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Brain–computer interfaces (BCIs) allow individuals with paral-
ysis to control assistive devices using movement commands 
extracted from the brain. Recent clinical BCIs have enabled 

functional restoration of movement, including intracortical control 
of robotic arms1,2, paralysed limbs3,4 and computer interfaces5,6. A 
critical barrier to the clinical adoption of BCI technology is that 
neural activity recorded by implanted cortical electrodes can vary 
over time7. This is due to small movements of the electrodes relative 
to the surrounding brain tissue, as well as cell loss and scar tissue 
build-up8–11. Left unmitigated, these neural recording instabilities 
can lead the BCI to become uncontrollable, often within hours12.

BCI systems commonly use a fixed relationship between neu-
ral activity and movements to translate recorded neural signals 
into assistive device commands. This relationship—referred to as 
a decoder—is determined in a calibration session where neural 
activity is recorded while the movement intent of the user is known. 
When recording instabilities occur, they make previously calibrated 
decoders no longer appropriate, resulting in a decline in BCI per-
formance. Such instabilities are particularly problematic for clini-
cal BCIs using intracortical recordings13,14, which have provided the 
highest BCI performance demonstrations to date but can be prone 
to severe recording instabilities. To restore control, it is common 
to stop using the BCI to re-estimate decoding parameters by per-
forming another calibration session. Such recalibration procedures 
are burdensome for the user, as they are time consuming and often 
require the intervention of a technician. In response to this need, 
BCI decoders have been developed that attempt to provide stable 

BCI performance in the presence of neural instabilities by reca-
librating the BCI during ongoing BCI control13,15–19. Nearly all of 
these self-recalibrating decoders attempt to form estimates of the 
user’s movement intent on the fly so that decoder parameters can 
be updated without an explicit recalibration procedure. Although 
these approaches have worked well in controlled environments, 
their ability to recover BCI performance depends critically on the 
level of user engagement.

To obviate the need to re-estimate decoding parameters, here we 
developed a neural signal stabilizer to provide stabilized input into 
the BCI. Our approach leverages the scientific finding that neural 
population activity tends to lie within a low-dimensional space, 
termed the neural manifold20–23. The neural manifold (also known 
as the intrinsic manifold) describes the population activity patterns 
that are readily expressed by a population of neurons, and is believed 
to reflect constraints imposed by the underlying neural circuitry24,25. 
Here, we exploit the existence of this low-dimensional space to 
improve the clinical viability of BCIs for individuals with paralysis.

We hypothesized that even though the specific neurons being 
recorded may change over time, the recorded population activity 
reflects a stable underlying representation of movement intent that 
lies within the neural manifold. We developed a manifold-based 
stabilizer to align estimates of the manifold obtained from pos-
sibly unstable neural recordings at different points in time. Using 
the manifold-stabilized neural activity, a decoder with a fixed set of 
parameters can then be used to accurately estimate intended BCI 
movements. In this manner, our stabilized BCI can compensate for 

Stabilization of a brain–computer interface  
via the alignment of low-dimensional spaces  
of neural activity
Alan D. Degenhart! !1,2,3,4,5,14, William E. Bishop! !3,6,7,14, Emily R. Oby2,3,4,5,8, Elizabeth C. Tyler-Kabara2,9,10,11,  
Steven M. Chase! !3,12,13,15, Aaron P. Batista2,3,4,5,15 and Byron M. Yu! !1,3,12,13,15�ᅒ

The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the 
alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between 
neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabili-
ties. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of 
severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions 
and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. 
It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer 
may be applicable to other neural interfaces and may improve the clinical viability of BCIs.

NATURE BIOMEDICAL ENGINEERING | VOL 4 | JULY 2020 | 672–685 | www.nature.com/natbiomedeng672

mailto:byronyu@cmu.edu
http://orcid.org/0000-0002-8369-8517
http://orcid.org/0000-0003-2257-5115
http://orcid.org/0000-0003-4450-6313
http://orcid.org/0000-0003-2252-6938
http://crossmark.crossref.org/dialog/?doi=10.1038/s41551-020-0542-9&domain=pdf
http://www.nature.com/natbiomedeng


ARTICLESNATURE BIOMEDICAL ENGINEERING

neural recording instabilities such as tuning changes, drop-outs or 
baseline shifts without knowledge of the user’s intended BCI move-
ments. These categories of instabilities cover a wide range of those 
that could impact intracortical BCI use. Neural manifolds can be 
estimated using just minutes of neural activity, enabling the rapid 
restoration of control even in the presence of severe recording insta-
bilities. Furthermore, our approach represents a general framework 
for achieving stable BCI control that can be applied to different neu-
ral recording modalities and decoding algorithms.

We assessed the performance of the manifold-based stabilizer 
during BCI cursor control in two rhesus monkeys, each of which 
was implanted with an intracortical microelectrode array in the pri-
mary motor cortex. We show that the manifold-based stabilizer was 
able to compensate for a wide range of neural recording instabilities, 
including those resulting in severe control impairment. In addition, 
the stabilizer was able to overcome instabilities applied over mul-
tiple days. Finally, we show that our stabilized BCI outperformed 
self-recalibrating techniques that rely on estimating the intent of the 
user, particularly during periods when the amount of movement-
related information in the neural activity was low. Preliminary ver-
sions of this work have been previously reported26–28.

Manifold-based stabilization of neural population activity
To overcome neural recording instabilities, we designed a stabilized 
BCI that first extracts a stable low-dimensional representation of 
neural activity (also referred to as the latent state) and then passes 
this stable representation to a fixed decoder to produce BCI move-
ments. Specifically, we used a two-stage approach consisting of: (1) a 
manifold-based stabilizer based on factor analysis20,29; and (2) a BCI 
decoder, which in this case was a velocity Kalman filter30 that pro-
duces a continuous-valued estimate of cursor velocity in real time 
(Fig. 1). Whereas parameters of the stabilizer are updated automati-
cally across time to account for neural recording instabilities, the 
parameters of the BCI decoder are held fixed.

To understand how the manifold-based stabilizer works, con-
sider the scenario where the identity of some of the recorded neu-
rons changes across days (Fig. 2a). In this example, electrodes 1  

and 2 are stable across days 1 and 2, whereas electrode 3 is unstable 
in that it is recording the activity of a different neuron on day 2.  
This in turn results in changes in the patterns of recorded neural 
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Fig. 1 | Stabilized BCI framework. Schematic of the stabilized BCI 
framework. Neural activity recorded from multiple electrodes, shown here 
in the form of a spike raster plot, is binned and passed to the manifold-
based stabilizer. The stabilizer extracts a stable latent state, which is 
passed to the decoder to estimate the velocity of a BCI cursor. Whereas 
the stabilizer dynamically adjusts for neural recording instabilities, the 
parameters of the decoder are held fixed over time.
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Fig. 2 | Manifold-based stabilization intuition and design. a, Neural 
recording instabilities, such as a change in a neuron being recorded by a 
particular electrode (for example, electrode 3 (El. 3); red), result in changes 
in the recorded neural population activity across days. b, With a fixed BCI 
decoder alone, neural instabilities can result in the day 1 decoder (blue/
green arrows, shown as a one-dimensional vector for simplicity) becoming 
inconsistent with neural activity recorded on day 2 (right; black dots). This 
leads to poor BCI performance. Cursor velocities are obtained by projecting 
the neural activity (black dots) onto the decoder axis. c, Combining 
stabilization with a fixed decoder allows the BCI performance to remain high 
across days. To extract a stable representation of neural population activity 
across days, low-dimensional neural manifolds are first fit to the neural 
population activity recorded on each day. The coordinate system for the 
neural manifold on day 2 is aligned so that neurons that are stable across 
days (electrodes 1 and 2) are defined in a consistent manner with respect 
to the coordinate systems for both days (denoted by the axes labelled p1 
and p2). The thick black lines depict the final aligned coordinate system. 
Alignment ensures that unstable neural population activity is mapped to the 
same stable low-dimensional manifold across days, providing a stabilized 
latent state that can be used for decoding across days. FR, firing rate.
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population activity, which can lead to a degradation in performance 
when using fixed decoding parameters (Fig. 2b). One possible solu-
tion is to simply turn off electrode 3 on day 2, but this approach 
would lead to the number of usable electrodes decreasing rapidly 
over time14, leading to irrevocably degraded BCI performance.

Instead, to solve this problem, we draw on the observation that 
neural population activity tends to lie within a low-dimensional 
neural manifold that captures the movement intent of the user23,25. If 
we are able to recover a stable representation of this manifold over 
time, we can continue to use all of the available electrodes without 
needing to turn off those that are unstable. Consider estimating a 
manifold from the recorded population activity at different times, 
where the neural recordings are unstable (Fig. 2c, top). To align the 
manifolds across time, we first identify the electrodes with stable 
recordings (see Methods). Then, we specify that the coordinate axes 
(p1 and p2) for the different estimates of the manifold are defined in 
the same way with respect to the stable electrodes (Fig. 2c, middle). 
This involves transforming the coordinate axes within the neural 
manifold on day 2 until they achieve the same relationship with 
the stable electrodes as on day 1 (see Methods). Stabilized neural 
activity in the aligned manifold (that is, neural activity expressed in 
terms of the coordinate axes p1 and p2) is then passed to the decoder 
to control the BCI (Fig. 2c, bottom).

Stabilization overcomes severe and abrupt recording 
instabilities
We evaluated the manifold-based stabilizer in two rhesus macaques 
(Macaca mulatta) as they performed a centre-out BCI cursor con-
trol task. The monkeys were each implanted with a 96-electrode 
array in the primary motor cortex (M1). To systematically test the 
performance of the stabilizer, we applied instabilities to the neural 
activity used for BCI control. These instabilities were designed to 
mimic the naturally occurring instabilities seen in clinical BCIs.  
We focused on instabilities resulting in severe degradation of BCI 
control to test the performance of the stabilizer more extensively 
than would be possible with natural instabilities alone.

Instabilities observed in intracortical electrode recordings (Fig. 3a)  
typically involve a combination of: (1) baseline shifts, where there 
is a change in the baseline firing rate of an electrode; (2) unit drop-
out, where a neuron dies or moves away from the electrode tip; and 
(3) tuning changes, where there is a change in the functional rela-
tionship between the neural activity and the intended cursor move-
ment due to a change in the neurons in the electrode’s recording 
sphere. To generate these types of instabilities, we modified in real 
time the recorded activity used for BCI control (Fig. 3b). Baseline 
shifts were generated by applying a different random constant to the 
spike counts recorded on each electrode. Unit drop-out instabilities 
were generated by setting the activity of a subset of electrodes to 0. 
Instabilities resulting in tuning changes were generated by replac-
ing the activity of a subset of electrodes with that of a held-out set 
of electrodes. Additionally, we generated combination instabili-
ties, which consisted of simultaneously applied baseline shifts, unit 
drop-out and tuning changes (see Methods).

We assessed the ability of the stabilizer to overcome these 
imposed instabilities (Fig. 4a). Each day‘s experiment began with a 
supervised calibration session (144 trials) where the initial param-
eters of the stabilizer and the fixed parameters of the decoder were 
determined. Following this, the monkey performed 128 trials of BCI 
control using the calibrated decoder in the absence of instabilities. 
Performance during these trials was typically high (average suc-
cess rate: 99.9%; average target acquisition time: 0.6 s; Fig. 4b, blue 
region), with cursor trajectories consistently straight to the target 
(Fig. 4c, first panel). We then introduced a recording instability and 
began updating the parameters of the stabilizer every 16 trials while 
the animal continued to use the BCI (the stabilizer block; Fig. 4b,  
grey region). Performance decreased following introduction of the 

recording instability, with cursor trajectories severely impacted 
(Fig. 4c, second panel). Updates of the stabilizer rapidly improved 
performance; cursor trajectories became straighter and more con-
sistent with subsequent updates (Fig. 4c, third and fourth panels).

After 320 trials, stabilizer updates were then stopped and two 
blocks of trials were performed in the presence of the recording 
instability: one with the final set of stabilizer parameters (the stabi-
lizer evaluation block) and another with stabilization removed (the 
instability evaluation block). Cursor control during the stabilizer 
evaluation block was comparable to that of the baseline evaluation 
block (Fig. 4b (green region) and Fig. 4c (fifth panel)), indicating 
that the stabilizer was able to restore high-performance BCI control. 
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Fig. 3 | Examples of neural recording instabilities. a, Examples of 
differences in tuning curves during an eight-target centre-out arm-reaching 
task across days for monkey N. Each panel shows the average firing rate 
as a function of reaching direction for a single electrode on two different 
days (black and red curves). Firing rates were estimated over a 500-ms 
window beginning 100!ms before the onset of each reach. Individual 
examples may come from separate days. Error bars represent s.e. for each 
target direction. Tuning curves were calculated based on 500 trials per day 
randomly distributed across target directions (range: 50–81 trials per target 
direction). b, Schematic of the three types of applied neural instabilities 
used to evaluate the performance of the stabilized BCI.
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In contrast, cursor control during the instability evaluation block 
(Fig. 4b (red region) and Fig. 4c (last panel)) was comparable to 
that immediately following introduction of the instability, indicat-
ing that the animal was not able to overcome the instability without 
the aid of the stabilizer. Neural activity in the latent space was found 
to be similar during the baseline and stabilizer evaluation blocks, 
indicating that the stabilizer was able to extract a stable representa-
tion (see Supplementary Fig. 1).

Across 42 single-day experiments, we observed similar trends 
in both success rate (Fig. 5a) and target acquisition time (Fig. 5b) 
to those shown in Fig. 4, with stabilization rapidly improving BCI 
performance following the introduction of instabilities. Average 
success rates during the stabilizer evaluation block (98.3 ± 0.4% 
(mean ± s.e.)) were comparable to those during the baseline 
evaluation block (99.9 ± 0.6%), with average target acquisition 
times slightly longer following stabilization (baseline evaluation: 
0.61 ± 0.02 s; stabilizer evaluation: 0.73 ± 0.02 s). To quantify BCI 
performance using a single metric, we used target acquisition rate 
(TAR; the number of targets the animal was capable of successfully 

acquiring divided by the time the cursor was under brain control) 
(Fig. 5c). Across all of the experiments, the results were consistent 
with the example session shown in Fig. 4. That is, introducing the 
recording instability resulted in a significant decrease in perfor-
mance (P < 10−7, Wilcoxon signed-rank test). The stabilizer restored 
performance (as measured by the TAR) with an exponential time 
constant of 0.92 ± 0.15 updates (mean ± s.e.) during the stabilizer 
block, corresponding to 88.9 ± 7.9 s (mean ± s.e.) of control time.

To summarize these results, we compared TARs between the sta-
bilized and non-stabilized BCIs for all of the experiments. We first 
examined whether there was a difference between the stabilizer and 
instability evaluation blocks (Fig. 6a), and found that TARs were sig-
nificantly higher when the stabilizer was used (P < 10−7, Wilcoxon 
signed-rank test). Next, we asked whether, on an experiment-by-
experiment basis, the stabilizer improved performance in the pres-
ence of the applied instabilities (Fig. 6b). We found that the stabilizer 
improved performance in 38 out of 42 experiments (P < 0.05, permu-
tation test), and was able to recover stabilizer parameters that were 
appropriate for the instability applied (see Supplementary Fig. 2).  
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Furthermore, stabilization never significantly decreased perfor-
mance in the presence of the instabilities. We observed that per-
formance during the stabilizer and instability evaluation blocks 
was similar for some experiments (Fig. 6b, points near the dashed 
line). However, the impact of the applied instabilities on BCI per-
formance was relatively small for these experiments (Fig. 6b, colour 
of symbols). In other words, improvements in performance were 
greater for those instabilities resulting in larger initial decreases in 
performance (increase in TAR due to stabilization versus decrease 
in TAR due to instability; R2 = 0.75; P < 10−12), consistent with the 
notion that the stabilizer restored performance to a level at or near 
the baseline. This indicated that performance gains from the sta-
bilizer were most evident when the instability had a large impact  
on performance.

To more deeply understand the stabilizer performance, we per-
formed three analyses. First, we observed that TARs for the stabilizer 
evaluation were slightly lower than those for the baseline evaluation 
block (baseline evaluation: 1.70 ± 0.05 targets per second; stabilizer 
evaluation: 1.31 ± 0.05 targets per  second (mean ± s.e.); P < 10−6, 
Wilcoxon signed-rank test). We sought to determine which fac-
tors may have been responsible for this difference in performance. 
Specifically, we considered whether BCI control during the stabilizer 
evaluation trials was correlated with: (1) the number of electrodes 

dropped out (P = 0.67; correlation between stabilizer recovery 
and the number of electrodes dropped out; see Supplementary 
Fig. 3a), which might degrade the overall information content in 
the recordings; (2) misidentification of stable electrodes (P = 0.38; 
Supplementary Fig. 3b), which could lead to manifold alignment 
error; (3) misalignment of the manifold after stabilization (P = 0.07; 
Supplementary Fig. 3c); or (4) the strength of target direction infor-
mation in the neural activity (P < 10−4; Supplementary Fig. 3d).  
Of these, only the amount of target direction information in neural 
activity (item 4 above) showed a significant correlation with stabi-
lizer performance at the P ≤ 0.05 level. We speculate that this was 
either due to a decline in motivation or closed-loop effects resulting 
from the animals’ responses to the initial application of the instabil-
ity. Second, we considered whether learning might contribute to the 
observed performance improvements. We found that the change in 
TARs between the first and second half of the instability evaluation 
block (0.02 ± 0.01 targets per  second (mean ± s.e.); P = 0.03, two-
sided t-test; t(41) = 2.2) was negligible compared with the difference 
between the stabilizer and instability evaluation blocks (1.0 ± 0.08 
targets per second). This indicates that stabilization was necessary 
for recovery of performance following the introduction of instabili-
ties. Third, we asked whether the stabilizer works in settings with 
only natural instabilities. Indeed, the stabilizer was able to overcome 

1 32

Su
cc

es
s (

%
)

Ac
qu

isi
tio

n 
tim

e 
(s

)
(s

uc
ce

ss
fu

l tr
ial

s o
nly

)

Block (16 trials)

Ta
rg

et
 a

cq
uis

itio
n 

ra
te

(ta
rg

et
s p

er
 se

co
nd

)

Baseline
evaluation Stabilizer

Stabilizer
evaluation

Instability
evaluation

a

b

c

0

100

0

4

NC

1 8 1 20 1 8 1 8
0

3

...

27 2 23 25 24 25 24 24 24 22

Instability introduced

Single experimental session
Stabilizer
updates

Fig. 5 | Summary of the single-day experimental sessions. a–c, Success rate (a), mean acquisition time (b) and TAR (c), calculated over 16-trial blocks, 
are shown for all single-day experimental sessions for both monkeys. Blue lines indicate performance metrics calculated for the baseline evaluation block 
immediately following calibration of the BCI decoder. Grey lines indicate performance metrics calculated while stabilizer updates were occurring. Green 
lines indicate performance metrics calculated during the stabilizer evaluation block, when the stabilizer was held fixed. Red lines indicate performance 
metrics calculated during the instability evaluation block, when BCI control was performed using the non-stabilized decoder. Thin lines indicate the results 
for individual experiments, whereas thick lines indicate the mean across experiments. Acquisition times for blocks with success rates of <50% are plotted 
as red dots, with the number of experiments for which the acquisition time could not be computed for a given block shown above each red dot. Acquisition 
times for these blocks are not included in the average across experiments. As in Fig. 4, performance metrics for the stabilizer block were calculated for all 
trials between stabilizer updates, which occurred nominally every 16 trials.

NATURE BIOMEDICAL ENGINEERING | VOL 4 | JULY 2020 | 672–685 | www.nature.com/natbiomedeng676

http://www.nature.com/natbiomedeng


ARTICLESNATURE BIOMEDICAL ENGINEERING

natural recording instabilities for decoding arm movements, often 
outperforming supervised recalibration (see Supplementary Fig. 4).

Stabilization enables stable multi-day performance
Next, we tested our stabilized BCI in a multi-day scenario. In these 
experiments, the stabilizer was used during ongoing BCI control over 
a 5-d period. During this time, multiple instabilities were applied 
to the neural activity. This allowed us to assess the performance of 
the stabilizer when it was run continuously across days rather than 
turned on following the application of instabilities. On the first day 
of each multi-day experiment, we calibrated an initial BCI decoder 
in the same manner as for the single-day experiments. The stabilizer 
was then turned on and allowed to run continuously using a slid-
ing buffer of recently recorded neural activity. On subsequent days, 
control began with the final stabilizer update from the previous day.  
A combination instability was introduced mid-way through each 
session; the stabilizer was not provided with any information about 
the time at which these instabilities were introduced. Previous insta-
bilities were removed whenever a new instability was applied, mim-
icking neural activity changes that drift in a constrained manner17,31. 
At the end of the fifth day, we removed all of the applied instabilities 
and performed a set of trials using the initial non-stabilized decoder.

Consistent with the single-day experiments, introduction of 
neural instabilities resulted in transient declines in performance, 
with the stabilizer rapidly restoring control (see Fig. 7 for monkey 
N and Supplementary Fig. 5 for monkey L). Performance recovery 
occurred more gradually during the multi-day experiments (aver-
age TAR exponential time constant: 5.14 ± 1.20 updates, corre-
sponding to 384.8 ± 89.3 s of control time (mean ± s.e.)) than during 
the single-day experiments. This was due to using a sliding window 
of neural activity to update the stabilizer, which contained neural 
activity with different instabilities for the 128 trials immediately fol-
lowing the introduction of a new instability (see Methods). These 
results indicate that the stabilizer is capable of compensating for 
neural recording instabilities occurring across multiple days.

Stabilization can outperform supervised recalibration
A key feature of our stabilized BCI is that an estimate of the  
user’s movement intent is not used when updating the stabilizer. 

This suggests that the stabilizer should be able to counteract neural 
recording instabilities even when the user is not actively engaged or 
attempting to use the BCI. We tested this offline by comparing the 
performance of our stabilized BCI with that of supervised recalibra-
tion, which uses knowledge of the BCI target to update the param-
eters of the decoder. This allowed us to compare our approach with 
the best possible performance of those self-recalibrating methods 
that rely on inferring the intent of the user (for example, refs. 13,15,16). 
We evaluated both the stabilizer and the supervised recalibration 
methods using the same neural activity, but updated the parameters 
of the supervised-recalibrated decoder using ground-truth ‘oracle’ 
knowledge of the instructed movement direction. Thus, supervised 
recalibration provides an upper bound on the performance of any 
self-recalibration method that incorporates an estimate of the user’s 
movement intent.

We compared the performance of supervised recalibration 
with that of stabilization for those trials immediately following the 
introduction of the instabilities for the single-day experiments.  
On these trials, BCI performance was low. Periods of low BCI per-
formance represent a challenging scenario for any recalibration 
method because subjects can lose motivation. This would result in 
the neural activity containing less movement-related information, 
potentially making it more difficult for the recalibration method to 
restore BCI performance. Performances of supervised recalibration 
and stabilization were quantified using angular error. The angular 
error is defined as the angle between each of the estimated move-
ment direction vectors (stabilizer and supervised-recalibrated) and 
the oracle movement direction (see Methods). Used in this manner, 
the performance of supervised recalibration reflects the amount of 
information about intended cursor movement direction present in 
the neural activity. We found that the stabilizer improved the angu-
lar error in 37 out of 41 experiments while supervised recalibration 
improved angular error in only 28 out of 41 experiments (Fig. 8a). 
Across the experiments, the stabilizer improved angular error by 
an average of 20.2° (P < 10−8, two-sided t-test; t(40) = 7.9), whereas 
supervised recalibration improved angular error by an average of 
only 5.7° (P = 0.04, two-sided t-test; t(40) = 2.1; Fig. 8b). The mean 
of the distribution of paired differences in improvements achieved 
with stabilization and supervised recalibration on individual  
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experiments (14.5°) was also significantly different from 0 (P < 10−3, 
permutation test; Fig. 8b). This shows that the stabilizer was able to 
restore control during periods of low BCI performance better than 
any supervised recalibration approach would have done.

The lower performance of supervised recalibration compared 
with stabilization suggests that, due to the severity of the instabil-
ity, the animal was no longer fully engaged in the task when BCI 
performance was low. Under these circumstances, the animal was 
probably not intending to control the cursor, leading supervised 
recalibration to perform poorly. In contrast, because stabilization 
does not rely on an estimate of the intent of the user, it can still 
function well during periods of low engagement with the task, when 
the amount of directional information in the neural activity might 
be low. To test this idea more directly, we assessed the relation-
ship between the performance of each method and the strength of  
cursor movement direction signals in the neural activity used  
for stabilization and recalibration (see Methods). For supervised 

recalibration, we found a strong relationship between performance 
and the strength of direction signals in the neural activity (slope of 
linear fit: 1.3; P < 0.001 that the slope was different from 0; permu-
tation test; Fig. 8c). This relationship was weaker for stabilization 
(slope of linear fit: 0.7; P = 0.004; permutation test; Fig. 8d), indi-
cating that the manifold-based stabilizer was able to restore perfor-
mance better than supervised recalibration when the animals were 
less engaged in controlling the BCI.

The ability of the manifold-based stabilizer to maintain BCI con-
trol during periods when directional information was low suggests 
that aspects of the underlying neural manifold might be conserved 
even when user engagement is low. To examine this further, we 
quantified the similarity of the manifolds identified by the stabilizer 
during baseline control and immediately after the introduction of 
instabilities. The similarity of two manifolds can be quantified by 
measuring how much one manifold can explain the variance cap-
tured by the other. Across all of the single-day experiments included 
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in the above analysis, we found that manifolds identified immedi-
ately after the instability was applied captured on average 76 ± 2% 
(mean ± s.e.) of the shared variance of the baseline manifolds (see 
Methods). For comparison, randomly generated manifolds cap-
tured on average only 17 ± 1% of the shared variance of the baseline 
manifolds (see Methods). This shows that the manifold is largely 
conserved across differing levels of movement-related information 
in the neural activity. The stabilizer leverages this conserved neural 
manifold to restore control during periods of low BCI performance, 
when the subject might be less engaged in the task.

Discussion
We developed a stabilized BCI that leverages the low-dimensional 
structure present in neural activity to enable proficient BCI con-
trol in the presence of neural recording instabilities. In a series of 
single-day closed-loop experiments, the manifold-based stabilizer 
quickly restored BCI performance following the onset of applied 
neural instabilities mimicking those encountered in a clinical set-
ting, including those resulting in a near-complete loss of control. 
During periods when the amount of directional information in the 
neural activity was low, perhaps because the user was not actively 
engaged in BCI control, we found that our stabilized BCI outper-
formed supervised recalibration techniques that rely on estimat-
ing the intent of the user. Additionally, in multi-day experiments, 
we demonstrated the feasibility of our approach during a scenario 
approximating a clinical use case, in which the stabilizer was used 
continuously across days to counteract neural recording instabili-
ties as they arose. Used in this manner, our stabilizer would elimi-
nate the burden of recalibration for BCI users, which would provide 
greater autonomy and possibly lower the cost of care.

Stabilization enables unimpeded BCI performance in the pres-
ence of unstable neural recordings by leveraging the low-dimen-
sional structure present in neural population activity. This structure, 
which captures important features of cortical processing21–23, proba-
bly reflects constraints imposed by the underlying network structure 
in the brain25. Recent work has provided evidence for the existence 
of a low-dimensional manifold that is consistent across time32,33, 
suggesting that while individual neurons may come and go due to 
recording instabilities, the representation of movement intent within 
this manifold is stable. Our stabilized BCI takes advantage of this by 
using activity in the low-dimensional neural manifold (defined by 
the set of neurons that are being recorded from at a given point in 
time) to estimate intended BCI movements. By doing this, we de-
emphasize the role of individual neurons in BCI control. Instead, we 
leverage neural population activity to estimate latent variables that 
reflect the user’s movement intent. This approach is consistent with 
findings that the relationship between neural activity and movement 
intent is stable34,35, including across long timescales in low-dimen-
sional spaces relevant for BCI control36.

Previous studies have shown that the relationship between neural 
activity and movement intent can be stable across days to years34–36. 
Also, recent work has shown that neural activity tends to reside in 
a low-dimensional manifold20–23,25. The key idea of this study is to 
combine those insights for stable BCI decoding in the face of neural 
recording instabilities. Even with different but overlapping subsets 
of recorded neurons, we can identify a stable set of latent states (that 
is, align estimates of the neural manifold) over time where the latent 
states represent the movement commands present in the larger cir-
cuit from which the neurons are recorded. Given the consistent rela-
tionship between the activity of individual neurons and movement 
intent, one would expect that the latent states would also maintain 
a stable relationship with movement intent. Indeed, this is what the 
manifold-based stabilization approach leverages to maintain BCI 
performance in the presence of neural recording instabilities. These 
results support the notion that latent states may represent the ele-
mental units of computation and volitional control in the brain23,25,37.

Our manifold-based stabilization approach can be applied to 
other BCI systems. Three choices need to be made when setting 
up a stabilized BCI framework: the method for identifying stable 
electrodes, the manifold estimation method used by the stabilizer 
and the decoding algorithm used to drive BCI movements. First, 
any method to identify stable electrodes can be integrated into our 
framework; the alignment procedure used by the stabilizer only 
requires knowledge of a set of electrodes that are stable. We devel-
oped a method for identifying electrodes that maintained a stable 
relationship with the neural manifold (see Methods), but other 
approaches (for example, refs. 31,38,39) can also be used. Second, dif-
ferent methods for identifying linear manifolds can be used as part 
of our stabilization approach. This includes factor analysis, princi-
pal component analysis and more40. We used factor analysis because 
it focuses on variability that is shared among neurons20,29. This is 
in contrast with principal component analysis, which does not dis-
tinguish between shared and independent variability. Third, any 
decoder can be integrated into our stabilized BCI framework. We 
chose a Kalman filter, which is widely used for BCI decoding30,41, 
but other decoders, such as an optimal linear estimator42 or linear 
filter43, can also be used.

This flexibility allows our stabilizer to be extended to work with 
different types of neural signals, including sorted neural units, 
local field potentials44, electrocorticography (ECoG)45,46 and elec-
troencephalography (EEG)47. EEG and ECoG recordings in par-
ticular are prone to instabilities resulting from changes in electrode 
impedance48,49. Because EEG and ECoG recordings are highly cor-
related across electrodes50,51, these recordings can be described by 
a low-dimensional manifold. The manifold can be aligned across 
days using the stabilizer we presented here. The latent state describ-
ing the manifold can then be passed to a BCI decoder of the user’s 
choice, including nonlinear decoders52–54.

To successfully restore control following recording instabilities, 
our approach requires a sufficient number of electrodes that are sta-
ble across each stabilizer update. This number must be greater than 
the dimensionality of the latent space to be able to properly align 
manifolds55. We have previously shown that the dimensionality of 
population activity in primary motor cortex during two-dimen-
sional BCI control is approximately ten25, which is much lower 
than the number of electrodes (typically 96) on the multi-electrode 
arrays used for intracortical BCIs. Provided that most electrodes 
remain stable across successive stabilizer updates, our stabiliza-
tion approach is likely to continue to work even as the complexity 
of the task (and potentially the dimensionality of the latent space) 
increases22,56 (see Supplementary Fig. 6), such as during higher 
degree-of-freedom prosthetic limb control57.

We found that the manifold-based stabilizer outperformed 
supervised recalibration during periods when neural activity con-
tained little information about BCI movement direction. The pau-
city of movement-related information in the neural activity suggests 
that animals were not actively attempting to control the BCI cursor. 
This indicates that the stabilizer may be able to restore BCI con-
trol even during periods of low user engagement. This would be 
possible through overlap between the estimates of the neural mani-
folds made during periods of high and low task engagement. The 
similarity of the population activity structure, despite differences in 
the amount of directional information in the neural activity, sug-
gests that much of the manifold reflects constraints imposed by the 
underlying network, rather than being highly task dependent. This 
is consistent with observations of similarities between spontaneous 
and evoked neural activity24,58–60 and similarities in the structure of 
neural population activity across tasks61, as well as with our previous 
observations that it is difficult to generate patterns of neural activity 
outside the neural manifold25. The similarity of neural population 
activity across different task contexts and levels of user engagement 
may enable our stabilizer to counteract the effect of neural recording  
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instabilities on BCI control after extended periods of inactivity, and 
possibly even across periods of sleep.

It is interesting to consider how the manifold-based stabilizer 
might interact with ongoing short- and long-term learning pro-
cesses. The stabilizer is designed to minimize the need for learning. 
In our experiments, animals showed no ability to learn to overcome 
the neural instabilities when the stabilizer was off. When the sta-
bilizer was on, control improved quickly. Our results indicate that 
learning contributed minimally, if at all, to the improvements we 
observed following the introduction of instabilities. In further sup-
port of this, we did not observe after-effects when returning to the 
initial stabilizer parameters at the end of each experiment. It is pos-
sible that performance of the stabilizer could be negatively affected 
by changes in the neural manifold. We have found that learning 
over multiple days can lead to a change in the neural manifold62,63. 
In contrast, learning within a single day predominately involves 
reassociating existing patterns of neural activity with different BCI 
movements, which would not lead to a change in the manifold64. 
This suggests that stabilization is unlikely to be inhibited by learn-
ing over the timescale over which stabilizer updates occur. In fact, 
the stabilizer could actually enhance BCI performance with prac-
tice by engaging long-term learning processes. By compensating for 
recording instabilities, the stabilizer could give subjects a consis-
tent relationship between the intended and actual movements with 
which to practice and learn. It is worth considering, in future work, 
how long-term learning processes might be sculpted to enable even 
better BCI control65,66.

Manifold-based stabilization offers distinct advantages over 
existing approaches for achieving stable BCI performance. Several 
self-recalibrating BCI algorithms attempt to stabilize BCI perfor-
mance by re-computing decoder parameters based on estimates of 
user intent during online control13,15,16. These approaches have been 
shown to successfully combat slow degradations in BCI control, 
but are not designed to restore performance when severe neural 
recording instabilities result in inaccurate decoder output and/or 
disengagement of the user. Manifold-based stabilization uses a set of 
stable electrodes to map neural activity to the same low-dimensional 
space even in the presence of severe instabilities, allowing control 
to be restored after sudden degradations in BCI performance. We 
found that our stabilized BCI was more accurate and more robust 
than supervised calibration approaches to periods when the amount 
of movement-related information in the neural activity was low (see 
Fig. 8). Other self-recalibrating methods exist that track changes in 
the offsets of the firing rate of individual electrodes17,18. Our stabili-
zation technique is able to compensate not only for offsets in firing 
rates but also for general changes in the tuning of neural units.

Another recent approach to achieving stable BCI performance 
employs a neural network and a large set of initial calibration data 
collected over multiple days to calibrate a decoder that is able to 
compensate for a range of instabilities19. The stabilization approach 
presented here is also able to maintain performance in the face 
of a wide range of instabilities, but requires only a small amount 
of initial calibration data that can be collected within minutes. 
Decoders can also be calibrated by aligning distributions of neu-
ral activity to previously learned distributions of movement kine-
matics when user-specific kinematic data are not available67. This 
method assumes anisotropic movement distributions that are simi-
lar across users, thus requiring engagement of the user to function. 
Stabilization does not require anisotropic movement distributions, 
and can be applied even when users are disengaged from BCI con-
trol. Additionally, recent work has shown that when performing 
supervised recalibration, incorporation of previous knowledge of 
latent dynamics improves BCI performance over time68. It is entic-
ing to consider how coupling stabilization with methods that incor-
porate latent dynamics (for example, ref. 32) could further improve 
BCI control.

Manifold-based stabilization is complementary to supervised 
calibration techniques. It aims to stabilize inputs to the BCI decoder, 
whereas supervised recalibration techniques update the parameters 
of the decoder directly. While stabilization will reduce the fre-
quency of supervised recalibration needed to maintain a certain 
BCI performance level, supervised calibration can still be beneficial 
from time to time.

Our manifold-based framework for stabilizing neural record-
ings has the potential to be broadly applied across multiple neu-
ral recording modalities and device applications beyond BCIs. The 
field of neural interfaces is rapidly growing; as more devices inter-
face with the brain to treat a diversity of cognitive impairments, 
including language disorders (for example, ref. 69) and depression 
(for example, ref. 70), it will become increasingly important to be 
able to identify stable neural representations for cognitive phenom-
ena. Our neural manifold-based stabilization approach provides a 
means by which to accomplish this, potentially enabling improved 
therapeutic interventions for a variety of neurological disorders 
beyond paralysis.

Methods
Electrophysiology and behavioural task. All animal handling procedures were 
approved by the University of Pittsburgh Institutional Animal Care and Use 
Committee and were consistent with the National Institutes of Health’s Guide for 
the Care and Use of Laboratory Animals. Two male Rhesus macaques (aged 7 and 
11 years) were each implanted in the proximal arm region of primary motor cortex 
with a 96-electrode microelectrode array (Blackrock Microsystems). During the 
experiments, the animals sat in a primate chair in front of a visual display with both 
arms loosely restrained and their heads "xed. Neural recordings were thresholded 
at 3.0 times the root-mean-square voltage independently on each electrode. For 
each single-day experiment, thresholds were calculated at the beginning of each 
experimental session while the animal sat calmly in a darkened room. #reshold 
crossing events were examined at the start of each experiment and any electrodes 
exhibiting activity determined to be non-neural in origin based on waveform shape 
were excluded from use in the BCI. On average, 92.9 ± 1.2 (mean ± s.d.) electrodes 
were used for each experiment. For multi-day experiments, thresholds were set at 
the beginning of the "rst day and "xed for the remainder of the experiment.

Animals performed a two-dimensional centre-out cursor task under BCI 
control. Trials began with the presentation of a cursor and peripheral target. 
Peripheral targets were selected from one of eight possible locations. The cursor 
remained fixed at the centre of the workspace for the first 300 ms of each trial 
(referred to below as the freeze period), after which it was placed under BCI 
control. The animal was then given 7.5 s to acquire the target with the cursor in 
order to receive a liquid reward. No target hold time was enforced. Targets were 
presented in a pseudo-random order during decoder calibration (see ‘Baseline 
decoder calibration’ below), such that each of the eight targets was presented once 
before any target was repeated. Targets were chosen randomly or pseudo-randomly 
after calibration.

Stabilization and decoder. The framework we propose for neural stabilization is 
general and can be used with different methods of identifying stable electrodes 
and different BCI decoders. Below we describe our method of stabilization, 
including how stable electrodes were identified and how neural stabilization was 
implemented for online use, as well as the particular decoder we used in this work.

Neural stabilizer. We developed a manifold-based stabilizer that maps neural 
activity to a stable manifold estimated across time. The key idea is that from the 
neural activity during two separate blocks of trials, we can produce a separate 
estimate of the manifold. However, only some electrodes are stable between blocks 
and the coordinate system of a manifold is determined only up to an orthogonal 
transformation (informally, a rotation). To align the different estimated manifolds, 
we leveraged electrodes with stable activity between blocks.

We used factor analysis to relate neural activity, R∈ut
q (consisting of counts  

of threshold crossings on q electrodes at time step t), to a latent state, R∈zt
10, 

which describes the location of neural activity within the manifold. According to 
factor analysis:
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where RΛ ∈ ×q 10 defines the relationship between each electrode and each element 
of the latent state (known as the loading matrix), Rμ ∈ q is a vector of mean spike 
counts for each electrode and RΨ ∈ ×q q is a diagonal matrix that describes the 
variability that is independent for each electrode. The columns of Λ form the 
coordinate system for the manifold. We set the dimensionality of zt (that is, the 
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number of dimensions of the manifold) to ten for all experimental sessions. Post 
hoc, we found that the number of latent dimensions needed to capture 95% of the 
shared variance of the neural activity during calibration trials was between four 
and eight for our single-day experiments. While this is lower than the value used in 
our experiments (ten), estimating dimensionality in this manner produces a more 
consistent estimate of dimensionality at the expense of slightly underestimating 
the true dimensionality71. Additionally, when holding all else constant, we have 
found that stabilizer performance is minimally affected when using an assumed 
dimensionality greater than the estimated dimensionality of the neural activity but 
severely impacted when fewer dimensions are used (see Supplementary Fig. 7). In 
practice, the assumed dimensionality should match the true dimensionality of the 
neural activity as closely as possible. As the true dimensionality of the manifold 
increases, a larger number of stable electrodes will be required (so that the number 
of stable electrodes is greater than the dimensionality of the manifold), and more 
recording time will be needed to estimate the manifold robustly71.

In this work, ut was formed from counts of threshold crossings on 75 electrodes 
of a multi-electrode array in 45-ms non-overlapping bins. The factor analysis 
model parameters μΛ,  and Ψ can be estimated given …u u, ,1 2  using expectation 
maximization72. Given Λ1 and Λ2 estimated from two different blocks of trials, we 
can ensure the coordinate systems for both estimates of the manifold are aligned by 
solving the following optimization for R∈ ×Ô 10 10:

= ∥Λ − Λ ∥=Ô s s Oargmin ( , :) ( , :) (1)
O OO I

T
F: 1 2
2

T

where s indexes a subset of the rows of Λ1 and Λ2 corresponding to stable 
electrodes (see ‘Identifying stable electrodes’ below). In equation (1), =O OO I: T  
indicates the set of orthogonal matrices and ∥ ⋅ ∥ F

2  indicates the square of  
the Frobenius norm, which is the sum of the squared entries of a matrix.  
Equation (1) is known as the Procrustes problem and can be solved in closed 
form73. With the exception of rare loading matrices that contain rank degenerate 
submatrices, a unique Ô can be recovered as long as the number of electrodes 
indexed by s (that is, the number of stable electrodes used for manifold alignment) 
is greater than or equal to the number of dimensions of the manifold (in this  
case, ten)55. After Ô is identified, the coordinate system for Λ2 is aligned to that  
for Λ1 by multiplying Λ2 by ÔT.

In this work, we set Λ1 to be the loading matrix calculated during the 
initial calibration procedure (see ‘Baseline decoder calibration’ below). During 
stabilization, the parameters Λ, μ and Ψ were successively re-estimated from 
neural activity recorded during BCI use (see ‘Online stabilizer implementation’ 
below) and each loading matrix Λ was aligned to Λ1 using equation (1). After Λ 
had been aligned, stabilized estimates of latent state ̂zt were obtained from ut using 
the following factor analysis projection:

μβ̂ = −z u( )t t

where β = Λ ΛΛ + Ψ −( )T T 1

Identifying stable electrodes. Manifold alignment can be used in conjunction 
with any method that can identify stable electrodes across time. The method 
for identifying stable electrodes need not incorporate any information about 
the manifold. For example, identification of stable electrodes can be based on 
waveforms, inter-spike intervals and correlations between recorded neurons31,38,39. 
We chose to use a method that identifies electrodes with a stable relationship with 
the underlying manifold, as parameterized by rows of Λ. We do this by directly 
comparing estimates of Λ from two different blocks of trials before manifold 
alignment. Our stable electrode identification method proceeds in two steps. 
Given Λ1 and Λ2 estimated from two different blocks of trials, electrodes with 
corresponding rows of either Λ1 or Λ2 with l2 norms less than a threshold, T, are 
first identified and removed from consideration. This is done to remove electrodes 
with rows in Λ that may be hard to estimate and therefore be less reliable for the 
purposes of manifold alignment. In this work, T was set to 0.01 counts per bin. In 
practice, thresholding in this manner mainly serves to exclude electrodes that are 
noisy or have experienced unit drop-out. The value of T used should be lower than 
the smallest observed norm for valid (that is, low-noise) electrodes.

We then use an iterative procedure to rank and remove electrodes according 
to how much they have changed their relationship with the underlying manifold 
(algorithm 1). This is done by searching for electrodes with large changes in the 
rows of Λ1 and Λ2, as these rows parameterize each electrode’s relationship with 
the underlying manifold. Because the coordinate system of Λ2 must be aligned to 
that of Λ1 for this comparison, we iteratively align loading matrices and remove 
unstable electrodes with algorithm 1 until a user-specified number, B, of electrodes 
remains, which are then used as the stable set s. In this work, B was set to 60 for all 
experiments. We have found that stabilizer performance is consistent across a wide 
range of numbers of alignment electrodes using neural activity in which natural 
recording instabilities are present, but decreases when the number of alignment 
electrodes used is near the dimensionality of the manifold (see Supplementary  
Fig. 7a). In practice, the value of B used must be larger than the dimensionality of 
the neural activity, and should be set to the largest value possible while excluding 

the electrodes with severe instabilities. Used in this manner, the number of 
alignment electrodes can be viewed as an estimate of the degree of stability 
expected in the neural activity. When the degree of stability in the neural activity is 
high, the number of alignment channels used can be large. However, if the degree 
of stability is low, the number of alignment channels used should be lower.

Algorithm 1. A greedy algorithm for identifying rows of Λ1 and Λ2 that have 
changed the most. Here, n s( ) indicates the number of electrodes indexed by s and 
\ indicates the set difference. The initial set s includes all electrodes that were not 
initially removed from consideration due to having small rows in Λ1 or Λ2.

Input: Λ1, Λ2, B, s: Indices of rows of Λ1 and Λ2 for potentially stable 
electrodes.

Output: s
While >n s B( )  do
Λ′ ← Λ s( , :)1 1
Λ′ ← Λ s( , :)2 2

← ∣∣Λ′ − Λ′ ∣∣=Ô OargminO OO I
T

: 1 2 2T

Δ = Λ′ − Λ′ÔT
1 2

← Δj lIndex of the row of with the largest norm2
=s s j\

end
Our approach for identifying stable electrodes has three benefits for the 

purposes of stabilization. First, Λ is already estimated in the process of manifold 
alignment and is available with no added computational cost. Second, electrodes 
that show a baseline shift but otherwise preserve the way in which they covary 
with other electrodes can still be used for manifold alignment. This is beneficial 
because manifold alignment becomes more robust when more electrodes are used. 
Third, this method for identifying stable electrodes only requires binned spike 
counts, making it particularly suitable for real-time BCI use, when limitations in 
data transmission and processing may preclude the availability of features such as 
waveform shape.

Because our approach for identifying stable electrodes is based on how the 
activity of each electrode covaries with others, any instabilities that do not result 
in a change in covariance will be missed. For example, our approach may fail to 
identify instabilities when a newly appearing neuron has the same tuning curve as 
the original neuron on that electrode. Such a new neuron is likely to covary with 
the other neurons in the population in a similar way to the original neuron, since 
the tuning curve determines much of a neuron’s activity. However, such changes are 
not likely to be detrimental to BCI decoding. Because the decoder maps patterns 
of covariability to movement, a newly appearing neuron that covaries with the 
population in the same manner as the original neuron would maintain the same 
relationship to the manifold as the original neuron, and thus would produce the 
same input to the decoder. In other words, the goal of our approach to identifying 
stable electrodes is not to identify all instabilities that could be identified using 
waveform shape, interspike interval histograms, peristimulus time histograms and 
other metrics. Rather, our approach aims to identify only those instabilities that 
could be detrimental to stabilization and BCI decoding.

Online stabilizer implementation. The stabilizer was updated nominally every 16 
trials using neural data collected during online BCI use. There was slight variability 
in the number of trials between updates due to the time required to perform the 
necessary update computations. Neural activity in the first 1 s of each successful 
or unsuccessful trial (excluding the initial freeze period) was used. For trials <1 s, 
all neural activity from trial start to target acquisition was used. Updating the 
stabilizer consisted of calculating new factor analysis parameters, identifying stable 
electrodes and performing alignment of the coordinate system for the manifold 
identified by the new factor analysis parameters.

For the single-day experiments, updates to the stabilizer were performed 
using all accumulated trials performed while stabilization was running (monkey 
L) or using a 128-trial sliding buffer (monkey N). For the multi-day experiments, 
a 128-trial sliding buffer was used that was reset at the beginning of each day. 
Targets were presented randomly while stabilization was running, and both 
successful and failed trials were used for stabilizer updates. Because targets were 
presently randomly, the target distribution was approximately uniform for our BCI 
experiments. We have also assessed how stabilization performs when updating 
using data with non-uniformities in kinematic sampling (see Supplementary  
Fig. 8). We found that stabilization was able to improve performance beyond that 
of a non-stabilized decoder even when targets were sampled non-uniformly up to a 
ratio of approximately 2:1.

When running stabilization in an online manner, the user must decide 
both how often the stabilizer should be updated and what data should be used. 
Stabilization updates can occur as rapidly as the necessary computations can be 
performed (on the order of several seconds in our experience). The amount of data 
used determines how responsive the stabilizer is to new instabilities; using small 
amounts of data will allow the stabilizer to be more responsive to instabilities at the 
expense of increased variability in the estimates of the manifold. In simulations, 
we have found that using 128 trials is sufficient to perform stabilization over 
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a wide range of mainfold dimensionalities (see Supplementary Fig. 6). As the 
dimensionality of the task and/or manifold increases, it may be desirable to use 
more data for stabilizer updates in order to compensate for any potential decreases 
in performance that may arise from the need to estimate more parameters from a 
limited amount of data. Practically, this can be done by increasing the buffer size 
used for stabilization.

Decoder. The BCI cursor velocity can be decoded from the stabilized latent state 
using any standard BCI decoder, including the Kalman filter30,41, linear filter43 
or optimal linear estimator42. Here, rather than decoding from the raw recorded 
activity, we decoded from the stabilized latent state25,74. In this work, we chose to 
use a Kalman filter. A Kalman filter is based on a linear dynamical system that 
describes how cursor velocity changes over time:

N

N

~
∣ ~− −

x m
x x x

V
A Q
( , )
( , )t t t

0 0 0

1 1

where R∈xt
2 comprises the horizontal and vertical cursor velocity at time step 

t, R∈m0
2 and R∈ ×V0

2 2 are the mean and covariance matrix for initial velocity, 
respectively, and R∈ ×A 2 2 and R∈ ×Q 2 2 are the state transition and noise 
covariance matrices. The observation model describes the relationship between the 
latent state and the cursor velocity:

N̂ ∣ ~ +z x x dC R( , )t t t

where R∈ ×C 10 2, R∈d 10 and R∈ ×R 10 10 are the parameters of the observation 
model. The decoded velocity at time step t, ̂xt, is obtained using a steady-state 
Kalman filter

̂ = ̂ − + − ̂ −x z d xK I KC A( ) ( )t t t 1

where K is the steady-state Kalman gain. When estimating ̂xt for the first time 
bin in a trial, we set ̂ =−x mt 1 0. We used an isotropic state noise covariance, 
which we set by hand. The remaining parameters m0, V0, A, C, d and R were fit 
using maximum likelihood given the estimated latent states and intended cursor 
velocities during the calibration period (see ‘Baseline decoder calibration’ below).

After performing all of the experiments, we discovered that the parameters of 
the Kalman filter for online use were calculated in a manner that differed slightly 
from the standard equations for the steady-state Kalman filter. By retrospectively 
decoding all bins from trial start to target acquisition across all trials and 
experiments with the correct parameters, we found that in 99% of bins the 
direction of the decoded velocity would have changed by <5.6° and the absolute 
value of the decoded speed would have changed by <11.4%. Because the same 
Kalman filter parameters were used whether stabilization was on or off, they could 
not have produced the benefits of stabilization that we report here.

Baseline decoder calibration. At the start of each experiment, we fit an initial 
stabilizer and decoder, which resulted in proficient BCI control. This process 
consisted of a series of updates to the stabilizer and decoder. First, we obtained an 
initial set of stabilizer and decoder parameters based on 16 trials of a cursor passive 
observation task25,75. During these trials, the BCI cursor was automatically moved 
in a straight line to the target at a constant velocity. Following this, the animal 
performed nine 16-trial blocks with the cursor under brain control. Stabilizer and 
decoder parameters were re-calculated after each block using data accumulated 
across all BCI blocks. The final baseline stabilizer and decoder were calibrated 
using 144 trials of BCI data.

Calibration data consisted of spiking activity and cursor velocities over the first 
1 s of each successful brain control trial, excluding the initial freeze period. For 
trials <1 s in duration, all data from the start of cursor control until acquisition of 
the target were used. Threshold crossings and cursor velocities were binned in non-
overlapping 45-ms windows. Velocities for each decoded bin were rotated under 
the assumption that the animal was attempting to move in a straight line from the 
decoded cursor position at the end of the bin to the target with the same speed as 
during online control (that is, cursor velocity magnitudes were preserved)41. Trials 
were removed from the calibration set to preserve a uniform number of trials 
across target conditions.

Generating neural instabilities. We utilized four types of experimenter-generated 
neural instabilities to assess the performance of the stabilizer: baseline shifts, 
unit drop-out, tuning changes and combination instabilities. These instabilities 
were designed to mimic those frequently observed in clinical BCI recordings, 
while allowing the severity of the instability to be controlled by the experimenter. 
Baseline shifts were implemented by adding a randomly generated constant (mean 
and standard deviation of 0.75 and 0.5 spikes per bin, respectively) to the binned 
spike count of each electrode. Unit drop-out instabilities were implemented 
by setting the spike count on 15 electrodes to zero. Tuning change instabilities 
were implemented by replacing the spike count activity on 15 of the electrodes 
with that from a held-out electrode set. Finally, combination instabilities were 
designed to mimic a realistic recording scenario under which multiple types of 

instabilities can occur, and were generated by simultaneously applying a baseline 
shift to all electrodes (mean and standard deviation of 0.375 and 0.25 spikes per 
bin, respectively), a unit drop-out instability to five electrodes and a tuning change 
instability to ten electrodes.

We selected instabilities to generate large decreases in BCI performance. For 
baseline shift and unit drop-out instabilities, we selected instabilities that were 
expected to result in large changes in the progress of the BCI cursor towards the 
target. Progress was defined as movement of the cursor in the direction of the 
target from the centre of the workspace64. Progress was computed using data from 
the baseline evaluation block during the first 11 time steps (495 ms) of closed-
loop control for each trial (that is, excluding the initial 300-ms freeze period) 
and then averaged across trials to yield a single value for each baseline evaluation 
block. Each day, we computed the expected progress of 2,500 randomly generated 
candidate instabilities. We sought an instability that resulted in a large change in 
progress by evaluating:

− + −= … p p s sargmax [( ) ( ) ]i
b i

p
b

p
i

1, ,2500
2 2 1/2

where pb and sp
b are the mean and standard deviation of progress across trials 

during the baseline evaluation block and pi and sp
i  are the mean and standard 

deviation of progress for the ith candidate instability. This allowed us to identify 
instabilities that resulted in large changes in both the bias (that is, changes in mean 
progress) and variability (that is, changes in standard deviation of progress) of the 
decoder output.

For tuning change instabilities, we sought to identify pairs of electrodes with 
large differences in preferred cursor movement direction. Each day, we calculated 
the preferred direction of each electrode based on data collected during the 
baseline evaluation block of the previous experiment. A candidate tuning change 
electrode pair was then selected at random for which the difference between 
the preferred direction of each swap pair was at least 60°. We then evaluated the 
expected progress in the presence of the candidate instability and a candidate 
instability was selected if it was expected to result in large, non-uniform changes in 
cursor progress based on visual inspection.

Combination instabilities consisted of applying a baseline shift to all 75 
electrodes in the decoder, a drop-out instability to five electrodes and a tuning 
change instability to ten electrodes. In contrast with pure baseline shift or unit 
drop-out instabilities, baseline shift and unit drop-out instabilities for combination 
experiments were each selected from among 1,250 randomly generated candidate 
instabilities. The electrode pairs used in tuning change instabilities were excluded 
from the selection of unit drop-out instabilities so that a unit with an applied 
tuning change was not subsequently dropped out.

Single- and multi-day experiments. We performed a total of 42 single-day  
and two multi-day experiments (lasting 5 d each) over the course of the study. 
Of the single-day experiments, baseline shifts were applied in nine experiments 
(seven for monkey L and two for monkey N), unit drop-outs were applied in 
ten experiments (eight for monkey L and two for monkey N), tuning changes 
were applied in 14 experiments (ten for monkey L and four for monkey N) and 
combination instabilities were applied in nine experiments (five for monkey L and 
four for monkey N). One multi-day experiment was performed with each monkey.

Single-day experiments began with the calibration of the initial baseline 
stabilizer and decoder (see ‘Baseline decoder calibration’ above). A block of 
approximately 128 trials was then run to evaluate baseline BCI performance  
(the baseline evaluation block). The instability was then selected using these data 
(baseline shift, unit drop-out instabilities only; tuning change instabilities were 
selected using data from the previous experiment). Following the selection of 
the instability, an additional block of 32 trials was performed using the baseline 
stabilizer and decoder to ensure that the monkeys were engaged in the task.  
After this, the instability was introduced and approximately 320 trials were 
performed during which stabilizer parameters were updated nominally every 
16 trials (the stabilization block). Stabilizer updates were stopped at the end of 
this block. Two sets of 128 trials were then run with: (1) the final set of stabilizer 
parameters (the stabilizer evaluation block); and (2) stabilization updates removed 
(the instability evaluation block). The order of these blocks was randomized across 
the experiments. The same instability was used for the stabilization, stabilizer 
evaluation and instability evaluation blocks. The instability was then removed  
and the animal performed a minimum of 128 additional trials with the initial 
stabilizer and decoder parameters and without the instability (the post-stabilization 
baseline block); analysis for this block was restricted to the first 128 trials.  
In four experiments, the instability evaluation block was presented immediately 
following the baseline evaluation block.

Multi-day experiments were conducted to evaluate the ability of the stabilizer 
to handle both naturally occurring neural instabilities and applied instabilities, and 
to provide a demonstration of a clinical use scenario. On day 1, an initial baseline 
stabilizer and decoder were calibrated in the same manner as during the single-day 
experiments, followed by 128 trials of baseline control. Following this, stabilizer 
updates were turned on, and after approximately 250 trials an instability was 
applied. All instabilities applied during multi-day experiments were combination 
instabilities (baseline shift applied to 75 electrodes; tuning change applied to ten 
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electrodes; unit drop-out applied to five electrodes), which were selected in a 
similar manner as in single-day experiments using data collected with the baseline 
decoder on day 1. After the application of the instability, the stabilizer was allowed 
to update for the remainder of the experimental session. On subsequent days, the 
experiment began using the instability and last stabilizer update from the previous 
day, with stabilizer updates continuing throughout the day. The data buffer used 
for updating the stabilizer was reset between days. After approximately 250 trials, 
the current instability was removed and a new one was applied. At the end of the 
last day, the instability was removed and a block of trials was performed using the 
initial stabilizer and decoder parameters calibrated on day 1.

Stabilizer performance evaluation. Stabilizer performance was quantified  
using target acquisition time, success rate and TAR. Target acquisition time  
was defined as the time taken to acquire the target, excluding the 300-ms freeze 
period at the start of each trial. Success rate was defined as the percentage of  
targets successfully acquired within the maximum trial time (7.5 s). TAR was  
the primary metric used to compare performance both within and across 
experimental sessions, and was defined as the number of targets acquired divided 
by the time the animal was in control of the BCI cursor. This allowed us to 
characterize performance using a single metric capturing both success rate and 
acquisition time.

To assess the significance of changes in BCI performance due to the applied 
instabilities, we compared TAR before and after instabilities using a Wilcoxon 
signed-rank test. For single-day experiments, we compared TAR for the last 
16 trials of the baseline evaluation block with that of the first 16 trials of the 
stabilization block immediately following the introduction of the instability and 
before the first stabilizer update. A permutation test was used to determine the 
significance of stabilizer performance improvements for individual single-day 
experiments by randomly permuting the identities of trials in the stabilizer and 
instability evaluation blocks. The P value for each experiment was calculated as the 
percentage of times the difference TARstabilizer − TARinstability for the non-permuted 
data was greater than that of 10,000 random permutations.

To characterize the rate of performance recovery during stabilizer use, we 
estimated the time constant of an exponential function fit to the post-instability 
TAR for each stabilizer update. To do this, we calculated mean TARs as a function 
of stabilizer update. An exponential function was then fit to the mean. The time 
constant of the fit function characterized how quickly, in terms of stabilizer 
updates, performance recovered following introduction of the instabilities. We 
also calculated the stabilizer use time (that is, the amount of BCI control time 
corresponding to this exponential time constant). To do this, we calculated 
the average cumulative trial time as a function of stabilizer update, and used 
interpolation to find the average amount of time elapsed corresponding to the 
fit time constant. Standard errors in this analysis were calculated using bootstrap 
resampling over 1,000 iterations.

Comparing stabilization with supervised recalibration. Most self-recalibrating 
BCI decoders use retraining procedures that utilize estimates of user intent. 
The best scenario for retraining in this way is when movement intent is exactly 
known, in which case such procedures reduce to supervised recalibration. Here, 
we describe an offline analysis that allows us to compare the performance of the 
stabilized BCI with the best possible performance of leading self-recalibration 
approaches that require inferring the intent of the user13,15,16.

We decoded neural activity during the single-day experiments using  
decoders that were trained in a supervised manner offline. Supervised recalibration 
utilized the same two-stage decoder as was used online, and was performed  
by both updating the parameters of the decoder using oracle knowledge of user 
intent and updating the stabilizer in the same manner as was done online.  
The stabilizer was updated along with the decoder because both components 
would be updated in practice in a standard supervised recalibration session.  
Oracle intent was formed by rotating the cursor velocities decoded online to  
point straight at the target41,76 under the assumption that BCI users seek to move 
straight to the target from wherever the cursor is. Given bins of neural activity 
and oracle intent, decoder parameters were updated in a supervised fashion 
using maximum likelihood estimation, just as they were during initial decoder 
calibration. We analysed all but one single-day experiment, which was not included 
in this analysis because a run-time error resulted in data required for supervised 
retraining not being saved.

To ensure a fair comparison between stabilization and supervised recalibration, 
three considerations need to be taken into account. First, stabilization updates and 
supervised recalibration updates should use the same neural activity. We ensured 
that this was the case by performing supervised recalibration using the same bins 
of neural activity (augmented with oracle intent) as were used for the stabilizer 
update. Both stabilization and supervised recalibration used neural activity from 
the same subset of electrodes used for BCI control. Second, as this was an offline 
analysis, it was important to remove the benefit of online corrections the animals 
probably performed when using the stabilized decoders. We accomplished this 
by evaluating performance for only the last two bins of data before the end of 
the freeze period (see ‘Electrophysiology and behavioural task’ above) for each 
trial. In this period, animals had begun to modulate their neural activity but did 

not yet have control of the cursor, and were therefore not able perform online 
corrections. Finally, it is possible that animals adjusted their control strategies with 
multiple trials of experience controlling the BCI online. To mitigate the effects of 
this, we limited our analysis to only the first block of trials when stabilization was 
used in each experiment. This was the second block of trials after the instability 
was introduced, after the first stabilizer update. Decoding performance after 
stabilization and supervised recalibration was quantified using angular error, 
which was defined as the angle between the decoded velocity and a vector pointing 
straight to the target. We also measured angular error achieved with the baseline 
decoder without stabilization, allowing us to report the improvements in angular 
error achieved with both types of updates relative to leaving the baseline decoder 
in place. The reported angular error for each experiment is the average over all 
analysed bins in that experiment (two bins of data in the freeze period for each trial 
after the initial stabilizer update in the online experiment).

To understand the differences in decoding achieved with stabilization and 
supervised recalibration, we computed the strength of the intended cursor 
direction signals in the neural activity. As stabilization and supervised recalibration 
were performed using the same activity, we simply refer to this neural activity as 
the training data for a given experiment. We performed fivefold cross-validated 
linear regression to quantify how well oracle direction, as defined above, could be 
decoded from within the training data on a given day. During cross-validation, the 
number of bins of data to each target were balanced across folds, and targets with 
fewer than ten bins in the training data were dropped from the analysis. To prevent 
overfitting, ten-dimensional latent states were first extracted with factor analysis 
from the neural activity in all folds before fitting and testing the linear regression 
models. The strength of direction signals present in the training data on each day 
was quantified using the average angular error across test folds of cursor velocities 
predicted with linear regression.

Finally, we measured how closely the manifold identified in the first stabilizer 
update matched that identified during baseline control. We measured the similarity 
between manifolds with the percentage variance captured, pcap, which is a metric of 
how similar two manifolds, defined by Λ1 and Λ2, are. Here, Λ1 corresponds to the 
manifold identified during baseline control and Λ2 corresponds to the manifold 
identified in the first stabilizer update for each experiment. Values of pcap vary 
between 0 and 1. A value of 0 indicates that two manifolds are orthogonal, while 
a value of 1 indicates that two manifolds define identical subspaces. Intermediate 
values quantify the percentage of variance of latent state that resides within the 
manifold defined by Λ1 which also lies within the manifold defined by Λ2. For a 
single-day experiment, pcap is calculated as:

= Λ Λ
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where s are indices corresponding to electrodes with activity that have been 
unperturbed or only undergone an offset in firing rates and U is a matrix with 
orthonormal columns spanning the column space of Λ s( , :)2 . We compared only 
the portions of manifolds for the electrodes indexed by s, as these portions should 
be unchanged by recording instabilities. Each of the 41 single-day experiments 
included in the analysis comparing supervised recalibration with stabilization were 
included in this analysis. To calculate pcap values for random manifolds, for each 
experiment, we randomly generated a Λ matrix with entries drawn independently 
and identically distributed from a standard normal distribution, and then calculated 
pcap in the same way as for the loading matrices identified by the stabilizer.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the paper 
and its Supplementary Information. Experimental data for the stabilization of 
brain–computer interfaces are available at https://github.com/alandegenhart/
stabilizedbci.

Code availability
The MATLAB code for the stabilization of brain–computer interfaces is available at 
https://github.com/alandegenhart/stabilizedbci.
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