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Abstract
With the growing capacities of modern FPGA fabrics, the
use of FPGA-based computer system simulators has become
an increasingly mainstream option to increase scalability and
throughput. Current state-of-the-art simulation platforms
typically require manual writing of custom FPGA-logic to
implement the required simulation tasks leading to extensive
development time. We evaluate the use of high-level synthe-
sis tools (HLS) as applied to existing high-level simulation
models as a means to reduce this development time. We find
that after restructuring the model for FPGA-based compu-
tation, a straightforward C-to-gate HLS toolflow can still
provide reasonable throughput compared to a pure software
simulation model. Furthermore, such a strategy provides a
means of quickly moving to a FPGA-based simulation plat-
form, allowing researchers to concentrate their development
effort on only the modules of interest while not entirely sac-
rificing fidelity on modules of less interest.

General Terms Interval Modeling, High-Level Simula-
tion, High-Level Synthesis

Keywords FPGA, Interval Models, HLS

1. Introduction
With the continuing push towards increasing levels of par-
allelism in next generation computer systems, the need to
quickly evaluate such systems has become a pressing need
for researchers. To support both the scale and speed re-
quirements of such simulation models, a number of research
groups have turned towards FPGAs as a simulation platform
[5, 1, 6, 2, 6, 8, 9]. These FPGA simulators are typically
clean-slate implementations that heavily leverage FPGA-
based optimizations to optimize for the resource constraints
imposed by the simulation fabric. While many order of mag-
nitude speedups can be achieved using such techniques, they
currently require explicit knowledge of targeting an FPGA
for reasonable results.

In this work we explore high-level synthesis as an au-
tomatic means of transforming software-based simulators
into FPGA-based simulator modules. As transforming an en-
tire simulator code base that makes extensive use of high

level software primitives (vectors, hashtables, linked-lists,
malloc/free, etc) would require significant engineering ef-
fort with current tool maturity, we focus on a restricted case
study. We explore the use of transforming a recently pro-
posed high-level simulation model, interval models [3], for
modeling out-of-order processor cores. Such a model can
be used as a black-box substitution module for out-of-order
cores when studying uncores, reducing FPGA occupancy for
portions of the simulation that are not under detailed study.

1.1 FPGA-based Simulators
While FPGA capacity has continued to grow, so has the
number of research groups building FPGA-based simulator
targeting many-core processor/core/network models [5, 1, 6,
2, 7, 8, 9]. These simulator frameworks offer the ability to
simulate at high-fidelity models incurring intractable simula-
tion speeds. Implementing such a simulator in the same man-
ner as a software simulator would result in a resource/timing
explosion. As a result, such systems have typically been ag-
gressively optimized for FPGAs to maximize throughput in
terms of simulated cycles per FPGA resource. One such op-
timization commonly used by a number of projects is host-
multithreading [2, 6, 7] that makes much more efficient use
of hardware by mapping multiple target cores onto a sin-
gle host pipeline. Such FPGA-specific optimizations can be
costly in developer time, and as a result, there is still a sig-
nificant productivity gap that exists when comparing tradi-
tional software simulators (typically implemented in C/C++)
and simulators specifically written for FPGAs. This produc-
tivity gap has been addressed in some part by decoupling
functionality from timing [1, 6, 7], using FPGAs for acceler-
ated sampling [2], and aggressive modular component reuse
[6]. However compared to contemporary sequential soft-
ware development, the fundamentally additional constraints
of FPGA area, routing, and timing closure add significant
overhead to development time.

1.2 FPGA Abstract Models
Transforming an existing C/C++ detailed simulation model
to an FPGA-optimized structure is a significant engineer-
ing effort. As a result many clean-slate FPGA simulator
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frameworks only implement the specific models they re-
quire for a particular target under study, rather than porting a
complete suite of existing models. For example, many de-
tailed network-on-chip simulators implemented in FPGAs
forgo the complexity of modeling a CMP directly and re-
place the entire core/cache for each node with a simple traf-
fic generator[8]. This manages both the resource and de-
velopment complexity of the FPGA simulator but comes at
the cost of flexibility and accuracy. A high-level simulation
model can offer a compromise between model complexity
and accuracy. By not directly modeling the structure of a tar-
get, a high level model can capture the salient performance
features of a module with reduced design complexity. In par-
ticular, for FPGA-based simulation, such models provide a
middle ground between detailed models for the entire sys-
tem and unreasonably simplistic models (e.g. core models
with fixed CPI).

While it is possible to implement such models directly
in an existing FPGA framework, this paper examines the
opportunities available via High-Level Synthesis (HLS) in
transforming existing software simulation models for use in
FPGA-based simulation. Ideally if a HLS tool could gener-
ate FPGA implementations of high-level models for less crit-
ical target components, one can restrict FPGA specific opti-
mizations and development time to the portions of the simu-
lation that are actively under study. Further, by using a rapid
prototyping HLS tool to implement the models, it becomes
possible to iteratively customize the model to suit the par-
ticular details for a given study, generating the FPGA model
automatically. By leveraging reduced complexity models for
certain models we try to enable

• Spending crucial FPGA resources on parts of target under
detailed study without dramatically impacting accuracy

• Automatic transformation of high-level models using
high-level synthesis tools

2. Interval Modeling
We base our high-level model case study on recent work in
high-level interval models by Genbrugge et al. [3]. Interval
based modeling attempts to raise the abstraction level of
OOO core modeling while still accurately simulating the
intrinsic performance entanglement of co-executing threads
via the memory subsystem. The basic technique is to provide
a high-level mechanistic model for the processor core and a
standard memory hierarchy model.

An interval-based processor model is based on the premise
that OOO cores process instructions at a rate equal to the
core issue width, disrupted only by long-latency miss events
(L1 icache misses, L2 dcache misses, TLB misses, branch
mispredicts, serializing instructions). The commit instruc-
tion stream is also rate limited by the intrinsic data depen-
dencies of the instruction stream (critical path). An example
of this basic interval timeline model is shown in Fig 1.

Branch 
Mispredict L2 Miss L1I Miss

# insts
dispatched

Time 
(cycles)Interval #1 Interval #2 Interval #3

Figure 1. Interval Timeline [3]
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Figure 2. Interval Block Model

The model is trace-driven with the timing model split
into a new window (which is used to model the ROB depth
and supports overlap analysis), and an old window (which is
used to model the critical path of the instruction stream). The
remaining portions of the system can be modeled at whatever
the required resolution for the experiment under study (see
Fig. 2).

As a OOO core can support multiple misses outstanding
and hide the effective miss penalty, such behavior is modeled
via overlapping miss analysis. When a long latency miss hits
the head of the new window, the contents of the new window
are scanned. Any independent miss events found in the win-
dow are marked with as being ‘overlapped’ by a previously
observed miss event. This allows handling the case where a
L2 miss penalty is hidden by a previously issued L2 miss,
preventing the naive serialization of penalties when the in-
struction hits the window head.

To support dynamic instruction dispatch width, the old
window is used to compute the critical path of the previously
‘committed’ instructions. Each instruction inserted into the
old window is timestamped as the earliest timestamp its
inputs were available plus the actual execution latency of
the op itself. By keeping track of the youngest instruction
to enter and leave the old window, we can approximate the
critical path length as the simple difference between these
two. Finally Little’s law allows us to compute the dynamic
dispatch width for a given cycle as the min(machine-width,
old-window-size/critical-path-length).

The benefits of using such a model for FPGA-based com-
putation are reduced complexity (both in development time
and resources) while preserving a high-level of accuracy for
the OOO core model. As the model can be evaluated com-
pletely at run-time, it does not require constant fine-grain
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monitoring and retraining. In addition, by constantly calcu-
lating the critical path and stall overlap on a single instruc-
tion granularity, the model is suitable for coupling with fine-
grained memory/network models.

3. FPGA-Friendly Optimizations for
Software Simulators

As current high-level synthesis tools are not mature enough
to process entire complex software simulators, the software
code must be optimized so that it lends itself to be trans-
lated to hardware. We discuss here some generic optimiza-
tion techniques to be considered when transforming a C/C++
simulator so that it structurally fits on an FPGA. Such trans-
formations are designed to be friendly for HLS but not opti-
mized for a specific tool.

3.1 Data-Type Specialization
A typical software simulator may have one very large class
representing an instruction or dynamic op that it operates on
throughout the pipeline. The pointer to this superinstruction
would be passed through the pipeline stages, with each stage
only operating on a small subset of all the fields in the
superinstruction.

As a high-level synthesis tool would have difficulty stat-
ically identifying all the fields that should or should not be
sent to each stage, it may not be able to remove unused fields,
leading to suboptimal efficiency. Instead of deriving from a
large, monolithic data structure for every stage’s input, spe-
cific structures are made for each stage’s input that consist
of only the elements that the particular stage needs.

This optimization can be done without too much over-
head even in a complex program. For each stage, a struc-
ture simply needs to be defined containing only the required
fields. Then this structure is used in place of the original,
overarching superinstruction structure.

Another common characteristic of the data types in soft-
ware simulators is that 64-bit timestamps are kept around
in many structures. In most cases though, the full 64-bits is
superfluous. Usually the program is interested in the time
deltas between different point of executions, and in such
cases, the timestamp only has to be as wide as the maximum
delta that can occur.

Having 64-bit timestamps everywhere consumes unnec-
essary resources on an FPGA, and so the data-types that are
used should be re-factored to only be as wide as they really
need to be. Since C/C++ simulators often make good use of
typedef when defining the datatypes, changing the bit-widths
of data types can be done fairly painlessly.

3.2 Black-Box Component Substitution
As our high-level model must be able to be a drop-in re-
placement for other hardware core models, it must be able
to live in a concurrent simulated environment. A high-level
model might want to know immediately whether an instruc-

tion was a cache miss or a branch mispredict. However, if
the cache and branch predictor are to be operated as sepa-
rate concurrent modules, then the model must deal with the
asynchronous nature of the requests, waiting in both real-
time and target-time for the replies from those separate sub-
systems.

This imposes a new restriction on the originally proposed
interval model which used future knowledge about the la-
tency of a memory operation in order to determine if a long-
latency event occurred for a given cycle. This knowledge
took the form of a synchronous function call which allows
the cache subsystem to advance in target-time and compute
the total downstream miss latency without having the core
advancing a target cycle. We modify the model to use a re-
quest/reply style communication pattern whenever a request
is made to an external component (Dcache, DTLB, etc),
which allows integration with the rest of the timing simu-
lator (see Section 4.2).

When writing the software for different modules, such as
the core, branch predictor, cache, etc., the modules should
be loosely coupled, so that the modules can be cleanly sepa-
rated and run concurrently.

3.3 Bounded Memory
In software, extremely large structures can be constructed
for the purposes of algorithmic speed-up. For example, to
avoid an O(n) search, a complex hash table could be made
for O(1) look-ups. As a typically software simulator is not
usually concerned with virtual memory footprint, but rather
the actual working set of its critical loops, even if the table
size is large, it may still be performant if the working set is
kept small.

For an FPGA as HLS tools typically do not support either
dynamic memory or caching data structures, the full mem-
ory footprint of such structures must be paid in at compile-
time, making such structures intractable. As a result, we re-
strict ourselves to relatively primitive fixed-sized arrays for
the majority of the required data structures. Such a restric-
tion is not as unwieldy as it may seem as simulator code can
typically mirror the structures of the hardware being mod-
eled.

3.4 Common Path Resource Prioritization
Whether a large data structure should be used to get speed
up should be decided by the speed up’s affect on overall
throughput. Following Ahmdal’s Law, we construct custom
data structures only in support of the common case. For the
interval model it follows that we should attempt to design for
the case where there is no miss event pending that requires a
overlap computation. When such an event occurs, simulator
throughput will be reduced temporarily as the overlap com-
putation requires several sequential steps. However, as such
events are infrequent, we bias the FPGA resources towards
the common case.
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4. FPGA Interval Models
Our goal was to implement a cycle-approximate processor
core simulation model that would balance complexity and
accuracy and which could be synthesized from software to
hardware in a simple, push-button procedure. We chose the
interval model as the basis for the mode, as it can achieve
high accuracy (within 15.5% for the SPEC benchmarks) and
low complexity (written in less than a thousand lines of
C/C++) as reported from previously published work using
a 64-bit Alpha ISA and a M5 OOO model with a dispatch
width of 4 and a 256 deep ROB as a reference [3].

We implemented a software reference model using the
basic principles from [3] to guide the design of the FPGA-
friendly optimizations. To validate initial model correctness,
we integrated the software model into PTLsim, a detailed
x86 cycle-accurate simulator, for comparison purposes. We
were able to obtain error rates as low as 3%, with an average
of 18.2% on a subset of 14 SPEC2000 benchmarks using
100M instruction samples comparing to the OOO K8/Core2-
style detailed model. As the interval model only accounts
for branch mispredict, cache misses, and critical path as first
order events, lower order effects are ignored. For the PTLsim
OOO model, this included a restriction on the number of
inflight branches to 16, that accounted for 20-40% of front-
end stalls which we removed to more closely match the
unlimited resource model assumed by the interval model. As
our results are comparable to the original published results,
we direct the reader to [3] for a more detailed analysis of
model accuracy concerns and focus on the aspects of the
design relevant to FPGAs for the remainder of the paper.

4.1 Data-Type Specialization
We specialize the datatype for each of the 3 primary FSMs
(TraceFeeder, Dispatch, and CriticalPath) of the interval
model. Additionally, this datatype specialization propogates
into the large buffer structures feeding to/from these FSMs
(NewWindow, OldWindow). We typedef all fields making
up the datatypes to enable precise bit-width while enabling
efficient software execution by simply modifying the type-
def to an int.

For example, we define RegIdType regid to be able to
contain exactly the different number of registers we require
to distinguish, instead of using a superfluous int regid.

#define NUM_REGS 16

#define LOG_NUM_REGS

typedef RegIdType int##LOG_NUM_REGS##_t;

RegIdType regid;

4.2 Black-Box Component Substitution
To allow the interval model to act as a drop-in replacement
for a processor core model, we modify the basic interval
model as presented in [3], which requires completely syn-
chronous knowledge of future downstream execution laten-
cies across the memory hierarchy in order to compute stalls.

In the original model [3] requests to the cache block were
performed at the head of the new window as:

if(inst.isMemOp){

int miss_latency = Dcache_and_DTLB_access(inst);

}

As we must preserve the ability for the cache hierarchy
to actually execute concurrently, such synchronous blocking
communication is not just a simulation performance issue
but rather makes it impossible to integrate the model into
a concurrent simulation environment. To resolve this issue,
we introduce request/reply buffers that are populated by the
TraceFeeder FSM. Requests are inserted into the appropriate
resource queue as they enter the tail of the new window.
Requests are tagged with the id of the instruction in the new
window to mark the instruction as being complete by the
time it reaches the new window head. This request interface
with a generic queue between the interval model and outside
subsystems allows for integration with an external timing
simulation framework.

This snippet shows code similar to our request/reply in-
terface:

if(inst.isMemOp){

memRequestQ_enq(inst, tag);

}

while(!memReplyQ_empty()){

memResp = memReplyQ_deq();

newWin[memResp.tag] = done;

}

4.3 Bounded Memory
All the data structures of our FPGA-friendly interval model
had to have an explicitly defined memory size. For example,
the buffers between our core model and the cache could not
be an unbounded C++ Vector type.

memRequestQ.pushBack(inst);

Instead, the memRequestQ must have a defined size.
Since there cannot be more memory requests outstanding
than the number of instructions in the New Window, we max
size the memRequestQ to be the size of the New Window.

#define ROB_LENGTH 128

#define NEW_WINDOW_SIZE ROB_LENGTH

#define REQUEST_Q_SIZE NEW_WINDOW_SIZE

int##InstWidth##_t memRequestQ[REQUEST_Q_SIZE];

4.4 Common Path Resource Prioritization
Every instruction flowing through the interval model’s pipeline
eventually enters into the Old Window, making the depen-
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dency checks that calculate the issue time for every instruc-
tion on the common-case path. We optimize this depen-
dency check using a auxiliary register map that stores the
issue time of the last instruction to write to a given regis-
ter, and a store buffer suitable for computing ST-LD issue
time dependencies. By doing a direct lookup into the regis-
ter map we can efficiently compute the input dependencies
issue time. By using these tables we can avoid a full ROB-
deep search through the Old Window on the common case.
A detailed micro-architecture diagram of this revised model
is presented in Figure 3.

The naive way to implement the dependency checks
would have been to have a full, O(n), backwards search to
find a dependency on an Old Window instruction.

int depIssueTime=0;

int i=oldwin.tail;

for(int j=0; j<oldwin.size; j++) {

if(dependency(instr,oldwin.instrs[i])) {

depIssueTime = oldwin.instrs[i].issueTime;

break;

}

i= (i>0) ? (i-1) : (OLD_WINDOW_LENGTH-1);

}

Our implementation added a register map array to store
the issue times and the common path was reduced to simply
indexing into this array.

IssueTimeType issuetimes[NUM_REGS];

...

int depIssueTime=0

for(int i=0; i<instr.numDependencies; i++) {

int issuet = issuetimes[instr.dependencies[i]];

if(depIssueTime > issuet)

depIssueTime = issuet;

}

5. Results
Using the modified FPGA-friendly model presented above,
we synthesized our interval model using a modern commer-
cial high-level synthesis tool from ’Vendor A’ to translate
from C to Verilog. Our interval model was written in 931
lines of code. The generated RTL was verified using cosim-
ulation with the sequential software model and an industry
standard synthesis tool was used to synthesize the Verilog to
a Xilinx Virtex-5 part. Synthesis results are shown in Fig. 4.
As the intention of high-level synthesis of a high-level model
is to use the scarce FPGA resources as efficiently as possi-
ble, we also synthesize a simple in-order MIPSv1 32-bit core
for comparison [4].

From Figure 4 we see that after the set of FPGA-friendly
transformations that were applied to the abstract interval

Interval Plasma
LUTs 6091 2319
Flops 3609 717
Block RAMs 16 3
Frequency (MHz) 110 55

Figure 4. Synthesis Results for a Virtex5 LX30

model, the synthesized simulation model is a small multi-
ple larger than the full inorder core while providing the tim-
ing model for a complex out-of-order core. This overhead
is effectively 2.6x in combinational logic, and 5x in flip-
flops/BRAM usage. While these costs are not insignificant,
the increased fidelity supported by the model is the tradeoff
provided for this footprint. While these costs only include
the core pipeline and the interfaces required to communi-
cate with memory hierarchy simulation modules, previous
work has demonstrated efficient partitioning of CPU-FPGA
hybrid simulators [1].

As we did not directly optimize the code for a partic-
ular HLS framework, the overall throughput numbers pro-
vided by push button synthesis are somewhat poorer. While
a high overall frequency can be achieved by the synthesized
pipeline, the effective simulation rate requires 63 host cy-
cles to compute an instruction on average. With a 100Mhz
clock, this yields a maximum throughput of 1.59 MIPS for
cracked x86 uops from a synthetic trace. While we explic-
itly attempted to structure the code to enable O(1) opera-
tions on the common path, a straight-forward push button
flow implemented certain operations sequentially. The only
loop that was manually marked as being unrolled partially
was the store buffer search in the OldWindow which would
have required a 30 way search if fully unrolled.

The throughput of the FPGA model is lower, but com-
parable, to the the same model implemented in software.
In particular, our modified interval model has an effective
throughput of 2.02 MIPS on a Intel Xeon 5140 2.33Ghz
processor. Furthermore, as the interval model presented has
a limited FPGA footprint, it may be spatially replicated to
increase overall throughput, as well as having tight synchro-
nization with memory hierarchy and network-on-chip FPGA
simulators.

Furthermore, from a hand-analysis of the micro-architecture
presented, we believe a either a manual implementation of
the model directly in Verilog, or manual optimization of the
code for a specific HLS tool can yield significantly better
results, albeit with less flexibility than an automatically gen-
erated model.

6. Conclusion
We have presented a case study of using a high-level synthe-
sis tool to automatically transform a high-level simulation
model into an reasonably efficient FPGA simulation model.
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Figure 3. FPGA Optimized Interval Model Micro-architecture

While some work was required to transform the previously
proposed interval simulation model to operate in a fully
parallel distributed simulation environment, such a transfor-
mation was still able to preserve the essential characteris-
tics of the model. The set of FPGA-friendly transformations
we have used can still provide for highly productive envi-
ronment to prototype high-level models suitable for initial
placement on FPGA-based simulators.

While our results show there is still room for improve-
ment in high-level synthesis, we can still achieve comparable
throughput to a straight software simulation using the exact
same model with almost no optimized push-button synthe-
sis flows. By providing a path for transforming a high-level
software simulation model into an efficient FPGA model,
high-level synthesis for high-level simulation models allows
researchers to focus their development effort only on the spe-
cific blocks of interest.
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and D. Patterson. A Case for FAME: FPGA Architecture
Model Execution. In International Symposium on Computer
Architecture, June 2010.

[8] D. Wang, N. E. Jerger, and J. G. Steffan. DART: Fast and
flexible noC simulation using FPGAs. 5th Annual Workshop
on Architectural Research Prototyping, 2010.

[9] J. Woodruff, G. Chadwick, and S. Moore. Cache Tracker:
A Key Component for Flexible Many-Core Simulation on
FPGAs. 5th Annual Workshop on Architectural Research
Prototyping, 2010.

6


