

DataHigh: A Brief User’s Guide (Oct 28, 2013)

DataHigh V1.0
© 2013
Ben Cowley, Carnegie Mellon University
Matt Kaufman, Cold Spring Harbor Laboratory
Zachary Butler, University of California-Irvine
Byron Yu, Carnegie Mellon University

DataHigh is a Matlab GUI for visualizing high-dimensional neural data. DataHigh can be used to

study how neural population activity varies across experimental trials, as well as across

experimental conditions. It can be used to visualize single-trial neural states, single-trial neural

trajectories, and trial-averaged neural trajectories. The input data can either be latent variables

extracted by a dimensionality-reduction method (e.g., principal component analysis, factor

analysis, or Gaussian-process factor analysis) or raw spike counts.

For more information, see:

DataHigh Website link:

[www.ece.cmu.edu/~byronyu/software.shtml]

PLACE JNE DATAHIGH PAPER REFERENCE HERE

“DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural

activity” by B.R. Cowley, M.T. Kaufman, M.M. Churchland, S.I. Ryu, K.V. Shenoy, and B.M. Yu.

Submitted to EMBS Annual Meeting 2012.

Contact:

All questions, comments, and suggestions should be sent to:

DataHigh@gmail.com

==================
How to get started with example data
==================

1. Navigate to the examples folder in the main DataHigh directory.
2. Enter the following commands into the Matlab console to try different examples:

Visualize neural states: examples2_neuralstates
Visualize single-trial neural trajectories: examples3_singletrial

Visualize trial-averaged neural trajectories: examples4_trialaveraged
Dimensionality reduction: examples1_dimreduce

==================
How to get quickly started with your own data
==================

1. Format raw spike trains into a Matlab struct, D. D(i) refers to the ith trial. The
D(i).data field contains a matrix of size number of neurons x number of timepoints.

2. Call DataHigh(D,‘DimReduce’); in the Matlab command line.
3. Use the DimReduce tool to apply a dimensionality reduction technique (e.g., GPFA).

Upload to DataHigh.
4. Click and hold on a preview panel to rotate the main 2-d projection.
5. Use the 3-d Projection/Evolve tools under the Analysis Tools tab to view the neural

trajectories play out over time.
6. Capture and save any noteworthy projections for further analysis.

================
User Guide Outline
================

Data demos (with steps)
What to do if the trajectories look like spaghetti
Analysis Tools
Data format for DimReduce
Data format for DataHigh
Noted problems
FAQ

================
Data demos (with steps)
================
This section provides detailed tutorials about how to use DimReduce and DataHigh. Please see
examples.m for more information. It may first be advantageous to view the instructional
videos that go step-by-step for each example on the DataHigh website
(www.ece.cmu.edu/~byronyu/software/DataHigh/), and then try the steps yourself with the text
reference.

Example 1: Extract neural states from spike count vectors

data file: ‘ex1_spikecounts.mat’
description: This is an example dataset to get familiar with dimensionality reduction. The
dataset contains spike trains recorded simultaneously from 61 neurons in the premotor cortex
during a standard delayed reaching task. There are 30 reaches to each of seven reach targets.
The user is instructed to perform dimensionality reduction and automatically upload the
extracted neural states to DataHigh.
Santhanam G, Yu BM, Gilja V, Afshar A, Ryu SI, Sahani M, Shenoy KV (2009) Factor-analysis methods for higher-
performance neural prostheses. Journal of Neurophysiology. 102:614-635.

Detailed Tutorial:
The same tutorial and an instructional video can be found on the DataHigh website.

1. Navigate to the examples folder in the main DataHigh directory. Enter ex1_dimreduce into the

Matlab command console to input raw spike trains into DimReduce. The example dataset

contains seven different experimental conditions. Each condition has 30 trials, and each trial

has spike trains from 61 neurons. Each spike train is 400ms long and binned at 1ms resolution.

2. The DimReduce figure will pop up. The top right corner has Next Step instructions, so that the

user can walk through the steps of performing dimensionality reduction. Note that clicking Next

Step will move the large red number to the next location where a choice is needed by the user.

Each option also has a ? button nearby to provide more information about that step.

3. For this example dataset, in the time bin width box, enter 400ms. This will change the "Type" to

"States." For neural states, you should choose the maximally allowed time bin width, which is

the length of the shortest trial. This ensures one bin is used per trial---longer trials are

truncated. If you need to align your data to a stimulus event (such as a go cue), align the data

first before inputting it into DimReduce. Also, to avoid possible confusion, ensure that each trial

has the same length.

4. For the mean spikes/sec threshold, enter 1.0 spike/sec. DataHigh removes 4 neurons from the

analyses. Neurons with firing rates less than 1 spike/sec can sometimes be problematic, so we

leave them out.

5. Under Method, choose "FA" for Factor Analysis. For neural states, we suggest FA because it

allows each neuron to have a different amount of Poisson-like spiking variability. Since FA uses

an iterative algorithm to fit the model parameters, it can take seconds to minutes to complete

cross-validation.

6. For the Candidate dimensionality set, input "[1:15 20 30 40 50]". This input is in Matlab vector

notation. Note that the terms “dimensionality” and “number of latent variables” are

interchangeable, and by choosing a candidate dimensionality set we are trying to find how many

latent variables best explain the data. For this range, DimReduce will perform cross-validation

on candidate dimensionalities 1 through 15, 20, 30, 40, and 50. Trying all possible candidate

dimensionalities (1 through 57) is computationally expensive, and typically unnecessary for

visualization purposes, so we sample from the set of possible candidate dimensionalities.

7. Click Perform cross-validation to perform cross-validation on the set of candidate

dimensionalities. Cross-validation tells us how many dimensions are needed to describe the

data. The dataset is split into three folds. Factor analysis trains its parameters on two of the

folds, and then tests on the remaining fold. This is done for each candidate dimensionality. A

progress bar will pop up. Wait until it is completed.

8. Cross-validation has been performed, and we can view metrics to select an optimal

dimensionality for visualization. Look at the LL metric by clicking the LL button in Dimensionality

Plots. LL plots the cross-validated log-likelihood versus the candidate dimensionality. For this

dataset, the log-likelihood has its peak at a dimensionality of 6, denoted by the star.

9. Click the Proj button to plot the first two factors. We see some clustering of the datapoints

(which makes sense, since the data are from different experimental conditions, and some

neurons are more active for some conditions than for other conditions).

10. Slide the Select dimensionality scrollbar until it shows 6. Typically, you should select the

optimal dimensionality as determined by the cross-validated log-likelihood.

11. Click Perform dim reduction. DimReduce will perform dimensionality reduction for the chosen

number of dimensions (i.e., factors). The data's dimensionality is reduced from 57 dimensions

(i.e., neurons) to 6 latent dimensions. A PostDimReduce figure pops up. This figure allows you

to make a more informed decision about your dimensionality selection. If the selected

dimensionality is not appropriate, you can close the PostDimReduce figure to go back to the

original DimReduce figure.

12. In the PostDimReduce figure, click Upload to DataHigh. The main DataHigh interface pops up.

You may change the colors of the clusters by clicking the Analysis Tools tab in the Toolbox and

then click the Update Colors button. In the UpdateColors figure, change the Epoch Colors field

of the condition "reach1" from [0 0 1] to [1 0.5 0]. This will change the neural states of that

condition from blue to orange. Click Upload to DataHigh to upload the changes.

Example 1: Visualize neural states

data file: 'ex1_neuralstates.mat'

description: On each trial, spike counts were taken in a single 400ms bin during the delay
period in a standard delayed reaching task. We applied factor analysis (FA) to all trials together
to reduce the 61-d count vectors (61 simultaneously-recorded neurons) to 6-d. We use
DataHigh to visualize the 6-d space. Each color corresponds to one of 7 reach directions.
Santhanam G, Yu BM, Gilja V, Afshar A, Ryu SI, Sahani M, Shenoy KV (2009) Factor-analysis methods for higher-
performance neural prostheses. Journal of Neurophysiology. 102:614-635.

Detailed Tutorial:
This tutorial walks through Example 3.1 in the JNE paper, and you can follow an instructional
video on the DataHigh website. These steps continue from Example 1: Extract neural states
from spike count vectors (see above).

1. If you are continuing the steps for Example 1, the DataHigh interface should fill the screen with

neural states, and you can skip to the next step. If you jumped to this visualization tutorial,

navigate to the examples folder in the main DataHigh directory. Enter ex1_visualize into the

Matlab command line to upload the neural state data to DataHigh. We applied factor analysis

to the 61-dimensional spike count vectors and determined the dimensionality to be six. The

dataset includes seven experimental conditions, and each condition has 30 trials (i.e., 30 neural

states).

2. The main DataHigh interface fills the screen. The central panel shows a 2-d projection of the 6-

d neural states. Each color corresponds to one of seven experimental conditions. Each point

corresponds to one experimental trial. Each condition has multiple trials, and the population

activity is separable based on condition (the clusters have little overlap).

3. Save the current projection in a queue so that we can access it later. Click Saved Projections in

the Toolbox, and then click Capture Projection.

4. We can also add descriptive annotations to the data for better visualization. Click Annotations

in the Toolbox, and click Cov Ellipses. This plots an ellipse that describes the covariance matrix

for each condition.

5. We are also interested in visualizing in what direction the trial-to-trial variability points. Click

1st Prin. Comp. directly below the Cov Ellipses button to plot the first principal component's

direction in the 2-d projection. They appear as thick lines that intersect the clusters' means.

6. This current projection shows separable clusters with little trial-to-trial variability. However,

this a 6-d space---could a large amount of trial-to-trial variability exist in other dimensions of the

space? Use the preview panels (located to the left and right of the central panel) to rotate the

current 2-d projection plane in the 6-d space. The first principal component vectors increase in

length. This means that most of the trial-to-trial variability exists outside of the 2-d projection

we began with.

7. Click Randomize under the central panel a few times, which randomizes the orientation of the

2-d projection plane within the 6-d space. Most of the projections will look like a "bowl of

Fruitloops," without separable clusters. Use the preview panels to find a projection in which

some clusters do not overlap with others.

8. There are pre-defined cost-functions that can be used to also find projections in which the

clusters are separable. Click Find Projection under the Analysis Tools tab in the Toolbox. Click

the PCA button to view a projection defined by the top two directions of greatest scatter found

by principal component analysis. Click LDA to see a projection found by Fisher's linear

discriminant analysis, in which the cluster sizes are small, and the distances between clusters are

large. Click Upload to DataHigh.

9. Depth Perception is another tool that can be useful to find separability between clusters and
identify outlying trials. First, click Conditions in the Toolbox. Then deselect all conditions except
for "reach1" and "reach5." Use the preview panels to rotate the main 2-d projection until the
two clusters overlap. Then, click the Annotations tab, and click DepthPercept. One condition's
datapoints will become much larger than the other condition's. Depth Perception first finds a
direction that is orthogonal to the 2-d projection (e.g., pointing out of the monitor screen).
Then, it sizes datapoints based on how much they "come out" of the monitor screen towards
the user. Datapoints that differ greatly in size also differ in distance in the high-dimensional
space.

Example 2: Extract single-trial neural trajectories from raw spike trains

data file: ‘ex2_rawspiketrains.mat’
description: This is an example dataset to get familiar with dimensionality reduction. The
dataset contains spike trains recorded simultaneously from 61 neurons in the premotor cortex
during a standard delayed reaching task. There are 56 reaches to each of two reach targets.
The user is instructed to perform dimensionality reduction and automatically upload the
extracted neural trajectories to DataHigh.
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani. “Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635.

Detailed Tutorial:
The same tutorial and an instructional video can be found on the DataHigh website.

1. Navigate to the examples folder in the main DataHigh directory. Enter ex2_dimreduce into the

Matlab command console to input raw spike trains into DimReduce. The example dataset

contains two different experimental conditions. Each condition has 56 trials, and each trial has

spike trains from 61 neurons. Each spike train has a length between 1018ms and 1526ms and

binned at 1ms resolution.

2. The DimReduce figure will pop up. The top right corner has Next Step instructions, so that the

user can walk through the steps of performing dimensionality reduction. Note that clicking Next

Step will move the large red number to the next location where a choice is needed by the user.

Each option also has a ? button nearby to provide more information about that step.

3. For this example dataset, in the time bin width box, enter 20ms (if not there by default). The

"Type" will read "Trajs" for neural trajectories. DimReduce will take 20ms non-overlapping bins

over the raw spike trains. We recommend that you start with 20ms bins, as we have found this

to work well with population activity recorded in the motor and visual cortices.

4. For the mean spikes/sec threshold, enter 1.0 spike/sec. DataHigh removes 3 neurons from the

analyses. Neurons with firing rates less than 1 spike/sec can sometimes be problematic, so so

we leave them out. Leave the "Trial-averaged neural trajs" box unchecked.

5. Under Method, choose "GPFA" for Gaussian Process Factor Analysis. GPFA reduces the high-

dimensional population activity to a smaller number of latent variables that vary smoothly over

time, where the amount of smoothing is determined by the data.

6. GPFA typically takes less than a minute to fit to data from tens of neurons and hundreds of

trials. However, when we do cross-validation, we may need to fit GPFA hundreds of times

(depending on the number of candidate dimensionalities and cross-validation folds). For the

purposes of visualization, we can avoid the long wait by fitting a GPFA model with a large

number of dimensions, looking at the parameters returned by the fitting procedure, and

removing the dimensions that appear to not be needed. Slide the Select dimensionality

scrollbar to 40. Click Upload Results, which performs dimensionality reduction for the selected

dimensionality. A progress bar pops up. It should take about 30 seconds to fit the parameters

and extract the neural trajectories.

7. After the progress bar finishes, the PostDimreduce figure then pops up. We will now decide

how many of the 40 dimensions are actually needed to describe the data.

8. Click View Loading Matrix. The loading matrix defines the linear mapping between latent

variables (columns) and the neural activity (rows). Check to see whether any of the columns of

the loading matrix show contributions from only a small number (e.g., 2 or 3) of neurons. This

indicates that the spike counts for those neurons are highly correlated, which could be an

indication of electrode cross-talk. Under normal conditions, we expect each column to have

contributions from many of the neurons, which is the case here. Close the figure.

9. Click the View Each Dim button. DimReduce automatically orthonormalized the latent

variables, and ordered them based on the amount of variability they explain. In the SingleDim

figure, you can see each latent variable plotted individually. Each trace corresponds to a single

trial. Click the Next button to scan through the latent variables. As you scan, you will notice that

past a certain latent variable, the neural trajectories do not vary across time or experimental

condition. These latent variables are not contributing much to describing the data, and will be

removed for visualization. Close the SingleDim figure.

10. Click the Eigenspectrum button. This plots the cumulative percent shared variance explained

by the number of latent variables. A good selection of the dimensionality would explain around

90% of the shared variance and have temporal fluctuations for each single dimension. However,

the selection can be subjective, unlike the optimal dimensionality identified with cross-

validation. Close the Eigenspectrum figure.

11. In the Select final dimensionality menu list, select a dimensionality of 15. DimReduce will

remove latent variables 16 through 40 from the analyses, and keep the top fifteen latent

variables. Thus, we reduced the original 58-d space to 15 dimensions. Click Upload to

DataHigh. The DataHigh interface fills the screen.

Example 2: Visualize single-trial neural trajectories

data file: 'ex2_singletrialtrajs.mat'

description: Spike counts were taken in non-overlapping 20ms bins during a standard delayed
reaching task. We applied Gaussian-process factor analysis (GPFA) to reduce the 61-d count
vectors (61 simultaneously-recorded neurons) to 15-d. We use DataHigh to visualize the 15-d
space. Trajectories include the time before the reach target is presented, reach planning, and
reach execution. Each color corresponds to one of two reach conditions.
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani. “Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635.

Detailed Tutorial:
This tutorial walks through Example 3.2 in the JNE paper, and you can follow an instructional
video on the DataHigh website. These steps continue from Example 2: Extract single-trial
neural trajectories from raw spike trains (see above).

1. If you are continuing the steps from the Example 2 DimReduce tutorial, we could visualize all of

the extracted neural trajectories, which may look cluttered. For visual clarity, we suggest

initially visualizing a small subset of trajectories to orient ourselves in the latent space. For your

convenience, we have included example data in which the neural trajectories were extracted in

the same manner as the previous tutorial, but only 15 trajectories were kept for each condition.

To load the data, click the Analysis Tools tab and then click Load Data. Navigate back one folder

to the main DataHigh directory, then navigate to the data folder. Load ex2_singletrialtrajs.mat.

Continue to the next step.

Otherwise, if you have jumped to this tutorial, navigate to the examples folder in the main

DataHigh directory. Enter ex2_visualize into the Matlab command line console to upload the

single-trial neural trajectory data to DataHigh. Beforehand, we applied Gaussian-process factor

analysis (GPFA) to the 61-dimensional raw spike trains and determined the optimal

dimensionality to be 15 with cross-validation. The data consist of two experimental conditions,

and each condition has 15 trials.

2. The main DataHigh interface fills the screen. The colors (green and blue) represent the two

different experimental conditions. Each neural trajectory represents the population timecourse

for one trial. The start of the neural trajectories (i.e., the first timepoints) are in light grey in the

center of the projection, and time increases as you follow along the trajectories. Save this

projection by clicking the Saved Projections tab and then Capture Projection.

3. Now click Randomize. Try to use the preview panels (located to the left and right of the central

panel) to find a nice projection that separates the neural trajectories based on their

corresponding experimental conditions (green and blue). If you feel you are stuck at a certain

type of projection (e.g., a local optima of visualization), you can start over with another random

projection. In truth, you are not searching for the “best projection,” but rather viewing many

projections that give you intuition for the data. In the process of trying to find a nice projection,

you can get a sense of how ugly or beautiful the data are. You can also click the Freeroll button

to see a smooth sequence of projections---it runs like a screensaver.

4. There are other tools if you are having trouble finding a nice projection (sometimes the data

will not have a "nice" projection!). You could use the Find Projection tool, but the standard cost

functions tend to not find meaningful projections. Another option is Genetic Search. Click

Analysis Tools and click the Genetic Search button. The Genetic Search figure starts with fifteen

random projections. Click on projections that look of interest. Then, click on Next Generation.

DataHigh has an algorithm that finds fifteen new projections that are similar to the selected

projections. Try some iterations of GeneticSearch. You can upload an interesting projection by

clicking on it (only one projection should be selected) and clicking Upload to DataHigh.

5. We can do more analysis on the previously found projection. Upload the captured projection to

the central panel by clicking the Saved Projections tab and clicking on the previously captured

projection’s thumbnail. Now click the Analysis Tools tab and click 3d Projection. The

Projection3D figure appears. The user can use this projection as a Matlab 3-d viewer (as if we

used plot3) by dragging the figure around.

6. Note that this is a static 3-d projection (with the same two projection vectors used by the

central panel and a third random projection vector). Clicking Randomize may alter the 3-d

projection, as it randomizes the third projection vector. Click on the Evolve button to view the

population activity play out over time. You may drag on the figure while Evolve is executing, and

also save a movie. After Evolve has finished, close the Projection3D figure.

7. Click the Annotations tab and then click on Average Trajs. This displays average neural

trajectories for each condition, which can be helpful in analysis. You can also view the epoch

boundaries by clicking on the Epoch Boundaries button. For this example dataset, the two

epoch boundaries correspond to target onset and to when the go cue was given. The starting

epoch in grey corresponds to pre-stimulus activity, and the last timepoint corresponds to

movement onset. You can quickly change epoch colors with the Update Colors tool in Analysis

Tools.

8. DataHigh is also useful to detect “outlying” trials (i.e., a trial in which the population activity

does not resemble that of other trials from the same condition). This can be useful for quickly

triaging large data sets, and identifying which trials are out of the ordinary, which may be

interesting in their own right. For example, an outlying trajectory might correspond to a trial

with a long reaction time. We previously found an outlying neural trajectory with DataHigh.

Click the Analysis Tools tab, and click Update Colors. In the top left of the UpdateColors figure,

click the Update Trial button. Under Select Trial, select trial 7. Under Epoch Colors, change

rows 2 and 3 from [0 .7 0] to [1 0 0]. This changes the trajectory’s color to red. Click Upload to

DataHigh. Click the Conditions tab and deselect condition 2. Click Recenter Data at the very

bottom of the Conditions panel. You can now rotate the 2-d projection plane to see how the

red neural trajectory (trial 7) deviates from the others. You can also find differences using the

Genetic Search tool.

Example 3: Extract trial-averaged neural trajectories from PSTHs

data file: ‘ex3_psths.mat’
description: This is an example dataset to get familiar with dimensionality reduction. The
dataset contains peri-stimulus time histograms (PSTHs) recorded from 61 neurons in the

premotor cortex during a standard delayed reaching task. The PSTHs are averaged over trials
corresponding to one of two reach targets. The user is instructed to perform dimensionality
reduction and automatically upload the extracted neural trajectories to DataHigh.
B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani. “Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity.” J. Neurophysiol, vol. 102, 2009, pp. 614-635.

Detailed Tutorial:
The same tutorial and an instructional video can be found on the DataHigh website.

1. Navigate to the examples folder in the main DataHigh directory. Enter ex3_dimreduce into the

Matlab command console to input PSTHs into DimReduce. The example dataset contains two

different experimental conditions whose PSTHs have already been computed. Each PSTH has 61

neurons and is binned with 1ms resolution. The same computation can be achieved by inputting

raw spike trains into DimReduce and selecting the "Trial-averaged neural trajectories" check

box. If you decide to input raw spike trains, make sure the spike trains have first been properly

aligned.

2. The DimReduce figure will pop up. The top right corner has Next Step instructions, so that the

user can walk through the steps of performing dimensionality reduction. Note that clicking Next

Step will move the large red number to the next location where a choice is needed by the user.

Each option also has a ? button nearby to provide more information about that step.

3. For this example dataset, in the time bin width box, enter 20ms (if not there by default). The

"Type" will read "Trajs" for neural trajectories. DimReduce will convert the PSTHs to 20ms

resolution by locally summing within non-overlapping 20ms bins.

4. For the mean spikes/sec threshold, enter 1.0 spikes/sec. DataHigh removes 4 neurons from the

analyses. Neurons with firing rates less than 1 spikes/sec can sometimes be problematic, so we

remove them. Leave the "Trial-averaged neural trajs" box unchecked, since we already trial-

averaged the data.

5. Under Method, choose "PCA" for Principal Component Analysis. By averaging across trials, we

presumably remove much of the Poisson-like spiking variability. Thus, we can apply PCA, which

has no concept of observation noise, to the PSTHs. Leave the “Trial-averaged neural trajs” and

“Square Root Transform” boxes unchecked, and leave the smoothing kernel width at 0ms.

6. We can estimate the "optimal" dimensionality using PCA by viewing the eigenspectrum. Slide

the Select dimensionality scrollbar on the right side of DimReduce to the maximum

dimensionality (57). Click Perform Dim Reduction to perform dimensionality reduction. The

PostDimReduce figure pops up.

7. Click the View Each Dim button. The SingleDim figure pops up. It displays the individual

orthonormalized latent variables for all conditions. Orthonormalization has the advantage of

ordering the latent variables such that latent variable 1 describes the most variance in the data

while latent variable 57 describes the least variance. Click Next to scan through the latent

variables. One noticeable feature is that the traces in time are not smooth. This is probably due

to a limited number of trials to estimate the PSTHs.

8. We can go back and smooth the PSTHs before applying dimensionality reduction. Close the

SingleDim and PostDimReduce figures. On the left side of DimReduce, slide the Smoothing

kernel width to 25ms, which convolves each PSTH with a Gaussian with standard deviation of

25ms. Then click on Perform dim reduction again to perform dimensionality reduction. The

PostDimReduce figure pops up.

9. Again, click on the View Each Dim button, and scan through the latent variables. The neural

trajectories are now smooth. After the top ten, the latent variables do not vary much across

time or experimental condition, so we can probably safely disregard them. Close the SingleDim

figure.

10. Click the Eigenspectrum button, which pops up the Eigenspectrum figure. We see that the top

six dimensions explain about 93% of the variance, which agrees with what we found in the

individual latent variables with SingleDim. We could select the top ten latent variables, but it

appears that the last four do not help much to describe the data. Close the Eigenspectrum

figure.

11. In the Select final dimensionality menu list, select a dimensionality of 6. DimReduce removes

latent variables 7 through 57, and keeps the top six latent variables. Click Upload to DataHigh.

The DataHigh interface fills the screen.

12. Since there are so few trajectories, the rotation speed may be fast. You can test this by clicking

and holding on one of the preview panels (to the left and right of the central panel), which

rotates the central panel's 2-d projection. To change the rotation speed, click the Analysis Tools

tab and then the Zoom/Rotate button to pop up the Zoom/Rotate figure. Slide the middle

scrollbar (named Rotation Speed) down to a slower value. Close the Zoom/Rotate figure. The

rotation speed has now been lowered, and can be tested by clicking and holding on a preview

panel.

Example 3: Visualize trial-averaged neural trajectories

data file: 'ex3_trialavgtrajs.mat'
description: Monkeys made curved reaches around barriers. This neural data is from the
movement epoch. For each of the 27 reach conditions, we first created PSTHs for each of the
118 sequentially-recorded neurons. This is the trial-averaged population response for that
reach condition. Pre-processing included PC-smoothing, subtraction of across-condition mean,
and jPCA. Each trajectory corresponds to one reach condition.
M.M. Churchland, J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu, and K.V. Shenoy (2012). “Neural
population dynamics during reaching,” Nature 487(7405), 51-6.

Detailed Tutorial:
This tutorial walks through Example 3.3 in the JNE paper, and you can follow an instructional
video on the DataHigh website. These steps continue from Example 3: Extract trial-averaged
neural trajectories from PSTHs (see above).

1. If you are continuing the steps from the Example 3 DimReduce tutorial, we will load a more

interesting dataset, so that we can look at trial-averaged neural trajectories from many

experimental conditions, rather than just 2 conditions. To load the data, click the Analysis Tools

tab, and then click Load Data. Navigate back one folder to the main DataHigh directory, then

navigate to the data folder. Load ex3_trialavgtrajs.mat. Continue to the next step.

Otherwise, if you have jumped to this tutorial, navigate to the examples folder in the main

DataHigh directory. Enter ex3_visualize into the command line console to upload the trial-

averaged neural trajectory data to DataHigh.

2. The example dataset comes from the Churchland et al. 2012 paper, in which a subject made

reaches to different targets. The PSTHs were computed for 118 neurons and 27 experimental

conditions. We performed dimensionality reduction on the PSTHs to reduce the 118-

dimensional space to 6-d, using a dimensionality reduction method called jPCA. jPCA extracts

latent variables that reveal any rotational structure in the data.

3. Each blue trace is a trial-averaged neural trajectory of one reach condition. As the preview

panels show, even a 6-d space can have a lot of variety! Scale the projection so that the neural

trajectories are not clipped off in the central panel. Click the Analysis Tools tab, and then click

Zoom/Rotate. Slide the Zoom scrollbar to “out,” which immediately shrinks the projection.

Close the ZoomRotate figure.

4. Save the current projection for later viewing by clicking on the Saved Projections tab and then

Capture Projection.

5. Rotate around in the 6-d space with the preview panels (to the left and right of the central

panel). You will find that the rotational structure is a salient feature in the data, but other

interesting features do exist. For example, the trajectories seem to be in pairs. Each pair

contains two experimental conditions that had the same reach endpoint but differed in the path

of the reach.

6. Reload the original projection by clicking the Saved Projections tab and then the thumbnail of

the original projection. Click the Analysis Tools tab and then click 3d Projection. You can see

the rotational structure in the 3-d projection. Click Evolve to see the timecourse evolve. Close

the Projection3d figure.

7. Under Analysis Tools, click SingleDim. Each latent variable is plotted versus time. From these

individual plots, it is not obvious that the trial-averaged neural trajectories would contain

rotational structure. This is an example of how looking at the population activity in a multi-

dimenisonal firing rate space can yield insights that would be difficult to obtain by looking at the

PSTHs of individual neurons (or the timecourse of individual latent variables).

===========

What to do if the trajectories look like spaghetti
===========

In an arbitrary 2-d projection, the neural trajectories can appear to overlap and look tangled
like “spaghetti.” The following are steps to take to try to clarify what is being shown in the 2-d
projections.

1. The user can repeatedly click the "Randomize" button in the main DataHigh interface
to visualize many different initial random projections, which can then be rotated by
clicking and holding the preview panels.

2. One can also view many random 2-d projections using the Freeroll, Find Projection,
and Genetic Search tools. After an interesting 2-d projection is found, the user can
upload it to the main DataHigh interface and rotate the projection using the
preview panels.

3. Instead of viewing entire neural trajectories which can look cluttered, the Evolve tool
can be used to incrementally plot segments of the neural trajectories.

4. The user may also use SingleDim to individually inspect each latent variable. Neural
trajectories that look jumbled in a 2-d projection can look well-organized when
viewing each latent variable versus time.

5. For single-trial neural trajectories, one can visualize the deviation of single trials from
average trajectories by clicking on the “Average Trajs” annotation option in the
DataHigh toolbox.

6. Another technique is to label each trial as a different condition, begin by displaying a
single neural trajectory, and progressively add more trials using the “Conditions”
tab, identifying subtle differences among neural trajectories.

7. Another possible approach when there are many conditions is to average each neural
trajectory across time to obtain one point for each trajectory (i.e., the ``center of
mass" for each trajectory). The user can apply PCA, LDA, or cluster PCA with Find
Projection to find a 2-d projection that separates the points. Then, one can use the
same 2-d projection to view the neural trajectories.

===========
Analysis Tools
===========

Conditions Select which conditions will be displayed

Pop Figure Creates a Matlab fig that can be saved

3d Projection Randomly chooses a 3rd proj vec to show a 3-d projection

Evolve Timecourse of each trajectory is played out

Find Projection Find projection given by PCA, PCA of cluster means, or LDA

Projection Weights View the current projection vectors’ coefficients

Smoother Applies a Gaussian kernel to smooth the trajectories

Drag Trajectory Change a trajectory by changing each dimension’s time-varying values

Zoom/Rotate Change zoom, rotation speed, and in-plane rotation of 2d projection

Genetic Search Uses a genetic algorithm to find projections with similar features

DimReduce Perform dimensionality reduction on the input data

SingleDim Plot each latent variable individually

Load Proj Vecs Load any previously saved projection vectors from a .mat file

Save Proj Vecs Save the current projection vectors into a .mat file

Load Data Open a new dataset; assumed to have struct D

Update Colors Modify the existing struct to change D.condition and D.epochColors

Saved Projections Capture the current projection to return to at a later time

Average Trajectories Computes an average trajectory for the single-trial trajectories in each
condition

Epoch Boundaries Display cues denoting the elements in epochStarts

Cov Ellipses Display 2d covariance ellipses of the high-d data

1st Prin. Comp. Display the first principal component, projected from the high-d data

Origin Display dot at the origin in the latent space

Cluster Means Display a dot for each condition’s cluster mean

Depth Perception Changes sizes of dots based on their distance between each other in
the orthogonal space of the current 2-d projection

Freeroll Acts like a screensaver, randomly rotating the projection vectors

========================
Data format for DimReduce
========================

Load ‘./data/RawSpikeTrains.mat’ for an example. DimReduce accepts a struct
array, D, where each element contains the spike trains for one trial. Spike trains should be
binned in 1 ms timesteps.

D =
 1xN struct array with fields:
 data: (number of neurons x number of milliseconds) array

The data can include optional fields (type, epochStarts, epochColors, condition) as outlined in
the next section, Data format for DataHigh.

========================
Data format for DataHigh
========================

See the example datasets in ‘./data/’. DataHigh accepts a struct array, D, where each
element represents a cluster of neural states or a neural trajectory.

D =

1xN struct array with fields:
 type: 'traj' or 'state'
 epochStarts: (1 x number of epochs)
 epochColors: (number of epochs x RGB)
 condition: 'conditionName'
 data: (number of dimensions x number of data points)

Example:

D(1):
 type: 'traj'
 epochStarts: [1 36 78]
 epochColors: [0.7 0.7 0.7; 1 0 0; 0 1 0]
 condition: 'left_reach'
 data: [7x145 array]

===============

Noted problems
===============

1. In the past, we have had performance issues with Mac computers. However, we have
sped up the code such that we do not see such issues currently. If the continuous
rotation of the central panel seems slow, use the “Zoom/Rotate” feature to increase the
rotation speed.

2. Font size on the figures has always been an issue. Even though Matlab is platform
independent, the Matlab GUI software certainly is not. I have worked on both Windows
and Mac laptops to optimize the font size for all figures. However, different
Windows/Mac configurations may cause the font to either be too big or too small. We
plan to address these issues in our next code release (and allow the user to decide the
font size). However, for now, please resize the DataHigh figure to better fit your screen,
and use screenshots (either from the instructional videos on the website or the
DataHigh JNE Paper) to determine the text, and let us know of the problem. In general,
DataHigh font size should be fine for most users (it has been tested on the 15-inch
MacBook Pro and 15-inch Dell XPS 15z).

===========
 FAQ

===========

Q: What is a neural trajectory?
A: A neural trajectory describes the time-evolution of neural population activity. The basic
setup is a high-dimensional space, where each axis represents the firing rate of one neuron in
the population. As the neural activity unfolds over time, a trajectory is traced out in the space.
For more information, see Yu et al., J Neurophysiol, 2009.

Q: If I “get lost” in the space, can I get back to the original projection?
A: If you used the Saved Projections tool, you can easily return to a previous projection.
Otherwise, if you have saved the desired original projection, go to [ToolboxAnalysis
ToolsLoad Proj Vecs] to load the .mat file.

Q: What do the panels actually do?
A: Each panel shows a preview of what would happen if you rotated the current projection
vectors in a particular direction by 180 degrees. By holding on a panel, you are slowly
incrementing the angle of plane of rotation, which continuously updates the main projection.

Q: I found a bug.
A: Please contact us at DataHigh@gmail.com. We’ll apply the fly-swatter!

Q: How do I change an outlying trajectory’s color?
A: Go to [ToolboxUpdate ColorsUpdate Trial] and change the appropriate epochColors
field, or change it in the data struct passed into DataHigh.

Q: Why is DataHigh useful for clusters of datapoints (spike counts)? Can’t I just use LDA to
find the projection of most separation?
A: It would be pointless to spend hours with DataHigh looking for a projection that separates
the clusters well, when statistical techniques, such as Fisher’s linear discriminant analysis (LDA),
does the job quite well. However, LDA only gives one projection…what is happening in the
infinite number of other projections? DataHigh can be used to analyze the shape of each
cluster and the trial-to-trial variability of the data. See Example 2 for more intuition.

Q: What is % var, and how is it calculated?
A: % var displays how much variance is in the current projection, compared to the high-d data.
Mathematically, we take the trace of the current projection’s covariance matrix and divide it by
the trace of the latent data’s covariance matrix. The highest possible % var is achieved when
the projection vectors are the first two principal components.

Q: I really need this awesome feature for DataHigh, but it’s not there. What can I do?
A: Hack the code! Feel free to manipulate any part of the code as you see fit. However, please
adhere to the open source copyright license, which states that no original source code may be
deleted (you can comment it out, though) if you plan to redistribute the software package. If

you feel this would be a feature that many would also find useful, shoot us an e-mail, and we’d
be happy to consider incorporating the feature in the next code release.

Q: How can I call DataHigh from another directory?
A: You need to add DataHigh’s directory to the current path.
>> help addpath

Q: Where can I order my DataHigh t-shirt?
A: DataHigh tees will be available for purchase at all major commercial retailers soon.

Q: How is the average trajectory computed?
A: For visual purposes, we would like to have a reference trajectory that represents an average
of the single-trial neural trajectories for different conditions. Note that this is different from,
but qualitatively similar to, averaging before dimensionality reduction to produce trial-averaged
neural trajectories. We would like this average trajectory to obey epoch boundaries (i.e., at
each epoch boundary, we should take an average) and be continuous. We opted for a method
that linearly resamples each neural trajectory based on the distance traveled by the trajectory.
Thus, for an epoch, if two trajectories travel roughly the same distance but have different time
durations, the average only considers the distances.
 In the figure, two hypothetical single-trial neural trajectories (green) travel from an
initial state of the epoch (bottom left) to a final state (top right). The leftmost green trajectory
reaches the final state and stops, since its trial length is short. The rightmost green trajectory
reaches the final state and hovers there, waiting for the epoch to end (which could happen
when a task cue is given, etc.). Our method focuses on averaging the main structure of the
trajectories (traveling from initial to final state) rather than including the small loops of waiting
for the task cue. The average trajectory (red) moves to the final state in a similar fashion as
both green trajectories, since our method downweights the waiting activity where the time was
long but the distance traveled was small. While this method is effective for visualization, the
user should take care whenever averaging trials that do not have the same epoch length across
trials.

