
Automatic Mapping of Khoros-based Applications to Adaptive Computing Systems

S. Natarajan, B. Levine, C. Tan, D. Newport and D. Bouldin
Electrical and Computer Engineering, University of Tennessee

Knoxville, TN 37996-2100
dbouldin@utk.edu

Abstract

An adaptive computing system (ACS) composed of
programmable logic components can serve as a flexible
hardware accelerator, especially for image-processing
applications. To enable application designers who are
unfamiliar with hardware details to map their applications onto
an ACS, a software environment called CHAMPION is being
developed. This paper presents the specific steps required to
map a Khoros flow diagram onto an ACS constructed using
five Xilinx XC4000 parts. A productivity improvement of
100x (2.5 hours vs. 250 hours) was estimated for the automatic
implementation as compared to a manual one for a moderately
complex target recognition algorithm. The ACS was able to
execute the algorithm 156 times faster than the Khoros
simulation running on an UltraSparc.

I. Introduction
Traditionally the mapping of an application onto an ACS

has taken months to develop and debug. The goal of the
research described here is to develop and demonstrate a
software design environment which will perform this mapping
automatically, resulting in a 100x improvement in
productivity. The environment permits high-level design entry
using the popular Khoros Cantata visual programming
software[1-2]. Thus, application designers need not be familiar
with the details of the hardware. Khoros was developed over
ten years ago, is available free over the web, and is in use by
over 5000 designers world-wide. It enables a designer to
capture an algorithm quickly, make changes in which
operations are performed and in which order and then see the
results in a few minutes without having to develop C code.

To implement an algorithm using Khoros, an image-
processing designer develops a workspace by connecting
together Khoros glyphs (library cells) as shown in Figure 1.
These glyphs can be thought of as C subroutines, while the
Khoros workspace can be viewed as a main C program that
invokes these subroutines and controls the data flow from
one subroutine to another.

Therefore, the objectives of the CHAMPION translation
software are to parse a Khoros workspace and automatically
translate it into a form that can be executed on an ACS
containing multiple programmable logic components.

II. Library Cell Development and Verification
A Khoros designer who wishes to use CHAMPION must

first install the CHAMPION cell library and then develop his
workspace using only these cells (glyphs). The CHAMPION
library contains 30 cells that are commonly employed by
image-processing applications. Additional cells will be
added as needed when CHAMPION is used for other
applications of interest.

These CHAMPION cells differ from those normally
provided with Khoros since each cell performs only one
specific function on one data type using a fixed (but
parameterized) bit width. Furthermore, the CHAMPION cells
provide low-level mechanisms for synchronization with other
cells that are not traditionally required in a Khoros workspace.

Each of the CHAMPION cells has been derived from a
VHDL source code file that has been synthesized (using
commercially available tools from Synopsys or Synplicity)
into the target devices (Xilinx XC4000 series in this case but
the Altera FLEX 10K and Xilinx Virtex versions will be
completed this Fall). Using CHAMPION-specific cells that
have been pre-compiled enables CHAMPION to determine
quickly the size requirements of the application and the
number of clock cycles required to perform individual
operations. This information is then used to match data bit-
widths, synchronize delay paths and efficiently partition the
resulting flow graph into subcircuits. These subcircuits are
then placed and routed using commercially available tools
(Xilinx M1 and Altera MaxplusII) and downloaded into the
ACS.

It is therefore necessary to ensure the same
functionality for the CHAMPION glyphs in Khoros, the
VHDL source files and their corresponding programmable
logic configuration files. The first step towards achieving
this goal is defining precisely a glyph's parameters and its
explicit functionality. A Khoros glyph is then developed using
a high level programming language such as C++. Input
test vectors are then applied to this glyph and the output
responses are stored. These input and output vectors together
constitute a test bench that can be used for computer
simulations of the glyph. The synthesized circuit is
simulated with the previously generated test bench to
ensure the validity of the technology-specific library. At this
stage, the programmable logic configuration file is ready for
execution on the ACS platform. Verification of the
hardware execution entails applying the same test bench to
the hardware and observing its outputs. The hardware
glyph passes this final verification stage when its results

concur with those of the computer-aided simulations. Once
verified, the hardware glyph is characterized in terms of size
and number of clock cycles (and eventually power
consumption).

III. Khoros Image-Processing Applications
The sponsor of our research project, DARPA, has asked us

to develop CHAMPION and test it using three significant
challenge problems and on three different ACS platforms.
Since it is well known that ACS platforms offer the best
price/performance solution for numerous image-processing
applications [3], we are collaborating with the Army Night
Vision Lab (NVL) on an automatic target recognition
application as our initial challenge problem. The Khoros
workspace consists of almost 1000 glyphs but only about 25
unique library cells.

To prepare CHAMPION for the NVL challenge problem, a
simpler yet moderately complex algorithm was selected. This
algorithm was also translated manually so that the steps to be
automated by CHAMPION could be delineated. This
approach also provided a baseline to quantify the productivity
improvement provided by the new software.

The initial application chosen was an automatic target
recognition application called START that was developed in-
house and the initial ACS platform used was a commercial
product called the Wildforce-XL from Annapolis Micro
Systems [4]. Using a complex application provided several
benefits. It helped identify more useful hardware glyphs than a
simpler algorithm. Using an algorithm large enough to require
reconfiguration of the board also tested that capability of the
board and required the determination of techniques to partition
the design temporally as well as spatially. Finally, using a
complex algorithm validated that the libraries and procedures
developed were sufficient to complete problems of a
significant nature.

The START application uses a statistical algorithm to find
regions in Forward-Looking InfraRed (FLIR) images where a
target may exist and draws a box around such regions.
Algorithms of this sort are often used for target queuing; that
is, they automatically identify areas of possible interest for
further examination by human operators. The algorithm does
not positively identify a target, nor does it identify the type of
target, as a true ATR algorithm does. It simply identifies
segments of the image as areas where there is a high
probability of there being one or more targets.

The START algorithm was tested with FLIR images from
Colorado State University’s Fort Carson RSTA Data
Collection. This is a freely accessible collection of image data
available over the Internet [5]. Forty images were chosen from
the entire set of available images. The images chosen had
corresponding color visual light images available so that the
actual location of targets could be determined more accurately,
as identifying targets in the FLIR image can sometimes be
difficult for a human observer. The FLIR images were taken of
varied, generally hilly terrain, with either no vehicles present,

or up to four vehicles present. The vehicles used to represent
targets were an M60 main battle tank, an M113 armored
personnel carrier, an M901 anti-tank vehicle, and a GMC
pickup truck.

Areas of interest are assumed to have two characteristics.
First, they must contain pixels hotter than the surrounding
terrain. In a FLIR image, hotter pixels are brighter or higher in
numeric value. An area of interest must also contain pixels
having a high numerical value after the application of an edge
detection filter. A high numerical value indicates a large
gradient intensity between adjacent pixels, which corresponds
to a sharp temperature gradient between adjacent regions.
Vehicles are likely to exhibit sharp temperature gradients,
either between the vehicle and the surrounding terrain, or
between different components of the vehicle, such as an
exhaust port and the chassis. An area of interest must satisfy
these two different criteria: it must contain hot pixels and it
must contain pixels that exhibit large gradients. These are the
two criteria in the name START (Simple, Two-criterion,
Automatic Recognition of Targets).

While the core idea of the algorithm is relatively simple,
many details of the START algorithm are important to its
success. First, the images are low-passed filtered initially to
remove noise, as image noise is generally high frequency in
nature and produces strong responses in edge detection filters.
The threshold values for each of the two criteria are specified
as a certain number of standard deviations from the mean.
These values are important to the performance of the
algorithm and were determined empirically during processing
of a large set of input images. The intermediate binary images
in the target identification process are low-pass filtered and
then thresholded. This favors larger clusters of pixels and
eliminates the occasional falsely identified pixel.

The steps involved in mapping a Khoros application onto
an ACS will be described next. The flow is shown graphically
in Figure 2.

IV. Data Width Matching and Synchronization
A direct translation from Khoros to an ACS platform is not

possible. There is much more involved than converting one
data structure or format into another. Obviously, the initial
step is straightforward in that it consists merely of changing
the Khoros workspace or network into a more graph-oriented
one. But when the graph is analyzed, we noticed numerous
arithmetic operations which produce results that require more
bits for their outputs than for their inputs. Consequently,
glyphs originally cascaded to one another will progressively
require a wider data path to avoid roundoff errors. When one
path of operations is then connected to a parallel path, a
mismatch in the number of bits for these inputs may occur.
Therefore, one required step in mapping the Khoros
workspace is to analyze each operation and insert the
capability for additional bits when appropriate.

Another observation gleaned from the manual
implementation of the START workspace was the realization

that data traveling over different concurrent paths may arrive
at the input of an operator at different times. In order that the
data inputs be synchronized, the number of clock cycles
required for each path must be enumerated. Then a
compensating delay can be inserted in the shorter path to
balance them in time. The graph shown in Figure 3 depicts a
section of the application and shows the initial nodes along
with those that were added for data matching and
synchronization.

The two steps just described are very straightforward but
are also very time-consuming and tedious for a human to
perform. In the case of START, almost half of the time
required to map it onto the ACS was consumed just by these
two steps. Having a computer program perform these steps
relieves a human from these boring and error-prone duties and
can improve the productivity of the conversion process from
100 hours or so down to only a few minutes.

V. Partitioning
Our approach to the partitioning problem is based on the

variant of standard move-based bipartition heuristics [6-8].
The multi-way partitioning is achieved by recursively
applying the bipartitioning algorithms to the netlist of the
design until it is split into the required number of sub-netlists.
The approach to this partitioning problem is similar to the
method described in [8].

For our first implementation, we configured the
programmable logic components and their interconnect on the
Wildforce board into a linear array. With this board
topology, the multi-way partitioning order proceeded in a
forward direction. The first bipartition split the netlist of the
Khoros workspace into two unbalanced sub-netlists such
that one of the sub-netlists met the constraints on size and
the number of pins of the first programmable logic part.
Then we again applied the same bipartition technique to the
remaining sub-netlist to obtain the second partition, which
was then mapped to the second programmable logic part.
We continued applying this bipartition technique to obtain
sub-netlists for the remaining parts.

The results obtained using this unbalanced bipartition
technique produced the same results as those determined
manually. With this straightforward method, partitioning was
accomplished in only a few minutes automatically whereas
partitioning performed manually required several hours of
effort. More complicated combinations of ACS architecture
configurations and application graphs will likely be extremely
difficult for both man and machine. Hence, we are planning to
provide a suite of partitioning algorithms which could be
selected by the application designer.

VI. Final Conversion Steps
After partitioning, the internal data structure or format is

then translated into structural VHDL. The resulting file can
then be passed quickly through a synthesis tool to add the

required I/O ports and to merge pre-compiled VHDL
components corresponding to the Khoros glyphs. Just as some
of the previous steps were found to be straightforward but
time-consuming and tedious for a human to perform, the final
conversion of the partitioned graphs into structural VHDL
files was laborious. Fortunately, no heuristics or complex
algorithms are needed and the time savings is significant since
tens of hours can be reduced to only a few minutes.

Once the structural VHDL files have been generated, each
one is synthesized separately, then placed and routed and the
configuration file downloaded to the corresponding
programmable logic component on the ACS Wildforce
board.

VII. Results and Discussion
Executing the partitioned START algorithm on our

Wildforce ACS resulted in a speedup of 156 as compared to
the Khoros simulation executing on an UltraSparc workstation.
The individual tasks comprising the execution included: (1)
software execution on the CPU host, (2) configuration of the
programmable logic components, (3) data transfer time (from
the host RAM to and from the local RAM), and (4) the actual
data processing time on the ACS. Timing varied according to
server load, but the average of 50 runs is shown.

It is immediately obvious that for our Wildforce board
running an application of this complexity, the time to process
one image is greatly dominated by the time needed to
configure the board. The actual time to process one image is
only 33 milliseconds, as compared to the nearly seven seconds
needed for the entire execution. However, the hardware
implementation was still more than 156 times faster than the
Khoros simulation on the CPU host. If sufficient logic and
memory resources were available such that the reconfiguration
time could be eliminated, the hardware implementation would
be 667 times faster than the Khoros simulation. Finally, if the
hardware was configured to process images sequentially, with
no setup time or configuration time necessary, then the ACS
hardware implementation would be over 32,000 times faster
than Khoros simulation.

VIII. Conclusions
A moderately complex image-processing application was

captured using Khoros and a set of library cells that had been
pre-compiled for programmable logic components. The
resulting workspace was simulated on an UltraSparc and then
converted manually into a graphical data structure. This graph
was then altered to match data bit-widths and to synchronize
delay paths. The graph was then partitioned using an
unbalanced bipartitioning technique for a linear array of
programmable logic components. The partitioned sub-graphs
were then translated into structural VHDL files. Each file was
synthesized and then placed and routed to produce
configuration files for the programmable logic components.
Since there were insufficient resources on the ACS platform to
handle this application, the programmable components were

reconfigured as needed to produce the final result. This
reconfiguration time dominated the ACS execution and
pointed to the need for more logic and memory resources
and/or faster reconfiguration times for programmable
components. The productivity improvement estimated for
CHAMPION is expected to be at least 100x since the manual
implementation took 250 hours but the automatic conversion
should take less than 2.5 hours.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of
DARPA grant F33615-97-C-1124.

REFERENCES

[1] J. R. Rasure and C. S. Williams, “An Integrated Data Flow
Visual Language and Software Development
Environment”, Visual Languages and Computing, vol. 2,
pp. 217-246, 1991.

[2] J. R. Rasure and S. Kubica, “The Khoros Application
Development Environment”, Khoros Research Inc.,
Albuquerque, NM, http://www.khoral.com.

[3] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati,
and P. Boucard, “Programmable Active Memories:
Reconfigurable Systems Come of Age,” IEEE Trans. On
VLSI Systems, vol. 4, no. 1, pp. 56-69, March 1996.

[4] Annapolis Micro Systems, Annapolis, MD,
http://www.annapmicro.com.

[5] Colorado State University Computer Vision Group,
Fort Carson RSTA Data Collection,
http://www.cs.colostate.edu/~vision/ft_carson.

[6] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time
Heuristic for Improving Network Partitions",
Proceedings of the 19th ACM/IEEE Design Automation
Conference, pp. 175-181, 1982.

[7] S. Hauck and G. Borriello. "Logic Partition Orderings
for Multi-FPGA Systems", Proceedings of the
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, pp.
32-38, February, 1995.

[8] B. W. Kernighan and S. Lin, "An Efficient Heuristic
Procedure for Partitioning of Electrical Circuits", Bell
Systems Technical Journal, Vol. 49, No. 2, pp. 291-307,
February 1970.

Figure 1: Khoros visual programming application workspace.

Figure 2: Steps required to map Khoros workspace onto an adaptive computing system.

Destination Hardware
Architecture

Precompiled
Libraries

APPLICATION

ADAPTIVE COMPUTING SYSTEM

KHOROS/CANTATA

DATA WIDTH MATCHING
& SYNCHRONIZATION

PARTITIONING

SYNTHESIS &SYNTHESIS &
PLACEMENT/ROUTINGPLACEMENT/ROUTING

8

8

8

88

1 1

A

1

10

Lowpass_1_4_256_256M

RAM_Read_pf4_var_8R
S:32

D:-

Lowpass_8_8_256_256M
S:346

D:262

pad_8_10
S:0

D:0
pad_8_10

S:0

D:0

add_10
S:13

D:1

trunc_high_11_8
S:0

D:0

gte_8 S:11

D:1

S:168

D:262

START_Mean_SDM
S:354

D:S+14

START_Mean_SDM
S:354

D:S+14

shift_left_10_2
S:0

D:0

pad_8_9
S:0

D:0

pad_8_9
S:0

D:0

trunc_high_10_8
S:0

D:0

gte_4_4
S:9

D:1

and_1
S:4

D:1

gte_8
S:11

D:1

add_9
S:12

D:1

clip_high_10_8
S:11

D:1
clip_high_11_8

S:11

D:1

MITRM
S:63

D:5

Sobel_8_8_256_256M
S:404

D:262

11

11

8

10

1

4

1

10
shift_left_9_1

S:0

D:0

9

8

8

9 9

10

10

8

Lowpass_1_4_256_256M
S:168

D:262

gte_4_4
S:9

D:1

4

1

RAM_buffer_pf4_8R
S:56

D:16+S

8

8

8

RAM_buffer_pf4_8R
S:56

D:16+S

8

8

Figure 3: Hardware task graph with data bit-width matching and synchronization.

