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Target Platforms 
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Wolverine 
Xilinx Virtex7 690 

• Wolverine 

– Full size PCIe form factor 

– 75W maximum power 

– Up to 4 channels of DDR3 memory 

 

• Merlin 

– ½ height, ½ length PCIe form factor 

– 75W maximum power 

– 1 HMC 4GB memory, 2 16-bit channels 

 

Merlin 
Altera Arria10 1150 



Wolverine Architecture 

  
 

• GPU Form Factor and power envelope 

• Single and Dual card versions 
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• Storage is the faster growing piece of IT spend 

– More and more images are being uploaded/stored 

– Images accumulate over time and with growing users 

• Resizing images takes time 

– jpegs must first be expanded 

– Expanded image scaled to desired size and recompressed 

• Common approach has been to store multiple resized version of an image 

– Consumes up to 30% of social network storage 

– Pre-computed “thumbnails” not always optimal for display at target page of customer/consumer 

• What if I could resize images on the fly? 

– For a small increment to the IT budget 

– Non-accelerated solution requires 48x more image servers $$$$$ 

– Dell-Convey solution delivers on all requirements 

– And save 30% on storage 

Image Resizing – 48x speedup  
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Social Network Example 



Jpeg Resize Implementation 
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• Host objective is to keep the FPGA busy 

• Multiple simultaneous jobs are required 

– ~6 jobs at the FPGA are required, 4 active + 2 to cover 

queuing latencies and job overlap 

• A host thread is used to handle each resize job 

– Read Jpeg image from disk or the network 

– Process Jpeg header and construct job control structure 

– Start job on FPGA 

– Write resized image to disk or network 

Jpeg Resize Application 
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• Many host threads are used 

– 10-15 host threads are needed to keep 6 jobs 
active on the FPGA 

• Application uses a client / server model 

– Client library is compiled into an application that 
needs resizing capability 

– Server processes jobs submitted to it 

– Client and Server can be on same platform or 
across a network with potentially multiple clients 

• Initial client is the Imagemagick application 

Jpeg Resize Application 
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• A Host Thread processes the JPEG image header and creates a job 

control structure (up to 200KB in size) 
 

struct JobInfo { 

    JobApp m_app;  // APP marker info 

    JobDec m_dec;  // jpeg decode info 

    JobHorz m_horz;  // horizontal scaling info 

    JobVert m_vert;  // vertical scaling info 

    JobEnc m_enc;  // jpeg encode info 

    JobCom m_com;  // COM marker info 

 

    uint8_t * m_pInPic;  // input picture 

    uint32_t m_inPicSize; 

}; 

 

Using Sinc Func as Resize Filter 

Jpeg Resize SW/HW Interface 
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struct _ALIGNED(64) JobHorz { 

    uint64_t m_compCnt : 2; 

    uint64_t m_inImageRows : 14; 

    uint64_t m_inImageCols : 14; 

    uint64_t m_outImageRows : 14; 

    uint64_t m_outImageCols : 14; 

    uint64_t m_maxBlkColsPerMcu : 2; 

    uint64_t m_maxBlkRowsPerMcu : 2; 

    uint64_t _ALIGNED(8) m_mcuRows : 11; 

    uint64_t m_mcuCols : 11; 

    uint64_t m_mcuBlkRowCnt : 3; 

    uint64_t m_mcuRowRstInc : 4; 

    JobHcp m_hcp[MAX_MCU_COMPONENTS]; 

    uint16_t m_filterWidth; 

    uint16_t m_pntWghtListSize; 

 

    JobPntInfo _ALIGNED(64) 

          m_pntInfo[COPROC_MAX_IMAGE_PNTS]; 

    JobPntWght _ALIGNED(64) 

          m_pntWghtList[COPROC_MAX_IMAGE_PNTS]; 

}; 
 

Input 

Output 



• A job is submitted to the FPGA as 
– A pointer to the job control structure 

– The job control structure has a pointer to both the input and 
output image host memory 

• FPGA performs image resizing 
– Output is a resized JPEG image without the header 

– Output is written by the FPGA to host memory 

– FPGA completes the jobs by returning to host 

• Host completes the jobs by 
– Constructing the JPEG file including a header and the image 

data 

– Writing the JPEG file to disk or the network 

Jpeg Resize SW/HW Interface 
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void JpegResizeHif::SubmitJob(JobInfo * pJobInfo) { 

 // multi-threaded job submission routine 

 ObtainLock(); 
 

 // obtain job ID 

 while (m_jobIdQue.empty()) { 

        ReleaseLock();    usleep(1);    ObtainLock(); 

 } 
 

 uint8_t jobId = m_jobIdQue.front(); 

 m_jobIdQue.pop(); 
 

 // clear job finished flag 

 m_bJobDoneVec[jobId] = false; 

 m_bJobBusyVec[jobId] = true; 
 

 // send job to coproc 

 while (!m_pUnit->SendCall_htmain(jobId, (uint64_t)pJobInfo)) { 

         ReleaseLock();    usleep(1);    ObtainLock(); 

 } 
 

 // wait for job to finish 

 while (m_bJobDoneVec[jobId] == false) { 

         uint8_t recvJobId; 

         if (m_pUnit->RecvReturn_htmain(recvJobId)) { 

                 m_bJobDoneVec[recvJobId] = true;  

         } else { 

                 ReleaseLock();    usleep(1);    ObtainLock(); 

         } 

 } 
 

 // free jobId 

 m_bJobBusyVec[jobId] = false; 

 m_jobIdQue.push(jobId); 
 

 ReleaseLock(); 

} 

 

HT Host Interface Code 
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• SubmitJob routine 
handles interface to 
coprocessor 
− Multi-threaded, one thread 

per resizing job 

− Up to eight resize jobs are 
active in coprocessor 

− SendCall_htmain() 
performs a remote 
procedure call (RPC) to 
start job 

− RecvReturn_htmain() is 
used to poll on completed 
jobs 



Detailed Diagram of Personality 
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Jpeg Resize Performance 
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Dell-Convey Accelerated Image Resizing Solution 

 

• Characterization of Resize App. 

– Sweep across 

– Resize % 

– Image Size 

– Sweet spot is in the 

25-75% resize range 

with increased  

performance as the  

image gets larger 



Total Cost of Ownership 

June 14, 2015 13 

Dell-Convey Accelerated Image Resizing Solution 
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50 racks (1000 nodes) Dell-Convey 2,190 MW-h/yr 
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Dell-Convey 11,073 $K 
TCO 

Multiplier 

X86 63,106 $K 5.7 

$0 

$10,000 

$20,000 

$30,000 

$40,000 

$50,000 

$60,000 

$70,000 

Dell-Convey 

Solution 

Commodity 

Server 

T
C

O
 (

K
$

) 

3-Year Cost of Ownership 

3 yr UPS+Floorspace 

Costs (K$) 

3 yr Datacenter 

power costs (K$) 

System cost (K$) 



Memcached Appliance 
Key / Value Cache Solution 

Who uses memcached? 

85% of top 20 web sites 

50% of top 5,000 sites 

Up to 30% of data center space 
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Why Is Performance Important? 

How many accesses are required 

to create this page? ~100 

 

Modern web services must 

operate at RAM speeds to retrieve 

the amount of data needed with 

acceptable responsiveness 
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memcached threads 

Achieving Performance 
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Client connections are 

assigned to threads 
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Coprocessor offloads 
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key hashing 

Cnymemcached based on memcached 1.4.15 
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• Drop in replacement for original application 

– Does not support vendor specific commands 

• All key / value pairs are stored in host memory 

– Memcached servers require large amounts of memory 

– Host memory is typically lower cost than PCIe card memory 

• Supports TCP and UDP network protocols 

• Support ASCII and binary commands 

• Large amounts of host code was modified or replaced 

– Restructured for FPGA acceleration 

– Original code did not support binary mode aggregation of out 
bound responses to same destination 

Memcached Application 
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• Linux network stack is used without modification 

– Standard network stack has limited packet receive / send 
rate that limited application performance 

– Added out bound packet aggregation prior to calling send 
system call 

– Experimented with Solarflare NIC cards. Cards reduced 
latency and improved throughput but  not enough for extra 
cost for system 

 

• Packets are read into host memory 

– A pointer to the packet, the packets length and port number 
is passed to FPGA in a host memory FIFO 

Memcached HW/SW Interface 
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• FPGA processing 

– Received network packets are reassembled into complete 
commands 

– Commands are parsed (binary or ASCII) 

– Key is hashed 

– Response to host is a command structure with command and 
parameters, including hashed key 

 

• Host executes command using hashed key and 
formats output packets 

– Output packets are queued per destination for short period of 
time to determine if additional packets can be concatenated. 

 

Memcached HW/SW Interface 
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MemCached Multiget Throughput 
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Convey throughput is 

highest with 20 or more 

gets per request 
- request processing 

dominates 

Maximum throughput is 

~13M gets/second 

- 48 gets per network 

packet 

0 

2,000,000 

4,000,000 

6,000,000 

8,000,000 

10,000,000 

12,000,000 

14,000,000 

16,000,000 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

g
e

ts
 p

e
r 

s
e

c
o

n
d

 

la
te

n
c
y,

 m
ic

ro
s
e

c
o

n
d

s
 

gets per request 

Convey Accelerated Memcached 
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Throughput Scaling 
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Load/Latency 

8-byte keys, 32-byte objects 
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• Convey was acquired by Micron, customers 

have asked the future direction of Convey’s 

hardware and software products 

– Micron is continuing to sell and support Convey’s 

products 

– Micron values the partnerships that Convey 

established with Dell and IBM (CAPI) 

– As expected, Micron is focused on large 

opportunities 

 

The Future of Convey’s Products 
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HT (Hybrid Threading) Tool Set 
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• Convey’s customers consistently asked to have the HT tool 

set open sourced 

– For a customer to invest in FPGA systems they needed to have access to 

the development tools 

– Convey’s real IP is the ported FPGA applications 

– Convey decided that we could support this business model 

– Transition from license model to support model 

 

• Convey has open sourced HT 

– OpenHT is available on github 

– Includes the tool set plus example applications: Jpeg resizing, 

Memcached, Bit Coin Mining, Graph 500 Benchmark, and Levinstein 

 
 



Convey Development Tools 

June 14, 2015 25 
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• HTL (runtime generator) and HTV (systemC to verilog) 
– Current stable release is tagged 1.4 

– Considerable work has gone into top-of-tree 
• Replace original memory interface and global variable runtime support 

• Continuing to add support for C++ constructs (overloading, user defined operators) 

– Once stable, will be tagged 2.0 
• Finding remaining issues with randomly generated tests 

• Porting applications and identifying performance / resource regressions 

 

• HTC (OpenMP translator) 
– Considered a prototype and unlikely that Convey/Micron will productize HTC 

– Translation capability is fairly robust 
• A number of tests were released with OpenHT including Graph 500 

• Support a subset of OpenMP 4.0 language 

– Missing runtime libraries to make it fully usable 
• Standard C library (libc) 

• Math libraries 

Status of OpenHT 

June 14, 2015 26 



Thank You 

 
Tony Brewer 

tbrewer@micron.com 


