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DataHigh is a Matlab GUI for visualizing high-dimensional neural data.  DataHigh can be used to 

study how neural population activity varies across experimental trials, as well as across 

experimental conditions.  It can be used to visualize single-trial neural states, single-trial neural 

trajectories, and trial-averaged neural trajectories.  The input data can either be latent variables 

extracted by a dimensionality-reduction method (e.g., principal component analysis, factor 

analysis, or Gaussian-process factor analysis) or raw spike counts. 

For more information, see: 

DataHigh Website link: 

[www.ece.cmu.edu/~byronyu/software.shtml] 

 

PLACE JNE DATAHIGH PAPER REFERENCE HERE 

“DataHigh:  Graphical user interface for visualizing and interacting with high-dimensional neural 

activity” by B.R. Cowley, M.T. Kaufman, M.M. Churchland, S.I. Ryu, K.V. Shenoy, and B.M. Yu.  

Submitted to EMBS Annual Meeting 2012. 

 
 
 
 

 



Contact: 

All questions, comments, and suggestions should be sent to: 

DataHigh@gmail.com   

================== 
How to get started with example data 
================== 

1. Navigate to the examples folder in the main DataHigh directory. 
2. Enter the following commands into the Matlab console to try different examples: 

Visualize neural states: examples2_neuralstates 
Visualize single-trial neural trajectories:  examples3_singletrial 

Visualize trial-averaged neural trajectories:  examples4_trialaveraged 
Dimensionality reduction:  examples1_dimreduce 

 
 
================== 
How to get quickly started with your own data 
================== 

1. Format raw spike trains into a Matlab struct, D.  D(i) refers to the ith trial.  The 
D(i).data field contains a matrix of size number of neurons x number of timepoints. 

2. Call DataHigh(D,‘DimReduce’); in the Matlab command line. 
3. Use the DimReduce tool to apply a dimensionality reduction technique (e.g., GPFA).  

Upload to DataHigh. 
4. Click and hold on a preview panel to rotate the main 2-d projection. 
5. Use the 3-d Projection/Evolve tools under the Analysis Tools tab to view the neural 

trajectories play out over time. 
6. Capture and save any noteworthy projections for further analysis. 

 
 
 
================ 
User Guide Outline 
================ 
 
Data demos (with steps) 
What to do if the trajectories look like spaghetti 
Analysis Tools 
Data format for DimReduce 
Data format for DataHigh 
Noted problems 
FAQ 
 



 
 
================ 
Data demos (with steps) 
================ 
This section provides detailed tutorials about how to use DimReduce and DataHigh.  Please see 
examples.m for more information.  It may first be advantageous to view the instructional 
videos that go step-by-step for each example on the DataHigh website 
(www.ece.cmu.edu/~byronyu/software/DataHigh/), and then try the steps yourself with the text 
reference. 
 
 
 

Example 1: Extract neural states from spike count vectors 
 
data file: ‘ex1_spikecounts.mat’ 
description: This is an example dataset to get familiar with dimensionality reduction.  The 
dataset contains spike trains recorded simultaneously from 61 neurons in the premotor cortex 
during a standard delayed reaching task.  There are 30 reaches to each of seven reach targets.  
The user is instructed to perform dimensionality reduction and automatically upload the 
extracted neural states to DataHigh. 
Santhanam G, Yu BM, Gilja V, Afshar A, Ryu SI, Sahani M, Shenoy KV (2009) Factor-analysis methods for higher-
performance neural prostheses.  Journal of Neurophysiology. 102:614-635. 

 
Detailed Tutorial:   
The same tutorial and an instructional video can be found on the DataHigh website. 

1. Navigate to the examples folder in the main DataHigh directory.  Enter ex1_dimreduce into the 

Matlab command console to input raw spike trains into DimReduce.  The example dataset 

contains seven different experimental conditions.  Each condition has 30 trials, and each trial 

has spike trains from 61 neurons.  Each spike train is 400ms long and binned at 1ms resolution. 

2. The DimReduce figure will pop up.  The top right corner has Next Step instructions, so that the 

user can walk through the steps of performing dimensionality reduction.  Note that clicking Next 

Step will move the large red number to the next location where a choice is needed by the user.  

Each option also has a ? button nearby to provide more information about that step. 

3. For this example dataset, in the time bin width box, enter 400ms.  This will change the "Type" to 

"States."  For neural states, you should choose the maximally allowed time bin width, which is 

the length of the shortest trial.  This ensures one bin is used per trial---longer trials are 

truncated.  If you need to align your data to a stimulus event (such as a go cue), align the data 

first before inputting it into DimReduce.  Also, to avoid possible confusion, ensure that each trial 

has the same length. 

4.  For the mean spikes/sec threshold, enter 1.0 spike/sec.  DataHigh removes 4 neurons from the 

analyses.  Neurons with firing rates less than 1 spike/sec can sometimes be problematic, so we 

leave them out. 



5. Under Method, choose "FA" for Factor Analysis.  For neural states, we suggest FA because it 

allows each neuron to have a different amount of Poisson-like spiking variability.  Since FA uses 

an iterative algorithm to fit the model parameters, it can take seconds to minutes to complete 

cross-validation.   

6. For the Candidate dimensionality set, input "[1:15 20 30 40 50]".  This input is in Matlab vector 

notation.  Note that the terms “dimensionality” and “number of latent variables” are 

interchangeable, and by choosing a candidate dimensionality set we are trying to find how many 

latent variables best explain the data.  For this range, DimReduce will perform cross-validation 

on candidate dimensionalities 1 through 15, 20, 30, 40, and 50.  Trying all possible candidate 

dimensionalities (1 through 57) is computationally expensive, and typically unnecessary for 

visualization purposes, so we sample from the set of possible candidate dimensionalities. 

7. Click Perform cross-validation to perform cross-validation on the set of candidate 

dimensionalities.  Cross-validation tells us how many dimensions are needed to describe the 

data.  The dataset is split into three folds.  Factor analysis trains its parameters on two of the 

folds, and then tests on the remaining fold.  This is done for each candidate dimensionality.  A 

progress bar will pop up.  Wait until it is completed. 

8. Cross-validation has been performed, and we can view metrics to select an optimal 

dimensionality for visualization.  Look at the LL metric by clicking the LL button in Dimensionality 

Plots.  LL plots the cross-validated log-likelihood versus the candidate dimensionality.  For this 

dataset, the log-likelihood has its peak at a dimensionality of 6, denoted by the star. 

9. Click the Proj button to plot the first two factors.  We see some clustering of the datapoints 

(which makes sense, since the data are from different experimental conditions, and some 

neurons are more active for some conditions than for other conditions).   

10. Slide the Select dimensionality scrollbar until it shows 6.  Typically, you should select the 

optimal dimensionality as determined by the cross-validated log-likelihood. 

11. Click Perform dim reduction.  DimReduce will perform dimensionality reduction for the chosen 

number of dimensions (i.e., factors).  The data's dimensionality is reduced from 57 dimensions 

(i.e., neurons) to 6 latent dimensions.  A PostDimReduce figure pops up.  This figure allows you 

to make a more informed decision about your dimensionality selection.  If the selected 

dimensionality is not appropriate, you can close the PostDimReduce figure to go back to the 

original DimReduce figure. 

12. In the PostDimReduce figure, click Upload to DataHigh.  The main DataHigh interface pops up.  

You may change the colors of the clusters by clicking the Analysis Tools tab in the Toolbox and 

then click the Update Colors button.  In the UpdateColors figure, change the Epoch Colors field 

of the condition "reach1" from [0 0 1] to [1 0.5 0].  This will change the neural states of that 

condition from blue to orange.  Click Upload to DataHigh to upload the changes. 

 
 

Example 1: Visualize neural states 

data file: 'ex1_neuralstates.mat' 



description:  On each trial, spike counts were taken in a single 400ms bin during the delay 
period in a standard delayed reaching task.  We applied factor analysis (FA) to all trials together 
to reduce the 61-d count vectors (61 simultaneously-recorded neurons) to 6-d.  We use 
DataHigh to visualize the 6-d space.  Each color corresponds to one of 7 reach directions. 
Santhanam G, Yu BM, Gilja V, Afshar A, Ryu SI, Sahani M, Shenoy KV (2009) Factor-analysis methods for higher-
performance neural prostheses.  Journal of Neurophysiology. 102:614-635. 

 
Detailed Tutorial: 
This tutorial walks through Example 3.1 in the JNE paper, and you can follow an instructional 
video on the DataHigh website.  These steps continue from Example 1: Extract neural states 
from spike count vectors (see above). 

1.  If you are continuing the steps for Example 1, the DataHigh interface should fill the screen with 

neural states, and you can skip to the next step.  If you jumped to this visualization tutorial, 

navigate to the examples folder in the main DataHigh directory.  Enter ex1_visualize into the 

Matlab command line to upload the neural state data to DataHigh.  We applied factor analysis 

to the 61-dimensional spike count vectors and determined the dimensionality to be six.  The 

dataset includes seven experimental conditions, and each condition has 30 trials (i.e., 30 neural 

states). 

2.  The main DataHigh interface fills the screen.  The central panel shows a 2-d projection of the 6-

d neural states.  Each color corresponds to one of seven experimental conditions.  Each point 

corresponds to one experimental trial.  Each condition has multiple trials, and the population 

activity is separable based on condition (the clusters have little overlap).   

3.  Save the current projection in a queue so that we can access it later.  Click Saved Projections in 

the Toolbox, and then click Capture Projection. 

4.  We can also add descriptive annotations to the data for better visualization.  Click Annotations 

in the Toolbox, and click Cov Ellipses.  This plots an ellipse that describes the covariance matrix 

for each condition.   

5.  We are also interested in visualizing in what direction the trial-to-trial variability points.  Click 

1st Prin. Comp. directly below the Cov Ellipses button to plot the first principal component's 

direction in the 2-d projection.  They appear as thick lines that intersect the clusters' means. 

6.  This current projection shows separable clusters with little trial-to-trial variability.  However, 

this a 6-d space---could a large amount of trial-to-trial variability exist in other dimensions of the 

space?  Use the preview panels (located to the left and right of the central panel) to rotate the 

current 2-d projection plane in the 6-d space.  The first principal component vectors increase in 

length.  This means that most of the trial-to-trial variability exists outside of the 2-d projection 

we began with. 

7.  Click Randomize under the central panel a few times, which randomizes the orientation of the 

2-d projection plane within the 6-d space.  Most of the projections will look like a "bowl of 

Fruitloops," without separable clusters.  Use the preview panels to find a projection in which 

some clusters do not overlap with others. 

8.  There are pre-defined cost-functions that can be used to also find projections in which the 

clusters are separable.  Click Find Projection under the Analysis Tools tab in the Toolbox.  Click 

the PCA button to view a projection defined by the top two directions of greatest scatter found 



by principal component analysis.  Click LDA to see a projection found by Fisher's linear 

discriminant analysis, in which the cluster sizes are small, and the distances between clusters are 

large.  Click Upload to DataHigh. 

9.  Depth Perception is another tool that can be useful to find separability between clusters and 
identify outlying trials.  First, click Conditions in the Toolbox.  Then deselect all conditions except 
for "reach1" and "reach5."  Use the preview panels to rotate the main 2-d projection until the 
two clusters overlap.  Then, click the Annotations tab, and click DepthPercept.  One condition's 
datapoints will become much larger than the other condition's.  Depth Perception first finds a 
direction that is orthogonal to the 2-d projection (e.g., pointing out of the monitor screen).  
Then, it sizes datapoints based on how much they "come out" of the monitor screen towards 
the user.  Datapoints that differ greatly in size also differ in distance in the high-dimensional 
space. 

 
 
 

Example 2: Extract single-trial neural trajectories from raw spike trains 
 
data file: ‘ex2_rawspiketrains.mat’ 
description: This is an example dataset to get familiar with dimensionality reduction.  The 
dataset contains spike trains recorded simultaneously from 61 neurons in the premotor cortex 
during a standard delayed reaching task.  There are 56 reaches to each of two reach targets.  
The user is instructed to perform dimensionality reduction and automatically upload the 
extracted neural trajectories to DataHigh. 
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.  “Gaussian-process factor analysis for 
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635. 

 
Detailed Tutorial:   
The same tutorial and an instructional video can be found on the DataHigh website. 

1.  Navigate to the examples folder in the main DataHigh directory.  Enter ex2_dimreduce into the 

Matlab command console to input raw spike trains into DimReduce.  The example dataset 

contains two different experimental conditions.  Each condition has 56 trials, and each trial has 

spike trains from 61 neurons.  Each spike train has a length between 1018ms and 1526ms and 

binned at 1ms resolution. 

2.  The DimReduce figure will pop up.  The top right corner has Next Step instructions, so that the 

user can walk through the steps of performing dimensionality reduction.  Note that clicking Next 

Step will move the large red number to the next location where a choice is needed by the user.  

Each option also has a ? button nearby to provide more information about that step. 

3.  For this example dataset, in the time bin width box, enter 20ms (if not there by default).  The 

"Type" will read "Trajs" for neural trajectories.  DimReduce will take 20ms non-overlapping bins 

over the raw spike trains.  We recommend that you start with 20ms bins, as we have found this 

to work well with population activity recorded in the motor and visual cortices. 

4.  For the mean spikes/sec threshold, enter 1.0 spike/sec.  DataHigh removes 3 neurons from the 

analyses.  Neurons with firing rates less than 1 spike/sec can sometimes be problematic, so so 

we leave them out.  Leave the "Trial-averaged neural trajs" box unchecked. 



5.  Under Method, choose "GPFA" for Gaussian Process Factor Analysis.  GPFA reduces the high-

dimensional population activity to a smaller number of latent variables that vary smoothly over 

time, where the amount of smoothing is determined by the data.   

6.  GPFA typically takes less than a minute to fit to data from tens of neurons and hundreds of 

trials.  However, when we do cross-validation, we may need to fit GPFA hundreds of times 

(depending on the number of candidate dimensionalities and cross-validation folds).  For the 

purposes of visualization, we can avoid the long wait by fitting a GPFA model with a large 

number of dimensions, looking at the parameters returned by the fitting procedure, and 

removing the dimensions that appear to not be needed.  Slide the Select dimensionality 

scrollbar to 40.  Click Upload Results, which performs dimensionality reduction for the selected 

dimensionality.  A progress bar pops up.  It should take about 30 seconds to fit the parameters 

and extract the neural trajectories. 

7.  After the progress bar finishes, the PostDimreduce figure then pops up.  We will now decide 

how many of the 40 dimensions are actually needed to describe the data. 

8.  Click View Loading Matrix.  The loading matrix defines the linear mapping between latent 

variables (columns) and the neural activity (rows).  Check to see whether any of the columns of 

the loading matrix show contributions from only a small number (e.g., 2 or 3) of neurons.  This 

indicates that the spike counts for those neurons are highly correlated, which could be an 

indication of electrode cross-talk.  Under normal conditions, we expect each column to have 

contributions from many of the neurons, which is the case here.  Close the figure. 

9.  Click the View Each Dim button.  DimReduce automatically orthonormalized the latent 

variables, and ordered them based on the amount of variability they explain.  In the SingleDim 

figure, you can see each latent variable plotted individually.  Each trace corresponds to a single 

trial.  Click the Next button to scan through the latent variables. As you scan, you will notice that 

past a certain latent variable, the neural trajectories do not vary across time or experimental 

condition.  These latent variables are not contributing much to describing the data, and will be 

removed for visualization.  Close the SingleDim figure. 

10.  Click the Eigenspectrum button.  This plots the cumulative percent shared variance explained 

by the number of latent variables.  A good selection of the dimensionality would explain around 

90% of the shared variance and have temporal fluctuations for each single dimension.  However, 

the selection can be subjective, unlike the optimal dimensionality identified with cross-

validation.  Close the Eigenspectrum figure. 

11.  In the Select final dimensionality menu list, select a dimensionality of 15.  DimReduce will 

remove latent variables 16 through 40 from the analyses, and keep the top fifteen latent 

variables.  Thus, we reduced the original 58-d space to 15 dimensions.  Click Upload to 

DataHigh.  The DataHigh interface fills the screen. 

 
 

Example 2: Visualize single-trial neural trajectories 

data file: 'ex2_singletrialtrajs.mat' 



description:  Spike counts were taken in non-overlapping 20ms bins during a standard delayed 
reaching task.  We applied Gaussian-process factor analysis (GPFA) to reduce the 61-d count 
vectors (61 simultaneously-recorded neurons) to 15-d.  We use DataHigh to visualize the 15-d 
space.  Trajectories include the time before the reach target is presented, reach planning, and 
reach execution.  Each color corresponds to one of two reach conditions. 
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.  “Gaussian-process factor analysis for 
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635. 

 

Detailed Tutorial: 
This tutorial walks through Example 3.2 in the JNE paper, and you can follow an instructional 
video on the DataHigh website.  These steps continue from Example 2: Extract single-trial 
neural trajectories from raw spike trains (see above). 

1.  If you are continuing the steps from the Example 2 DimReduce tutorial, we could visualize all of 

the extracted neural trajectories, which may look cluttered.  For visual clarity, we suggest 

initially visualizing a small subset of trajectories to orient ourselves in the latent space.  For your 

convenience, we have included example data in which the neural trajectories were extracted in 

the same manner as the previous tutorial, but only 15 trajectories were kept for each condition.  

To load the data, click the Analysis Tools tab and then click Load Data.  Navigate back one folder 

to the main DataHigh directory, then navigate to the data folder.  Load ex2_singletrialtrajs.mat.  

Continue to the next step. 

 

Otherwise, if you have jumped to this tutorial, navigate to the examples folder in the main 

DataHigh directory.  Enter ex2_visualize into the Matlab command line console to upload the 

single-trial neural trajectory data to DataHigh.  Beforehand, we applied Gaussian-process factor 

analysis (GPFA) to the 61-dimensional raw spike trains and determined the optimal 

dimensionality to be 15 with cross-validation.  The data consist of two experimental conditions, 

and each condition has 15 trials. 

2.  The main DataHigh interface fills the screen.  The colors (green and blue) represent the two 

different experimental conditions.  Each neural trajectory represents the population timecourse 

for one trial.  The start of the neural trajectories (i.e., the first timepoints) are in light grey in the 

center of the projection, and time increases as you follow along the trajectories.  Save this 

projection by clicking the Saved Projections tab and then Capture Projection. 

3.  Now click Randomize. Try to use the preview panels (located to the left and right of the central 

panel) to find a nice projection that separates the neural trajectories based on their 

corresponding experimental conditions (green and blue). If you feel you are stuck at a certain 

type of projection (e.g., a local optima of visualization), you can start over with another random 

projection. In truth, you are not searching for the “best projection,” but rather viewing many 

projections that give you intuition for the data. In the process of trying to find a nice projection, 

you can get a sense of how ugly or beautiful the data are. You can also click the Freeroll button 

to see a smooth sequence of projections---it runs like a screensaver. 

4.  There are other tools if you are having trouble finding a nice projection (sometimes the data 

will not have a "nice" projection!). You could use the Find Projection tool, but the standard cost 



functions tend to not find meaningful projections. Another option is Genetic Search. Click 

Analysis Tools and click the Genetic Search button. The Genetic Search figure starts with fifteen 

random projections. Click on projections that look of interest. Then, click on Next Generation. 

DataHigh has an algorithm that finds fifteen new projections that are similar to the selected 

projections. Try some iterations of GeneticSearch. You can upload an interesting projection by 

clicking on it (only one projection should be selected) and clicking Upload to DataHigh. 

5.  We can do more analysis on the previously found projection. Upload the captured projection to 

the central panel by clicking the Saved Projections tab and clicking on the previously captured 

projection’s thumbnail. Now click the Analysis Tools tab and click 3d Projection. The 

Projection3D figure appears. The user can use this projection as a Matlab 3-d viewer (as if we 

used plot3) by dragging the figure around.  

6.  Note that this is a static 3-d projection (with the same two projection vectors used by the 

central panel and a third random projection vector).  Clicking Randomize may alter the 3-d 

projection, as it randomizes the third projection vector. Click on the Evolve button to view the 

population activity play out over time. You may drag on the figure while Evolve is executing, and 

also save a movie. After Evolve has finished, close the Projection3D figure. 

7.  Click the Annotations tab and then click on Average Trajs. This displays average neural 

trajectories for each condition, which can be helpful in analysis. You can also view the epoch 

boundaries by clicking on the Epoch Boundaries button.  For this example dataset, the two 

epoch boundaries correspond to target onset and to when the go cue was given.  The starting 

epoch in grey corresponds to pre-stimulus activity, and the last timepoint corresponds to 

movement onset.  You can quickly change epoch colors with the Update Colors tool in Analysis 

Tools. 

8.  DataHigh is also useful to detect “outlying” trials (i.e., a trial in which the population activity 

does not resemble that of other trials from the same condition).  This can be useful for quickly 

triaging large data sets, and identifying which trials are out of the ordinary, which may be 

interesting in their own right.  For example, an outlying trajectory might correspond to a trial 

with a long reaction time.  We previously found an outlying neural trajectory with DataHigh.  

Click the Analysis Tools tab, and click Update Colors.  In the top left of the UpdateColors figure, 

click the Update Trial button.  Under Select Trial, select trial 7.  Under Epoch Colors, change 

rows 2 and 3 from [0 .7 0] to [1 0 0].  This changes the trajectory’s color to red.  Click Upload to 

DataHigh.  Click the Conditions tab and deselect condition 2.  Click Recenter Data at the very 

bottom of the Conditions panel.  You can now rotate the 2-d projection plane to see how the 

red neural trajectory (trial 7) deviates from the others.  You can also find differences using the 

Genetic Search tool. 

 

Example 3: Extract trial-averaged neural trajectories from PSTHs 
 
data file: ‘ex3_psths.mat’ 
description: This is an example dataset to get familiar with dimensionality reduction.  The 
dataset contains peri-stimulus time histograms (PSTHs) recorded from 61 neurons in the 



premotor cortex during a standard delayed reaching task.  The PSTHs are averaged over trials 
corresponding to one of two reach targets.  The user is instructed to perform dimensionality 
reduction and automatically upload the extracted neural trajectories to DataHigh. 
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.  “Gaussian-process factor analysis for 
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635. 

 
Detailed Tutorial:   
The same tutorial and an instructional video can be found on the DataHigh website. 

1.  Navigate to the examples folder in the main DataHigh directory.  Enter ex3_dimreduce into the 

Matlab command console to input PSTHs into DimReduce.  The example dataset contains two 

different experimental conditions whose PSTHs have already been computed.  Each PSTH has 61 

neurons and is binned with 1ms resolution.  The same computation can be achieved by inputting 

raw spike trains into DimReduce and selecting the "Trial-averaged neural trajectories" check 

box.  If you decide to input raw spike trains, make sure the spike trains have first been properly 

aligned.  

2.  The DimReduce figure will pop up.  The top right corner has Next Step instructions, so that the 

user can walk through the steps of performing dimensionality reduction.  Note that clicking Next 

Step will move the large red number to the next location where a choice is needed by the user.  

Each option also has a ? button nearby to provide more information about that step. 

3. For this example dataset, in the time bin width box, enter 20ms (if not there by default).  The 

"Type" will read "Trajs" for neural trajectories.  DimReduce will convert the PSTHs to 20ms 

resolution by locally summing within non-overlapping 20ms bins. 

4. For the mean spikes/sec threshold, enter 1.0 spikes/sec.  DataHigh removes 4 neurons from the 

analyses.  Neurons with firing rates less than 1 spikes/sec can sometimes be problematic, so we 

remove them.  Leave the "Trial-averaged neural trajs" box unchecked, since we already trial-

averaged the data. 

5. Under Method, choose "PCA" for Principal Component Analysis.  By averaging across trials, we 

presumably remove much of the Poisson-like spiking variability. Thus, we can apply PCA, which 

has no concept of observation noise, to the PSTHs.  Leave the “Trial-averaged neural trajs” and 

“Square Root Transform” boxes unchecked, and leave the smoothing kernel width at 0ms. 

6. We can estimate the "optimal" dimensionality using PCA by viewing the eigenspectrum.  Slide 

the Select dimensionality scrollbar on the right side of DimReduce to the maximum 

dimensionality (57).  Click Perform Dim Reduction to perform dimensionality reduction.  The 

PostDimReduce figure pops up. 

7. Click the View Each Dim button.  The SingleDim figure pops up.  It displays the individual 

orthonormalized latent variables for all conditions.  Orthonormalization has the advantage of 

ordering the latent variables such that latent variable 1 describes the most variance in the data 

while latent variable 57 describes the least variance.  Click Next to scan through the latent 

variables.  One noticeable feature is that the traces in time are not smooth.  This is probably due 

to a limited number of trials to estimate the PSTHs.   

8. We can go back and smooth the PSTHs before applying dimensionality reduction.  Close the 

SingleDim and PostDimReduce figures.  On the left side of DimReduce, slide the Smoothing 

kernel width to 25ms, which convolves each PSTH with a Gaussian with standard deviation of 



25ms.  Then click on Perform dim reduction again to perform dimensionality reduction.  The 

PostDimReduce figure pops up. 

9. Again, click on the View Each Dim button, and scan through the latent variables.  The neural 

trajectories are now smooth.  After the top ten, the latent variables do not vary much across 

time or experimental condition, so we can probably safely disregard them.  Close the SingleDim 

figure. 

10. Click the Eigenspectrum button, which pops up the Eigenspectrum figure.  We see that the top 

six dimensions explain about 93% of the variance, which agrees with what we found in the 

individual latent variables with SingleDim.  We could select the top ten latent variables, but it 

appears that the last four do not help much to describe the data.  Close the Eigenspectrum 

figure. 

11. In the Select final dimensionality menu list, select a dimensionality of 6.  DimReduce removes 

latent variables 7 through 57, and keeps the top six latent variables.  Click Upload to DataHigh.  

The DataHigh interface fills the screen. 

12. Since there are so few trajectories, the rotation speed may be fast.  You can test this by clicking 

and holding on one of the preview panels (to the left and right of the central panel), which 

rotates the central panel's 2-d projection.  To change the rotation speed, click the Analysis Tools 

tab and then the Zoom/Rotate button to pop up the Zoom/Rotate figure.  Slide the middle 

scrollbar (named Rotation Speed) down to a slower value.  Close the Zoom/Rotate figure.  The 

rotation speed has now been lowered, and can be tested by clicking and holding on a preview 

panel. 

 
 

Example 3: Visualize trial-averaged neural trajectories 

data file: 'ex3_trialavgtrajs.mat' 
description:  Monkeys made curved reaches around barriers.  This neural data is from the 
movement epoch.  For each of the 27 reach conditions, we first created PSTHs for each of the 
118 sequentially-recorded neurons.  This is the trial-averaged population response for that 
reach condition.  Pre-processing included PC-smoothing, subtraction of across-condition mean, 
and jPCA.  Each trajectory corresponds to one reach condition.  
M.M. Churchland, J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu, and K.V. Shenoy (2012). “Neural 
population dynamics during reaching,” Nature 487(7405), 51-6. 
 
Detailed Tutorial: 
This tutorial walks through Example 3.3 in the JNE paper, and you can follow an instructional 
video on the DataHigh website.  These steps continue from Example 3: Extract trial-averaged 
neural trajectories from PSTHs (see above). 

1. If you are continuing the steps from the Example 3 DimReduce tutorial, we will load a more 

interesting dataset, so that we can look at trial-averaged neural trajectories from many 

experimental conditions, rather than just 2 conditions.  To load the data, click the Analysis Tools 

tab, and then click Load Data.  Navigate back one folder to the main DataHigh directory, then 

navigate to the data folder.  Load ex3_trialavgtrajs.mat.  Continue to the next step. 



 

Otherwise, if you have jumped to this tutorial, navigate to the examples folder in the main 

DataHigh directory.  Enter ex3_visualize into the command line console to upload the trial-

averaged neural trajectory data to DataHigh.   

2. The example dataset comes from the Churchland et al. 2012 paper, in which a subject made 

reaches to different targets.  The PSTHs were computed for 118 neurons and 27 experimental 

conditions.  We performed dimensionality reduction on the PSTHs to reduce the 118-

dimensional space to 6-d, using a dimensionality reduction method called jPCA.  jPCA extracts 

latent variables that reveal any rotational structure in the data.  

3. Each blue trace is a trial-averaged neural trajectory of one reach condition. As the preview 

panels show, even a 6-d space can have a lot of variety! Scale the projection so that the neural 

trajectories are not clipped off in the central panel. Click the Analysis Tools tab, and then click 

Zoom/Rotate. Slide the Zoom scrollbar to “out,” which immediately shrinks the projection. 

Close the ZoomRotate figure. 

4. Save the current projection for later viewing by clicking on the Saved Projections tab and then 

Capture Projection. 

5. Rotate around in the 6-d space with the preview panels (to the left and right of the central 

panel). You will find that the rotational structure is a salient feature in the data, but other 

interesting features do exist. For example, the trajectories seem to be in pairs. Each pair 

contains two experimental conditions that had the same reach endpoint but differed in the path 

of the reach. 

6. Reload the original projection by clicking the Saved Projections tab and then the thumbnail of 

the original projection.  Click the Analysis Tools tab and then click 3d Projection. You can see 

the rotational structure in the 3-d projection. Click Evolve to see the timecourse evolve.  Close 

the Projection3d figure. 

7. Under Analysis Tools, click SingleDim. Each latent variable is plotted versus time. From these 

individual plots, it is not obvious that the trial-averaged neural trajectories would contain 

rotational structure. This is an example of how looking at the population activity in a multi-

dimenisonal firing rate space can yield insights that would be difficult to obtain by looking at the 

PSTHs of individual neurons (or the timecourse of individual latent variables). 

 
 
 
=========== 

What to do if the trajectories look like spaghetti 
=========== 

In an arbitrary 2-d projection, the neural trajectories can appear to overlap and look tangled 
like “spaghetti.”  The following are steps to take to try to clarify what is being shown in the 2-d 
projections. 
 



1. The user can repeatedly click the "Randomize" button in the main DataHigh interface 
to visualize many different initial random projections, which can then be rotated by 
clicking and holding the preview panels.  

2. One can also view many random 2-d projections using the Freeroll, Find Projection, 
and Genetic Search tools. After an interesting 2-d projection is found, the user can 
upload it to the main DataHigh interface and rotate the projection using the 
preview panels.  

3. Instead of viewing entire neural trajectories which can look cluttered, the Evolve tool 
can be used to incrementally plot segments of the neural trajectories.  

4. The user may also use SingleDim to individually inspect each latent variable. Neural 
trajectories that look jumbled in a 2-d projection can look well-organized when 
viewing each latent variable versus time.  

5. For single-trial neural trajectories, one can visualize the deviation of single trials from 
average trajectories by clicking on the “Average Trajs” annotation option in the 
DataHigh toolbox.  

6. Another technique is to label each trial as a different condition, begin by displaying a 
single neural trajectory, and progressively add more trials using the “Conditions” 
tab, identifying subtle differences among neural trajectories.  

7. Another possible approach when there are many conditions is to average each neural 
trajectory across time to obtain one point for each trajectory (i.e., the ``center of 
mass" for each trajectory). The user can apply PCA, LDA, or cluster PCA with Find 
Projection to find a 2-d projection that separates the points. Then, one can use the 
same 2-d projection to view the neural trajectories. 

 
 
=========== 
Analysis Tools 
=========== 
 

Conditions Select which conditions will be displayed 

Pop Figure Creates a Matlab fig that can be saved 

3d Projection Randomly chooses a 3rd proj vec to show a 3-d projection 

Evolve Timecourse of each trajectory is played out 

Find Projection Find projection given by PCA, PCA of cluster means, or LDA 

Projection Weights View the current projection vectors’ coefficients 

Smoother Applies a Gaussian kernel to smooth the trajectories 

Drag Trajectory Change a trajectory by changing each dimension’s time-varying values 

Zoom/Rotate Change zoom, rotation speed, and in-plane rotation of 2d projection 

Genetic Search Uses a genetic algorithm to find projections with similar features 

DimReduce Perform dimensionality reduction on the input data 

SingleDim Plot each latent variable individually 

Load Proj Vecs Load any previously saved projection vectors from a .mat file 

Save Proj Vecs Save the current projection vectors into a .mat file 



Load Data Open a new dataset; assumed to have struct D 

Update Colors Modify the existing struct to change D.condition and D.epochColors 

Saved Projections Capture the current projection to return to at a later time 

Average Trajectories Computes an average trajectory for the single-trial trajectories in each 
condition 

Epoch Boundaries Display cues denoting the elements in epochStarts 

Cov Ellipses Display 2d covariance ellipses of the high-d data 

1st Prin. Comp. Display the first principal component, projected from the high-d data 

Origin Display dot at the origin in the latent space 

Cluster Means Display a dot for each condition’s cluster mean 

Depth Perception Changes sizes of dots based on their distance between each other in 
the orthogonal space of the current 2-d projection 

Freeroll Acts like a screensaver, randomly rotating the projection vectors 

 
 
 
 
 
 
======================== 
Data format for DimReduce 
======================== 
 

Load ‘./data/RawSpikeTrains.mat’ for an example.  DimReduce accepts a struct 
array, D, where each element contains the spike trains for one trial.  Spike trains should be 
binned in 1 ms timesteps. 
 
D =  
 1xN struct array with fields: 
         data:  (number of neurons  x number of milliseconds) array 
 
The data can include optional fields (type, epochStarts, epochColors, condition) as outlined in 
the next section, Data format for DataHigh. 
 
 
======================== 
Data format for DataHigh 
======================== 
 
See the example datasets in ‘./data/’.  DataHigh accepts a struct array, D, where each 
element represents a cluster of neural states or a neural trajectory. 
 
D =  



1xN struct array with fields: 
    type:         'traj' or 'state' 
    epochStarts:      (1 x number of epochs) 
    epochColors:     (number of epochs x RGB) 
    condition:     'conditionName' 
    data:       (number of dimensions x number of data points) 

 
Example: 
 

D(1): 
      type:  'traj' 
      epochStarts:    [1  36  78] 
      epochColors:   [0.7 0.7 0.7; 1 0 0; 0 1 0] 
      condition:     'left_reach' 
      data:  [7x145 array] 

 
 
 
 
 
 
=============== 

Noted problems 
=============== 

1. In the past, we have had performance issues with Mac computers.  However, we have 
sped up the code such that we do not see such issues currently.  If the continuous 
rotation of the central panel seems slow, use the “Zoom/Rotate” feature to increase the 
rotation speed. 

2. Font size on the figures has always been an issue.  Even though Matlab is platform 
independent, the Matlab GUI software certainly is not.  I have worked on both Windows 
and Mac laptops to optimize the font size for all figures.  However, different 
Windows/Mac configurations may cause the font to either be too big or too small.  We 
plan to address these issues in our next code release (and allow the user to decide the 
font size).  However, for now, please resize the DataHigh figure to better fit your screen, 
and use screenshots (either from the instructional videos on the website or the 
DataHigh JNE Paper) to determine the text, and let us know of the problem.  In general, 
DataHigh font size should be fine for most users (it has been tested on the 15-inch 
MacBook Pro and 15-inch Dell XPS 15z). 

 
 
 
=========== 
 FAQ 



=========== 
 
Q:  What is a neural trajectory? 
A:  A neural trajectory describes the time-evolution of neural population activity.  The basic 
setup is a high-dimensional space, where each axis represents the firing rate of one neuron in 
the population.  As the neural activity unfolds over time, a trajectory is traced out in the space.  
For more information, see Yu et al., J Neurophysiol, 2009.   
 
Q: If I “get lost” in the space, can I get back to the original projection? 
A: If you used the Saved Projections tool, you can easily return to a previous projection.  
Otherwise, if you have saved the desired original projection, go to [ToolboxAnalysis 
ToolsLoad Proj Vecs] to load the .mat file. 
 
Q:  What do the panels actually do? 
A:  Each panel shows a preview of what would happen if you rotated the current projection 
vectors in a particular direction by 180 degrees.  By holding on a panel, you are slowly 
incrementing the angle of plane of rotation, which continuously updates the main projection. 
 
Q:  I found a bug. 
A:  Please contact us at DataHigh@gmail.com.  We’ll apply the fly-swatter! 
 
Q:  How do I change an outlying trajectory’s color? 
A:  Go to [ToolboxUpdate ColorsUpdate Trial] and change the appropriate epochColors 
field, or change it in the data struct passed into DataHigh. 
 
Q:  Why is DataHigh useful for clusters of datapoints (spike counts)?  Can’t I just use LDA to 
find the projection of most separation? 
A:  It would be pointless to spend hours with DataHigh looking for a projection that separates 
the clusters well, when statistical techniques, such as Fisher’s linear discriminant analysis (LDA), 
does the job quite well.  However, LDA only gives one projection…what is happening in the 
infinite number of other projections?  DataHigh can be used to analyze the shape of each 
cluster and the trial-to-trial variability of the data.  See Example 2 for more intuition. 
 
Q: What is % var, and how is it calculated? 
A:  % var displays how much variance is in the current projection, compared to the high-d data.  
Mathematically, we take the trace of the current projection’s covariance matrix and divide it by 
the trace of the latent data’s covariance matrix.  The highest possible % var is achieved when 
the projection vectors are the first two principal components. 
 
Q:  I really need this awesome feature for DataHigh, but it’s not there.  What can I do? 
A:  Hack the code!  Feel free to manipulate any part of the code as you see fit.  However, please 
adhere to the open source copyright license, which states that no original source code may be 
deleted (you can comment it out, though) if you plan to redistribute the software package.  If 



you feel this would be a feature that many would also find useful, shoot us an e-mail, and we’d 
be happy to consider incorporating the feature in the next code release. 
 
Q: How can I call DataHigh from another directory? 
A:  You need to add DataHigh’s directory to the current path. 
>> help addpath 
 
Q:  Where can I order my DataHigh t-shirt? 
A:  DataHigh tees will be available for purchase at all major commercial retailers soon. 
 
 
Q:  How is the average trajectory computed? 
A:  For visual purposes, we would like to have a reference trajectory that represents an average 
of the single-trial neural trajectories for different conditions.  Note that this is different from, 
but qualitatively similar to, averaging before dimensionality reduction to produce trial-averaged 
neural trajectories.  We would like this average trajectory to obey epoch boundaries (i.e., at 
each epoch boundary, we should take an average) and be continuous.  We opted for a method 
that linearly resamples each neural trajectory based on the distance traveled by the trajectory.  
Thus, for an epoch, if two trajectories travel roughly the same distance but have different time 
durations, the average only considers the distances.   
 In the figure, two hypothetical single-trial neural trajectories (green) travel from an 
initial state of the epoch (bottom left) to a final state (top right).  The leftmost green trajectory 
reaches the final state and stops, since its trial length is short.  The rightmost green trajectory 
reaches the final state and hovers there, waiting for the epoch to end (which could happen 
when a task cue is given, etc.).  Our method focuses on averaging the main structure of the 
trajectories (traveling from initial to final state) rather than including the small loops of waiting 
for the task cue.  The average trajectory (red) moves to the final state in a similar fashion as 
both green trajectories, since our method downweights the waiting activity where the time was 
long but the distance traveled was small.  While this method is effective for visualization, the 
user should take care whenever averaging trials that do not have the same epoch length across 
trials. 

   
 
 


