
CARL – June 14, 2015

Tony Brewer

tbrewer@micron.com

Convey’s Acceleration of the

Memcached and Imagemagick

Applications

Target Platforms

June 14, 2015 2

Wolverine
Xilinx Virtex7 690

• Wolverine

– Full size PCIe form factor

– 75W maximum power

– Up to 4 channels of DDR3 memory

• Merlin

– ½ height, ½ length PCIe form factor

– 75W maximum power

– 1 HMC 4GB memory, 2 16-bit channels

Merlin
Altera Arria10 1150

Wolverine Architecture

• GPU Form Factor and power envelope

• Single and Dual card versions

June 14, 2015 3

• Storage is the faster growing piece of IT spend

– More and more images are being uploaded/stored

– Images accumulate over time and with growing users

• Resizing images takes time

– jpegs must first be expanded

– Expanded image scaled to desired size and recompressed

• Common approach has been to store multiple resized version of an image

– Consumes up to 30% of social network storage

– Pre-computed “thumbnails” not always optimal for display at target page of customer/consumer

• What if I could resize images on the fly?

– For a small increment to the IT budget

– Non-accelerated solution requires 48x more image servers $$$$$

– Dell-Convey solution delivers on all requirements

– And save 30% on storage

Image Resizing – 48x speedup

June 14, 2015 4

Social Network Example

Jpeg Resize Implementation

host

main thread

worker thread

worker thread

job queue

input.jpeg

output.jpeg

input.jpeg

output.jpeg

arguments

jobsFile.txt

coprocessor

x86 Host

– reads arguments and builds queue

of images to be scaled

– worker threads read input files and

write output files

coprocessor

– Hardware threads decode, resize,

and encode images

– data transferred via memory

decode

Huffman

vert.

scaling

hor.

scaling

encode

Huffman

decode

Huffman

vert.

scaling

decode

Huffman

vert.

scaling

hor.

scaling

encode

Huffman

decode

Huffman

vert.

scaling

input

image

queue

result

image

queue

•
•
•
•
•
•

• Host objective is to keep the FPGA busy

• Multiple simultaneous jobs are required

– ~6 jobs at the FPGA are required, 4 active + 2 to cover

queuing latencies and job overlap

• A host thread is used to handle each resize job

– Read Jpeg image from disk or the network

– Process Jpeg header and construct job control structure

– Start job on FPGA

– Write resized image to disk or network

Jpeg Resize Application

June 14, 2015 6

• Many host threads are used

– 10-15 host threads are needed to keep 6 jobs
active on the FPGA

• Application uses a client / server model

– Client library is compiled into an application that
needs resizing capability

– Server processes jobs submitted to it

– Client and Server can be on same platform or
across a network with potentially multiple clients

• Initial client is the Imagemagick application

Jpeg Resize Application

June 14, 2015 7

• A Host Thread processes the JPEG image header and creates a job

control structure (up to 200KB in size)

struct JobInfo {

 JobApp m_app; // APP marker info

 JobDec m_dec; // jpeg decode info

 JobHorz m_horz; // horizontal scaling info

 JobVert m_vert; // vertical scaling info

 JobEnc m_enc; // jpeg encode info

 JobCom m_com; // COM marker info

 uint8_t * m_pInPic; // input picture

 uint32_t m_inPicSize;

};

Using Sinc Func as Resize Filter

Jpeg Resize SW/HW Interface

June 14, 2015 8

struct _ALIGNED(64) JobHorz {

 uint64_t m_compCnt : 2;

 uint64_t m_inImageRows : 14;

 uint64_t m_inImageCols : 14;

 uint64_t m_outImageRows : 14;

 uint64_t m_outImageCols : 14;

 uint64_t m_maxBlkColsPerMcu : 2;

 uint64_t m_maxBlkRowsPerMcu : 2;

 uint64_t _ALIGNED(8) m_mcuRows : 11;

 uint64_t m_mcuCols : 11;

 uint64_t m_mcuBlkRowCnt : 3;

 uint64_t m_mcuRowRstInc : 4;

 JobHcp m_hcp[MAX_MCU_COMPONENTS];

 uint16_t m_filterWidth;

 uint16_t m_pntWghtListSize;

 JobPntInfo _ALIGNED(64)

 m_pntInfo[COPROC_MAX_IMAGE_PNTS];

 JobPntWght _ALIGNED(64)

 m_pntWghtList[COPROC_MAX_IMAGE_PNTS];

};

Input

Output

• A job is submitted to the FPGA as
– A pointer to the job control structure

– The job control structure has a pointer to both the input and
output image host memory

• FPGA performs image resizing
– Output is a resized JPEG image without the header

– Output is written by the FPGA to host memory

– FPGA completes the jobs by returning to host

• Host completes the jobs by
– Constructing the JPEG file including a header and the image

data

– Writing the JPEG file to disk or the network

Jpeg Resize SW/HW Interface

June 14, 2015 9

void JpegResizeHif::SubmitJob(JobInfo * pJobInfo) {

 // multi-threaded job submission routine

 ObtainLock();

 // obtain job ID

 while (m_jobIdQue.empty()) {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 uint8_t jobId = m_jobIdQue.front();

 m_jobIdQue.pop();

 // clear job finished flag

 m_bJobDoneVec[jobId] = false;

 m_bJobBusyVec[jobId] = true;

 // send job to coproc

 while (!m_pUnit->SendCall_htmain(jobId, (uint64_t)pJobInfo)) {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 // wait for job to finish

 while (m_bJobDoneVec[jobId] == false) {

 uint8_t recvJobId;

 if (m_pUnit->RecvReturn_htmain(recvJobId)) {

 m_bJobDoneVec[recvJobId] = true;

 } else {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 }

 // free jobId

 m_bJobBusyVec[jobId] = false;

 m_jobIdQue.push(jobId);

 ReleaseLock();

}

HT Host Interface Code

June 14, 2015 10

• SubmitJob routine
handles interface to
coprocessor
− Multi-threaded, one thread

per resizing job

− Up to eight resize jobs are
active in coprocessor

− SendCall_htmain()
performs a remote
procedure call (RPC) to
start job

− RecvReturn_htmain() is
used to poll on completed
jobs

Detailed Diagram of Personality

June 14, 2015 11

Jpeg Resize Performance

June 14, 2015 12

Dell-Convey Accelerated Image Resizing Solution

• Characterization of Resize App.

– Sweep across

– Resize %

– Image Size

– Sweet spot is in the

25-75% resize range

with increased

performance as the

image gets larger

Total Cost of Ownership

June 14, 2015 13

Dell-Convey Accelerated Image Resizing Solution

P
E

R
F

 r720 + Wolverine 690 ≈ 48x vs. One Socket, 4-core 3.3 GHz

P
O

W
E

R

Power Requirements[1]

50 racks (1000 nodes) Dell-Convey 2,190 MW-h/yr

850 racks (34000 nodes) x86 59,568 MW-h/yr

1 Year Electricity costs (@ 0.08 /kWh) [2]

Dell-Convey Accelerated Server 315 K$/yr

x86 8,578 K$/yr

S
IT

E
 1 Year Infrastructure costs[3]

Dell-Convey 52 K$/yr

X86 2,098 K$/yr

T
C

O

3-Year TCO[4]

Dell-Convey 11,073 $K
TCO

Multiplier

X86 63,106 $K 5.7

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

Dell-Convey

Solution

Commodity

Server

T
C

O
 (

K
$

)

3-Year Cost of Ownership

3 yr UPS+Floorspace

Costs (K$)

3 yr Datacenter

power costs (K$)

System cost (K$)

Memcached Appliance
Key / Value Cache Solution

Who uses memcached?

85% of top 20 web sites

50% of top 5,000 sites

Up to 30% of data center space

June 14, 2015 14

Why Is Performance Important?

How many accesses are required

to create this page? ~100

Modern web services must

operate at RAM speeds to retrieve

the amount of data needed with

acceptable responsiveness

June 14, 2015 15

memcached threads

Achieving Performance

s
e

n
d

re

p
ly

s
e

n
d

re

p
ly

n
e
tw

o
rk

 s
ta

c
k

host threads

hash

table
object store

execute

command(s)

re
c
v

p
a

c
k
e

t
s
e

n
d

 r
e

p
ly

parse

request

hash

key(s)

coprocessor

hardware threads

parse

request

hash key(s)

memcached_set(“foo:key”,data)

memcached_get(“foo:key)

Client connections are

assigned to threads

Host executes commands and

generates replies

Coprocessor offloads

parsing of commands and

key hashing

Cnymemcached based on memcached 1.4.15

16 June 14, 2015

• Drop in replacement for original application

– Does not support vendor specific commands

• All key / value pairs are stored in host memory

– Memcached servers require large amounts of memory

– Host memory is typically lower cost than PCIe card memory

• Supports TCP and UDP network protocols

• Support ASCII and binary commands

• Large amounts of host code was modified or replaced

– Restructured for FPGA acceleration

– Original code did not support binary mode aggregation of out
bound responses to same destination

Memcached Application

17 June 14, 2015

• Linux network stack is used without modification

– Standard network stack has limited packet receive / send
rate that limited application performance

– Added out bound packet aggregation prior to calling send
system call

– Experimented with Solarflare NIC cards. Cards reduced
latency and improved throughput but not enough for extra
cost for system

• Packets are read into host memory

– A pointer to the packet, the packets length and port number
is passed to FPGA in a host memory FIFO

Memcached HW/SW Interface

June 14, 2015 18

• FPGA processing

– Received network packets are reassembled into complete
commands

– Commands are parsed (binary or ASCII)

– Key is hashed

– Response to host is a command structure with command and
parameters, including hashed key

• Host executes command using hashed key and
formats output packets

– Output packets are queued per destination for short period of
time to determine if additional packets can be concatenated.

Memcached HW/SW Interface

June 14, 2015 19

MemCached Multiget Throughput

June 14, 2015 20

Convey throughput is

highest with 20 or more

gets per request
- request processing

dominates

Maximum throughput is

~13M gets/second

- 48 gets per network

packet

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

g
e

ts
 p

e
r

s
e

c
o

n
d

la
te

n
c
y,

 m
ic

ro
s
e

c
o

n
d

s

gets per request

Convey Accelerated Memcached

8 byte key, 32 byte object, 100% hits

Wolverine Thruput

x86 Thruput

Wolverine latency

x86 latency

Throughput Scaling

June 14, 2015 21

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

g
e

ts
 p

e
r

s
e

c
o

n
d

number of server threads

Cnymemcached Throughput
as a function of number of server threads

r720 20x2.8GHz, 2x10GbE (X520), Wolverine 690

100% hits

100% misses

Load/Latency

8-byte keys, 32-byte objects

June 14, 2015 22

0

500

1000

1500

2000

2500

3000

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 16,000,000 18,000,000

la
te

n
c
y

(m
ic

ro
s
e

c
o

n
d

s
)

Throughput (gets per second)

Convey Accelerated Memcached Load-Latency

Dell r720 20 cores@2.8Ghz, Wolverine 690

Wolverine cnymemcached x86 memcached

• Convey was acquired by Micron, customers

have asked the future direction of Convey’s

hardware and software products

– Micron is continuing to sell and support Convey’s

products

– Micron values the partnerships that Convey

established with Dell and IBM (CAPI)

– As expected, Micron is focused on large

opportunities

The Future of Convey’s Products

June 14, 2015 23

HT (Hybrid Threading) Tool Set

June 14, 2015 24

• Convey’s customers consistently asked to have the HT tool

set open sourced

– For a customer to invest in FPGA systems they needed to have access to

the development tools

– Convey’s real IP is the ported FPGA applications

– Convey decided that we could support this business model

– Transition from license model to support model

• Convey has open sourced HT

– OpenHT is available on github

– Includes the tool set plus example applications: Jpeg resizing,

Memcached, Bit Coin Mining, Graph 500 Benchmark, and Levinstein

Convey Development Tools

June 14, 2015 25

Convey Hybrid Threading

Personality Development Kit
Verilog/VHDL-to-RTL, FPGA place, route, timing

HT Linker & Verilog
Generation

Hybrid Threading
Compiler

C/C++ OpenMP

User Hybrid
Threading

Code

Xilinx
OpenCL

User
VHDL/Verilog P

ro
gr

am
m

in
g

A
b

st
ra

ct
io

n

Production

Demonstration

OpenHT

• HTL (runtime generator) and HTV (systemC to verilog)
– Current stable release is tagged 1.4

– Considerable work has gone into top-of-tree
• Replace original memory interface and global variable runtime support

• Continuing to add support for C++ constructs (overloading, user defined operators)

– Once stable, will be tagged 2.0
• Finding remaining issues with randomly generated tests

• Porting applications and identifying performance / resource regressions

• HTC (OpenMP translator)
– Considered a prototype and unlikely that Convey/Micron will productize HTC

– Translation capability is fairly robust
• A number of tests were released with OpenHT including Graph 500

• Support a subset of OpenMP 4.0 language

– Missing runtime libraries to make it fully usable
• Standard C library (libc)

• Math libraries

Status of OpenHT

June 14, 2015 26

Thank You

Tony Brewer

tbrewer@micron.com

