owner

Speculation
Context with

Owner

RFU inst2

tag

RFU inst2

tag

RFU inst3
tag op src dest

RFU inst3
tag op src dest

RFU inst4

tag op src dest

RFU inst4

tag op src dest

Inst
Queue

inst1
inst2
inst3

Inst
Queue

Inst
Queue

inst1
inst2
inst3

Issues RFU
instructions

Finishes RFU
instructions

RFU inst1

tag

RFU inst1

tag

Message of an RFU instruction’s
commitment (RFUCOMMIT)

Updates context

Inserts

Counter

Rolls back

Re-exec

Figure 3: Architecture components for supporting speculative execution of RFU instructions.

5

Table 1. The evaluation data for the toy program

Speculation error rate 0% 1% 3% 5% 7% 10%
RFU roll-back times in PROPOSED 0 106 321 494 683 1038
Replayed RFU instructions count in PROPOSED 0 204 659 1004 1311 2045

Execution cycle number
for the evaluated codes

NONE_SPEC 1329920 1323378 1311253 1300505 1290137 1270778
PROPOSED 999918 1002962 1010540 1015220 1022463 1036141
SPEC_INCO 999918 1002962 1010550 1015220 1022463 1036131

Speedup of PROPOSED over NONE_SPEC 1.33 1.32 1.30 1.28 1.26 1.23

The second workload in the evaluation was the kernel
part of a real application: Perl Compatible Regular
Expression (PCRE), which is a regular expression C
library [14]. We implemented an RFU version of
PCRE, in which a part of a pattern (pattern unit) is
fed into the RFU, and then the RFU performs the
matching by comparing the pattern against the text.
This was done by an RFU instruction RFU_pcre.
Because a pattern is used to match a very long text,
the RFU context can be employed to store the current
pattern unit to avoid repeatedly sending it into the
RFU. An RFU instruction RFU_putcontext is used to
put various pattern units into RFU context. After the
execution of one RFU_pcre instance, the RFU might
either require a new pattern unit or not; the
executions of RFU_putcontext are determined by the
results of RFU_pcre. Then in a speculative processor,
RFU_putcontext can be speculatively executed and
speculatively update the RFU context with new
pattern units.

Table 2 shows the evaluation data for PCRE. The
data set used was the LLDOS 1.0 - Scenario One in

dataset 2000 of the DARPA Instruction Detection
Data Sets [15], with 120MB network data in total. We
tried to compare all the data against all the 2223
distinct regular expression patterns that appeared in
the 9108 regular expression rules in Snort of the
2008-04-22 version. And there were only 38 patterns
that were compared against in practice. We could not
get the SPEC_INCO result for eight patterns as the
program went nowhere with incorrect speculation for
these patterns. Because of the space limitation, in
table 2 we only show the data for three patterns with
the highest speedups, three patterns with the lowest
speedups, and the aggregate results for all the 30
patterns where we could get the SPEC_INCO results.

There were many patterns to be matched. In some
cases there were many dependencies between the
condition instructions and the RFU instructions but in
some other cases there were not (where the proposed
mechanism had few chance to show its advantages).
So we can see that the speedups of PROPOSED in
different patterns varied. Overall, PROPOSED still
got satisfying speedups in this complex workload.

Table 2. The evaluation data for PCRE

Patterns With the highest speedup With the lowest speedup
Aggregate

#4 #5 #16 #25 #37 #38
RFU roll-back times in PROPOSED 80 67 13 1088 0 0 61519
Replayed RFU instructions count in PROPOSED 145 100 11 544 0 0 102075

Execution cycle number
for the evaluated codes

NONE_SPEC 128513 62458 9632 2221667 840655 840655 102651567
PROPOSED 115119 56970 8567 2220477 839930 839930 97837327
SPEC_INCO 115119 56970 8567 2220477 839930 839930 97358394

Speedup of PROPOSED over NONE_SPEC 1.12 1.10 1.12 1.00 1.00 1.00 1.05

From the evaluation, we can see in all the evaluation
data the execution cycle number of PROPOSED was
very close to SPEC_INCO. Since there was no
performance penalty in SPEC_INCO (though the
result might be incorrect), we can infer that the
performance penalty in the proposed architecture &
mechanism was low in practice.

5. CONCLUSION
RL can provide much better performance than
conventional processors for some workloads and has
much more flexibility than fix-function logic.
Recently researchers have interest in integrating RL
into processors as RFUs. A context-full RFU can
eliminate some unnecessary data movement
overheads and has some other benefits. However, due

6

to the design complexity, previous approaches did not
support context-full RFUs in speculative processors.

We proposed an architecture and mechanism for
supporting speculative execution of a context-full
RFU. With an elaborate design, it does not require too
much extra size for the RFU context storage. The
evaluation data showed that the performance penalty
would be low in practice.

REFERENCES
[1] R. Razdan and M.D. Smith. “A high-performance

microarchitecture with hardware-programmable
functional units”. in Proc. 27th International
Symposium on Microarchitecture, Nov. 1994, pp.
172-180.

[2] Z-A. Ye, A. Moshovos, S. Hauck and P.
Banerjee. “CHIMAERA: a high-performance
architecture with a tightly-coupled reconfigurable
functional unit”. in Proc. the 27th International
Symposium on Computer Architecture, June
2000, pp.225-235.

[3] S. Hauck, T.W. Fry, M.M. Hosler and J.P. Kao.
“The Chimaera reconfigurable function unit”.
IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 12, No. 2
(2004), pp. 206-217.

[4] J.R. Hauser and J. Wawrzynek. “Garp: a MIPS
processor with a reconfigurable coprocessor”. in
Proc. IEEE Symposium on FPGAs for Custom
Computing Machines, April 1997, pp. 12-21.

[5] E. Mirsky, A. DeHon. “MATRIX: a
reconfigurable computing architecture with
configurable instruction distribution and
deployable resources”. in Proc. IEEE Symposium
on FPGAs for Custom Computing Machines,
April 1996, pp. 157-166.

[6] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B.
Levine and R.R. Taylor. “PipeRench: a
virtualized programmable datapath in 0.18
Micron Technology”. in Proc. 2002 IEEE Custom
Integrated Circuits Conference, May 2002, pp.
63-66.

[7] M.J. Wirthlin and B.L. Hutchings. “A dynamic
instruction set computer”. in Proc. IEEE

Symposium on FPGAs for Custom Computing
Machines, April, 1995, pp. 99-107.

[8] G. Lu, H. Singh, M-h. Lee, N. Bagherzadeh, and
F. Kurdahi. “The MorphoSys Parallel
Reconfigurable System”. in Proc. the 5th
International Euro-Par Conference on Parallel
Processing, Aug.-Sept. 1999, pp. 727-734.

[9] J.E. Carrillo and P. Chow. “The effect of
reconfigurable units in superscalar processors”. in
Proc. International Symposium on Field
Programmable Gate Arrays, Feb. 2001, pp. 141-
150.

[10] D.B. Gottlieb, J.J. Cook, J.D. Walstrom, S.
Ferrera, C-W. Wang and N.P. Carter. “Clustered
programmable-reconfigurable processors”. in
Proc. 2002 IEEE International Conference on
Field-Programmable Technology, Dec. 2002, pp.
134-141.

[11] F. Mehdipour, H. Noori, M.S. Zamani, K.
Murakami, M. Sedighi and K. Inoue. “An
integrated temporal partitioning and mapping
framework for handling custom instructions on a
reconfigurable functional unit”. ACSAC 2006,
LNCS 4186, pp. 219-230.

[12] Harish Patil and Joel S. Emer. “Combining Static
and Dynamic Branch Prediction to Reduce
Destructive Aliasing”. Sixth International
Symposium on High-Performance Computer
Architecture, 2000, pp. 251-263

[13] J. Emer, P. Ahuja, E. Borch, A. Klauser, C-K.
Luk, S. Manne, S.S. Mukherjee, H. Patil, S.
Wallace, N. Binkert, R. Espasa, and T. Juan,
“Asim: a performance model framework”, IEEE
Computer, Vol 35, Issue 2 (Feb 2002), pp. 68-76.

[14] PCRE - Perl Compatible Regular Expressions,
http://www.pcre.org/

[15] Lincoln Laboratory Scenario (DDoS) 1.0.
http://www.ll.mit.edu/mission/communications/is
t/corpora/ideval/data/2000/LLS_DDOS_1.0.html

[16] Jason Cong, Yiping Fan, Guoling Han, Ashok
Jagannathan, Glenn Reinman, Zhiru Zhang,
“Instruction Set Extension for Configurable
Professors with Shadow Registers”,
FPGA’05(February 20–22, 2005, Monterey,
California, USA). pp. 99-106

