HASTE: HYBRID ARCHITECTURES
WITH A SINGLE, TRANSFORMABLE
EXECUTABLE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

Doctor of Philosophy
in
Electrical and Computer Engineering

by

Benjamin A. Levine

Carnegie Mellon University
Pittsburgh, Pennsylvania
May, 2005

Abstract

Hybrid architectures, which are composed of a conventional processor closely coupled with recon-
figurable logic, seem to combine the advantages of both types of hardware. They present some
practical difficulties however. The interface between the processor and the reconfigurable logic
is crucial to performance and is often difficult to implement well. Partitioning the application
between the processor and logic is a difficult task, typically complicated by entirely different
programming models, heterogeneous interfaces to external resources, and incompatible represen-
tations of applications. A separate executable must be produced and maintained for each type
of hardware. An architecture called HASTE (Hybrid Architecture with a Single Transformable
Executable) solves many of these difficulties. HASTE allows a single executable to represent
an entire application, including portions that run on a reconfigurable fabric and portions that
run on a sequential processor. This executable can execute in its entirety on the processor, but
for best performance portions of the application that are mapped onto the fabric at run-time.
Extensive experiments show that this concept is feasible for a range of different benchmarks,
and that HASTE architectures can provide performance several times better than commercial
FPGAs, while being easier to program and providing all of the advantages of having a single

executable.

Acknowledgements

I would first like to thank my advisor, Professor Herman Schmit. This work could not have
been completed without his support and guidance. I must also gratefully acknowledge the Semi-
conductor Research Corporation and IBM Corporation, who supported the author during this
research with an SRC/IBM Graduate Research Fellowship. Finally, and most importantly, I
would like to thank my wife Ruth, without whom I would never have made it as far I have. Her
love, support, and patience have kept me going through many tough times and long nights of

work.

iii

Contents

1 Introduction

2 Background and Related Work

2.1 Silicon Complexity L e e
2.2 System Complexity e
2.3 Possible Solutions. L

2.3.1 Reuse e

2.3.2 Reconfigurable Hardware for Hardware Platforms
24 Goals e
25 Related Work oL

3 HASTE Systems and Applications

3.1 Haste Overview v v it e e e e e
3.2 Application Model
3.21 Operations o ottt e e e
3.2.2 Sequentialmodel Lo
323 KernelModel e
3.2.4 Complete Application Model
3.3 System Model L e
3.3.1 Component Completeness oo vttt
3.4 Observations L e e

iv

e NN o e R

11

12

4 Instruction Set Architectures

4.1

4.2

4.3
4.4
4.5
4.6

Generic HASTE Assembly Language (GHAL)
4.1.1 Loop Delimiters
4.1.2 Streaming Memory Accessors
4.1.3 Select Instructions L.
ISA Requirements
4.2.1 Operations and Placement
4.2.2 Data Flow and Routing
Queue ISA (QISA) L.
Register ISA (RISA)
Relative Register ISA (RRISA)

Observations v v v v i i e e

5 RCF Architecture

5.1

5.2
5.3
5.4
5.5

5.6

Global RCF Model
5.1.1 Global Parameters
Register File,
Processing Elements,
Interconnect L
RCF Classes
5.5.1 Static Register Fabric
5.5.2 Asymmetric Pass Register Fabric
5.5.3 Symmetric Pass Register Fabric.

Observations v v v v i i e e

6 CTE and SPU Operation

6.1

Queue ISA SPU and CTE Operation
6.1.1 QISA SPU Operation for Example
6.1.2 QISA CTE Operation
6.1.3 QISA CTE Operation for Example

6.1.3.1 Table and Configuration Description

28
28
29
33
34
35
35
38
38
45
49
51

52
54
54
55
57
59
60
60
63
63
65

6.1.3.2 Processing of Example Instructions

6.2 Register ISA SPU and CTE Operation
6.2.1 RISA SPU Operation for Example
6.2.2 RISA CTE Operation
6.2.3 RISA CTE Operation for Example
6.2.3.1 Table and Configuration Description

6.2.3.2 Processing of Example Instructions

6.3 Relative Register ISA SPU and CTE Operation . . .
6.3.1 RRISA SPU Operation for Example
6.3.2 RRISA CTE Operation
6.3.3 RRISA CTE Operation for Example
6.3.3.1 Table and Configuration Description

6.3.3.2 Processing of Example Instructions

6.4 Conclusions

7 Tool Flow and Simulation Environment
7.1 Application Mapping
7.1.1 Kernel Annotation
7.1.2 Compilation
7.1.3 Conversionto GHAL
7.14 Conversionto DAG
7.1.5 Mapping to Specific HASTE Implementations
716 Assembly,
7.2 Simulation and Validation Tool Flow
7.3 Hardware Implementation Tool Flow
7.3.1 ASIC and FPGA Implementations
7.3.2 HASTE Hardware Implementation

74 Summaryo

8 Comparison of HASTE ISAs
81 ISAMetrics - -« o . o oL

vi

811 CodeLength 138

812 CodeSize« . e 139
8.1.3 Hardware Utilization oo 140
8.1.4 Hardware Latency e 141

8.2 ISA-Specific Mapping Procedures 141
821 QueueISA . . 142
8.2.1.1 Levelization, Planarization, and Compression 143

8.2.1.2 Finding Node Locations 144

8.2.1.3 Writing Out Assembly Code 146

8.2.2 Register and Relative-Register ISAs 148
8.2.2.1 Parameter Checking L0000 148

8.2.2.2 Finding Minimum Latency 149

8.2.2.3 Finding Lower Bounds on Width for Given Latency 149

8.2.24 Check Connectivity 150

8.2.2.5 Register File Size Checking 150

8.2.2.6 Writing Out Assembly Code 151

8.3 Mapping Experiments and Results oL, 152
831 QueueISA . . . 152
8.3.2 Register ISA and Relative Register ISA 155

84 ISA Performance L 157
841 CodeLength 157
842 CodeSize e 160
8.4.3 Hardware Utilization L . 162
844 Latency o . e e e 162

8.5 SumMmary o . e e e e e 163
HASTE Kernel, Application, and Architecture Functionality 165
9.1 Benchmark Kernels e 166
9.1.1 Validation Results o o 166

9.2 Large Application Implementation 167
9.2.1 ATR Application Description 167

vii

0.3 Observations i e e e e e e e e e e e e 172

10 Hardware Modeling and Synthesis 173
10.1 ALU Design o o oo i e e e e e 174
10.2 Static Register Fabric Lo oo 176
10.3 Asymmetric Pass Register Fabric L. 181
10.4 Symmetric Pass Register Fabric 181
10.5 HASTE Components oot v it i ittt e e 184
10.6 Observations o ot i vt e e e e 185

11 Area and Performance of Kernel Implementations 187
11.1 ASIC Implementations 187

11.1.1 Procedure o i i e 189
11.1.2 Results o o o i e 190
11.2 FPGA Implementation 193
11.2.1 Procedure o oL e e e 194
11.3 HASTE Implementations 197
114 CompariSONs . . . v v v v v v i e e e e e e e e e e e e e e 200
11.4.1 Speed oL e e 200
1142 Area L e e 202
11.4.3 NTUA e e e e e e e 202
1144 Best Fabric o e 205
11.5 Observations« . o v i ottt i e e e 208

12 Conclusions and Future Work 209
12.1 Conclusions« o o v it e e e e e 209
12.2 Future Work o L. 210

12.2.1 Depth and Width Virtualization 210
12.2.2 Feedback e 211
12.2.3 Narrow Tiles o L o e 211
A Glossary 212

viii

B HASTE ISA Reference 214

C Benchmark Kernels 239
D Example Testbench 258
E DAG for Simple Example Kernel in GML Format 260
F ATR Sourcecode 266

Bibliography 274

ix

List of Tables

3.1

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

8.1
8.2
8.3
8.4
8.5

HASTE Application and Kernel Assumptions 24
New Instructions in GHAL 30
RCF Model Parameterso 00ttt ittt 55
RCOF Classes« v v v it e e e e e et e e e e s e e e e 60
Static Register Fabric Configuration Fields, 62
Asymmetric Pass Register Fabric Configuration Fields 63
Symmetric Pass Register Fabric Configuration Fields 65
CTE Inputs from SPU and CTE Outputs to RCF for QISA 73
QISA CTE Example o o 0 79
CTE Inputs from SPU and CTE Outputs to RCF for RISA 87
RISA CTE Example - Issue Unit 93
RISA CTE Example - Config Stations 94
CTE Inputs from SPU and CTE Outputs to RCF for RISA 101
RRISA CTE Example o o o i it et 105
Comparison of Execution Statistics for Original (PISA) and GHAL Assembly Code127

Queue ISA Mappingso 153
Queue ISA Mapping Results 156
Register ISA Mapping Results oo 158
Relative Register ISA Mapping Results 159
Composite Results for HASTEISAs 160

9.1
9.2

10.1
10.2

11.1
11.2
11.3
114
114
114

Kernel Benchmarks e e e e e 167

Validation Runs L e 169
ALU Synthesis Results i i e e 176
Typical HASTE Component Areas, Mindelay 185
ASIC Synthesis Run Types 189
Benchmark Synthesis Results - ASIC 191
FPGA Implementation Results 196
Comparison of Best Implementations for Each Benchmark 198
continued L L L. e e e 199
continued L L L. e e e 200

xi

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Basic HASTE Architecture and Operation 15
Application Model Lo 19
Equivalent PISA| Instrumented PISA, and GHAL programs 31
Original C code for simple example program 32
Application Mapping in Compiler Lo 36
Placement of Operations by CTE 37
Stack and Queue Machine Operation 39
Instruction Ordering for Stack and Queue Machines 40
Examples showing the level and planar properties of graphs 42
Queue ISA Instruction Variants 43
Select Instruction Variants oL o oo 44
HASTE ISA Instruction Formats 46
RISA Register Addressing 47
Relative Register ISA Addressing. 50
RCF Model e 53
Pass Register File. 56
Processing Element L o 57
Interconnect Model L e 59
Static Register Fabric L o o 61
Asymmetric Pass Register Fabric o000 62
Symmetric Pass Register Fabric 0o oL 64

xii

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

8.1

CTE and System Model 68

Example Loop Body e 70
DFGs for CTE Examples o . o0ttt 70
Queue Contents for QISA SPU Implementation 71
Fabric Configuration Key o 73
Queue ISA CTE e e e e e 74
QISA Fabric Configuration for Example 78
Register Contents for RISA SPU Implementation 83
RISA Fabric Configuration for Example 86
Register ISA CTE o 88
Register Contents for RRISA SPU Implementation 100
Relative Register ISA CTE 102
RRISA Fabric Configuration for Example 106
Overall HASTE Tool Flow i i 110
Application Mapping Tool Flow 113
Unannotated CCode e 115
Kernel C code with annotations L L. 116
Assembly for Example Sequential Code 118
Assembly for Example Kernel o oo 119
GHAL Assembly Code 120
DAG Generated from GHAL Code 121
Validation and Simulation ToolFlow 123
Steps in Validation Process o 124
Results From Original Assembly 126
Application VHDL Generated from DAG 129
Testbench Structure 130
Hardware Implementation Tool Flow 132
Structural Model of Simple Example oL 134
Hardware Utilizationo o e 141

xiii

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2

10.1
10.2
10.3
10.4

10.5

11.1
11.2
11.3
114
11.5
11.6

Examples showing the level and planar properties of graphs 142

Effect of level changes on Queue DAGs 145
Effect of limited read connectivity L L. 147
Use of NOOPs to Space Instructions 147
Code Length o o e 161
Code Size o o e 161
Hardware Utilizationo o e 162
Hardware Latency i i it i 163
Steps in Validation Process 168
ATR Application Flow 171
Static Register Fabric Synthesis: No Multiplier 177
Static Register Fabric Synthesis: 32-Bit Multiplier 178
Static Register Fabric Synthesis: 64-Bit Multiplier 179
Asymmetric Pass Register Fabric Synthesis 182
Symmetric Pass Register Fabric Synthesis, 183
Hardware Implementation Tool Flow 188
Frequency for Fastest Benchmark Implementations, by Technology. 201
Area for Smallest Benchmark Implementations, by Technology. 203
NTUA for Fastest Benchmark Implementations, by Technology. 204
NTUA Loss for Common Fabric Compared to Best Fabric 206
NTUA for Best Single Fabric Benchmark Implementations, by Technology. . . . 207

xiv

List of Algorithms

1 Queue ISA CTE Algorithm 75
2 RISA ISA Issue Unit Algorithm 89
3 RISA ISA Configuration Station Algorithm 90
4 RRISA CTE Algorithm i 103

XV

Chapter 1

Introduction

The last two decades have seen a staggering increase in the power and complexity of digital
systems of all types. The manufacturing processes for silicon integrated circuits continue to im-
prove, allowing designers to include ever-greater numbers of transistors, running at ever-higher
frequencies, on every integrated circuit. This would seem to promise the opportunity to con-
tinue building digital systems of continually increasing sophistication, with dramatically better
functionality and performance at each new design cycle, as has been the case throughout the his-
tory of the industry. These kinds of improvements are necessary to meet projected demands for
lower cost, more energy eflicient, and more powerful devices possessing substantial computational
capabilities for diverse application workloads. For instance, in the near future cellular phones
may be expected to work with multiple global telecommunications standards, support complex
graphical user interfaces, allow real-time videoconferencing, encrypt data for secure transmission,
and use sophisticated error-correcting codes for operation in environments with very low signal
to noise ratios. Moreover, they will need to do all this with very little power and cost only a few
tens of dollars to produce. Historic trends regarding improvements in digital system performance
would seem to support the feasibility of these sorts of expectations. Unfortunately, it is becoming
apparent that numerous trends are making this vision increasingly problematic.

Most of the cost reductions and performance gains seen in electronics in recent years have been
enabled by the use of integrated circuits designed for a specific application. These application-

specific integrated circuits (ASICs) are custom hardware designs that are optimized to meet the

performance and other requirements of the device in which they will be used. ASICs have also
allowed for the replacement of many separate components with a single component, reducing
cost and size. However, rapid increases in IC design and manufacturing costs are limiting the
applications for which ASICs makes economic sense. Since ASICs are too expensive in many
cases and standard processors cannot offer the performance and power efficiency needed for many
applications, a newer approach, namely programmable ICs in the form of systems-on-chip (SoCs)
with heterogeneous programmable IP blocks have become an increasingly important part of the
semiconductor industry. Use of these types of ICs leads to a number of new problems, including
the performance losses and reduction in power efficiency incurred when using programmable
hardware as opposed to custom hardware, and the difficulties encountered when implementing
applications on systems containing components with multiple programming models.

This thesis will explore one particular technology which may help address some of these
problems. The HASTE (Hybrid Architectures with a Single, Transformable Executable) concept
is a variant of a class of architectures which combine traditional sequential processors with spa-
tially programmed computational fabrics, an architectural class often called a hybrid architecture.
What makes HASTE unique is the use of a single executable to describe both portions of the
application; both the portion that runs on the sequential processor as well as the portion that
runs on the spatial fabric. To be more exact, portions of the executable can be automatically
transformed at run time from sequential code into a spatial configuration. Hence the name,
Hybrid Architectures with a Single, Transformable Executable. In particular, this thesis will
investigate the costs and benefits associated with this property of transformability. The final
results are quite encouraging. The results to be presented will show that HASTE is a viable and
realistic technology that can be implemented with fairly conventional hardware and software and
which is competitive with standard approaches.

This thesis can be considered to be divided into two sections. The first section discusses
the HASTE concept itself, including system components, system operation, and application
representation. It begins with a discussion of the motivation for HASTE, related work, and
other background information in Chapter 2. Chapter 3 provides an introduction to HASTE and
discusses some key concepts and theoretical constructs. The various instruction set architectures

that can be used with HASTE are discussed in Chapter 4. Details of the reconfigurable fabrics

used in HASTE are covered in Chapter 5. The conversion of sequential executables to spatial
configurations is explained in Chapter 6.

The second section discusses the experimental tools and techniques used to explore the
HASTE concept as well the results obtained from these experiments. First, the tools used
to create HASTE executables and to simulate HASTE operation are shown in Chapter 7. Next,
the hardware models and techniques used to evaluate the performance of HASTE, as well as the
results of performance evaluations of the HASTE fabrics, are presented in Chapter 10. Experi-
ments showing correct operation of HASTE applications are shown in the next chapter, Chapter
9. Experiments comparing the different HASTE ISAs are shown in Chapter 8. The experiments
in Chapter 11 compare the area and performance of HASTE implementations of various applica-
tions to implementations using semi-custom ASIC technology and implementations using modern

FPGAs. Conclusions and future work are in Chapter 12.

Chapter 2

Background and Related Work

While the speed and transistor density of semiconductors continue to increase, it is becoming
increasingly difficult to take full advantage of these advances. A range of trends is making it
economically infeasible to use state of the art semiconductors in many applications. While these
trends are diverse in nature, they can be divided into two main groups: those due to the increased
complexity of manufacturing silicon semiconductors in the deep sub-micron (DSM) realm, along
with the difficulties inherent in using DSM devices; and those due to the increased complexity of
products designed for highly competitive and rapidly changing marketplaces. These two groups
of trends will be referred to as silicon complexity and system complexity, respectively. The two
terms are used in this thesis in a manner consistent to their usage in the International Roadmap

for Semiconductor Technology [1].

2.1 Silicon Complexity

As their sizes approach nanometer scale, the basic behaviors and characteristics of semiconductor
devices and interconnect change rapidly, and they will change even more rapidly in the near future
as process technology continues past the 90 nanometer technology node. In particular, the basic
switching activity of CMOS field-effect transistors (FETs) is scaling poorly, in the sense that the
simple models of this behavior that have been used in the past are increasingly insufficient as
the behavior becomes increasingly complex. In addition there are fundamental changes in terms

of interconnect delay, power, and reliability [2]. Relative interconnect delay relates to the fact

4

that interconnect delay is increasing more rapidly than gate delay. The result is that the time
it takes signals to propagate from gate to gate is proportionately a larger portion of the time
available in one clock cycle. Hence interconnect delay is increasingly the limiting factor on clock
speed and performance. This also means that global structures, which must be accessed in a
single clock cycle from all portions of the die, are increasingly untenable [3]. Even where global
structures are feasible, the interconnect capacitance greatly increases the power cost [4]. This
requires designers to look at new types of designs that limit globally synchronous interconnect
and requires better modeling of interconnect to achieve reasonable performance during synthesis.

DSM devices are much more demanding to manufacture, and require designers to consider
manufacturability as part of the design process. However, this can require expensive and time-
consuming simulations to measure the optical effects of mask interference patterns and other
manufacturing details. Further, process variations across a wafer and even across a single die are
harder to control in DSM processes and require more carefully designed circuits. Designs that
provide redundant resources and fault tolerance designs may also be required to meet reliability
and manufacturability requirements [5].

Since current microprocessor designs rely heavily on global structures, they are particularly
susceptible to these problems. The critical path of a typical processor involves many large com-
ponents, such as branch predictors, ALUs, and dispatch units, making meeting timing constraints
particularly difficult [6]. Aggressive pipelining has been used to overcome this to a large degree,
but this requires increasingly complex logic to handle pipeline stalls, correct for branch mispre-
diction, and handle various other hazards, which then makes the overall design larger, in turn
limiting the gains provided by pipelining.

DSM devices also have characteristics that diverge quite notably from standard FET models.
They require much more careful circuit and system design to ensure proper operation [7]. These
factors requiring more careful circuit design provide another indication that design cost problems
will get worse rapidly, not only due to the inherent complexity of larger systems, but also due to
more stringent requirements for circuit designs. It seems clear that some new methodologies for

designing digital systems and ICs will be necessary to take full advantage of DSM technology.

2.2 System Complexity

As the number of transistors on a single chip increases, the complexity of the designs needed to
utilize those transistors is also increasing. This increase in complexity is driving rapid increases
in the cost of designing, verifying, and completing projects. These complexity-related costs,
when coupled with a fast-paced and highly competitive market, place an enormous price on
failed designs. So not only are the projects getting more complex, but failure has become so
expensive that even more testing and verification is required to ensure success, driving costs even
higher [1]. Current design flows for digital systems of all types are not scaling well, requiring
enormous engineering efforts to produce very complex designs such as microprocessor and DSP
designs. The organizational and administrative costs required for very large projects requiring
hundreds of engineers are substantial, and seem to be growing much faster than linearly [8]. The
costs of producing a new chip are increasing dramatically, for both these design reasons and
for manufacturing reasons as well. For instance, mask sets for a single complex chip such as a
microprocessor or DSP are expected to exceed one million dollars in the near future. This and
other increases in non-recurring engineering (NRE) costs are making it even more important that
chips work correctly the first time. Increasing design costs make custom design prohibitively
expensive, yet denser designs, which require more full-custom layout, are needed to maintain
profitability [5].

Trends in the consumer market seem to point to more computing devices being produced in
large quantities for communications and entertainment products of various types. These devices
will require significant processing power to handle tasks such as wireless protocols, encryption,
streaming video, and compression. They will typically also be portable, putting severe constraints
on available power. Most of these devices must sell for much less than the large desktop computers
that have previously been the only products requiring comparable amounts of processing power,
and the application workloads will differ greatly from those needed for today’s typical desktop
computer.

Given these difficulties, it seems that some new directions must be explored to provide the
performance needed by future digital systems. It will no longer be sufficient to simply ride the
wave of increasing processor performance and decreasing processor price as a means to enable new

digital devices. Scaling todays superscalar processors to a billion transistors seems a daunting

task, and while it may be achieved, the end result will be inappropriate and unusable for many
applications. More power efficient, flexible, easier to design and manufacture, and yet still very
powerful architectures must be developed if digital technology is going to continue to show the
incredible performance gains and price drops of recent years, which consumers and marketplaces

expect will continue indefinitely.

2.3 Possible Solutions

2.3.1 Reuse

Given that system complexity and costs are rising so quickly, reuse at all levels of a design seems
to be one of the only ways to build practical, affordable systems. Design reuse in this case ranges
from simply designing chips that can be used across a range of applications and reused for future
applications, to designing chips using IP blocks that can be reused across a number of chips, to
using structures and layouts that can be reused many places across a single die.

Using one design for many applications seems difficult given the increasingly stringent require-
ments for power and cost. However, many researchers are considering the idea of a hardware
platform [9], a programmable chip design that can be used for a set of related applications and
which has the flexibility to be used for future applications as well. While these hardware plat-
forms cannot match the performance efficiency of an ASIC designed for a specific application, the
cost savings afforded by amortizing the chip design across the much higher volumes allowed by
utilization in multiple applications can allow for a larger chip design with nearly the performance
of a smaller ASIC at a much lower cost.

The general concept of a hardware platform is a system-on-chip {(SoC) composed of multiple
digital cores, and possibly analog cores, connected by a predefined communication scheme. The
cores would be IP blocks that could be shared across multiple hardware platform designs and
the communications infrastructure for sending data between cores could be predesigned and
reused as well. Differentiation between different hardware platforms would be accomplished by
including different combinations of cores, varying amounts of memory, and using different device
packaging. Differentiation between applications would be accomplished by programming the

cores and possibly the interconnect. The amount of programmability would vary from core to

core, but most, if not all cores would have some amount of flexibility. General-purpose processor
cores could of course run different programs, but even fixed-purpose cores such as data converters
could have programmable parameters. One important aspect of research into hardware platforms
is determining what kinds of cores should be included. Including hardware optimized for specific
applications seems to contradict the goal of producing flexible hardware, but more general purpose

hardware may not provide the necessary performance and efficiency.

2.3.2 Reconfigurable Hardware for Hardware Platforms

One of the ways that ASICs achieve high performance is by the creation of custom datapaths
tailored to the specific application. In order to duplicate this in a hardware platform, some sort
of reconfigurable hardware is needed. Reconfigurable hardware in its most general sense is simply
a set of functional units, storage, and interconnect, any or all of which can be configured for a
specific application. A commercial field-programmable gate array (FPGA) is a common kind
of reconfigurable hardware. A typical FPGA has a set of look-up tables (LUTs), which can be
programmed to implement any Boolean function, registers which can be programmably included
or excluded from the data path, and typically a rich set of programmable switchboxes and multi-
plexers. FPGAs thus have programmable functional units, storage, and interconnect. FPGAs are
very flexible and can achieve very high performance for many applications. FPGA-like hardware
has been considered for inclusion in hardware platforms. FPGAs have some drawbacks however,
and are not the best or only choice for reconfigurable hardware. Programming FPGAs can be
difficult, especially when computing tasks must be partitioned across heterogeneous processing
resources. Effective partitioning requires accurate estimation of performance, but this requires
time-consuming place and route for accuracy with FPGA fabrics. Further, the fine granularity of
FPGASs can lead to less efficient implementation of applications with fixed data widths as com-
pared to reconfigurable architectures with coarser granularity. Another problem with FPGAs is
the long configuration times required by these devices. This is due in large part to another one
of their disadvantages, the large size of the files needed to configure them. Some modern FPGAs
have configuration files of tens of millions of bits [10]. Hardware that could provide most of the
flexibility of FPGAs while avoiding these disadvantages would make hardware platforms more

feasible.

One of the main promises of reconfigurable computing has been to provide the performance of
an ASIC with the flexibility of a general purpose CPU, and that has been fulfilled to some degree.
Reconfigurable architectures can implement custom datapaths and other logic with performance
close to that of a comparable ASIC, while still having the ability to be reprogrammed for new
tasks as needed. Reconfigurability can enable a single architecture to potentially be used for many
different products and applications, and allows existing products to be given new features and
functionality, while still providing high performance. This enables high-level reuse. In addition,
reconfigurable architectures are typically well-suited to implementation by layouts composed of
repeating design units, which enables a potentially large amount of low-level reuse, as does their
suitability for inclusion as IP blocks in systems on a chip.

Like an ASIC, reconfigurable hardware achieves much of its performance by exploiting par-
allelism. Rather than separating operators in time, as in the sequential execution of instructions
in a conventional processor, operators are separated in space, allowing many operations to occur
simultaneously. In order for this to provide a performance advantage, an application must have
a significant degree of available parallelism; applications that do not will not execute efliciently
on reconfigurable hardware. Reconfigurable architectures are typically ineflicient for applications
with lots of branching and with irregular data access patterns, and many support little or no
control flow, or support only certain kinds of memory access. This problem has typically been
handled by either implementing the necessary functionality on an application specific basis, thus
giving away most of the flexibility needed for widespread use, or by coupling some sort of general
purpose processor with a reconfigurable fabric and partitioning applications so that sections of
code operate on the hardware best suited for them.

While the latter is certainly a valid approach, it raises a number of issues that have been a
severe hindrance to wide acceptance of this type of hybrid hardware. Performing the partitioning
has been a much more difficult task than was initially anticipated. Partitioning is complicated
by the fact that the CPU and the reconfigurable hardware typically have entirely different pro-
gramming models, separate interfaces to external resources, and very different representations
of applications. After partitioning and compilation/synthesis, an application consists of two or
more separate executables, and these executables must be very specific as to the particular type

of processor, reconfigurable fabric, and interface between them. For example, an application

running on a conventional workstation with an FPGA-based coprocessor card will require a stan-
dard executable for the main processor, as well as a configuration bit stream for each FPGA on
the card. Updating an application requires modifications to all executables, which presents both
developmental and logistical problems. This precludes any immediate performance increase from
newer hardware, since at the very least generation of two new executables is required, and more
typically a significant amount of redesign is required.

The interface between the processor and the reconfigurable logic is crucial to performance and
difficult to implement well. Design and testing of interface code and logic can consume as much
or more time as design and testing of application code and logic. Since interfaces are largely
specific to particular instances of hardware, interface design and testing is usually not portable
to new architectures and must be repeated for even minor hardware changes. This interface code
and hardware also restricts the amount of code that can be efficiently run on the reconfigurable
fabric. Only when the performance gained is greater than performance lost to interface overhead
can use of the reconfigurable fabric be justified. This means that sections of code that do not
run for very long, even if they have lots of available parallelism, cannot be sped up by running
on the reconfigurable fabric.

Another problem that has hindered the development of reconfigurable hardware of all kinds
has been the difficulty of programming. Bit streams for FPGAs are typically generated by
creating designs in VHDL or Verilog and then using a series of tools to synthesize the design,
map it to the specific technology, place and route the design to specific FPGA, and finally
generate the bit stream itself. This is a much more complex process than compiling a program
for high-level language and it can take much longer, up to many hours for particularly large
and dense designs. Much effort has been spent to develop easier ways to program existing
architectures such as FPGAs and to design architectures that are inherently easier to program;
but it is still the case that reconfigurable systems take more skill and effort to program than
conventional software. These requirements greatly reduce the pool of designers available to
successfully implement applications using reconfigurable computing, and form a significant barrier

to its use.

10

2.4 Goals

Reconfigurable hardware allows the flexibility, and opportunities for design and architecture
reuse, that will be needed for future digital systems, particularly those implementing the kinds of
data-intensive and/or data-streaming applications that are often implemented with ASICs today.
As has been seen, however, it has other drawbacks that limit its usefulness and practicality
for commercially viable products. In particular, the burdens of heterogeneous programming
models and executables, the overhead imposed by interface requirements between heterogeneous
hardware, difficulties imposed by tool flows, and the lack of portability and performance scaling
are particular problems. If these problems could be solved, it would substantially increase the
usability of reconfigurable architectures, which in turn could help solve many of the challenges
facing digital designers in the coming years.

An ideal reconfigurable architecture would have a complete and unified computational model,
such that an entire application could be programmed as a single entity, with no need for interface
programming or design. It would allow for both temporal and spatial distribution of execution,
matched to the characteristics of different portions of an application, but without requiring
the designer to attend to the details of coordinating different modes of execution. In order
to maximize performance, there would be little or no overhead required to use either mode of
execution, so that all of an application that could benefit from spatial execution could do so. Such
an architecture would have programming semantics and tool flow closer to that of conventional
software than hardware design, so that it could be used by a much larger group of potential
designers. Executables would be portable and run on different instances of the architecture
without recompilation, allowing legacy applications for old versions of the architecture to run on
newer versions of the architecture with improved performance. This ideal architecture would lend
itself to implementations exhibiting a high degree of low-level reuse, and the architecture would
itself be usable in a wide range of products and applications, enabling high-level reuse. This ideal
architecture may not feasible in its entirety, but it does seem possible to achieve many, if not
most, of its characteristics using HASTE. HASTE is targeted towards embedded systems that
need to implement highly parallel multimedia and streaming applications with high performance

as well as efficiency. This project has the following goals for the HASTE architecture:

e Allow the use of a single executable for both the sequential and spatial portions of an

11

application.

e Allow application specification from a high-level language, not a hardware description lan-

guage.

o Create a configuration for the spatial portion of an application at run time, so applications

can be sent to hardware of different sizes based on run-time performance requirements.

e Enable high-level reuse by providing a high-performance architecture which is programmable

and usable for a wide range of applications.

e Enable low-level reuse by composing the architecture primarily from identical, repeated

tiles.

2.5 Related Work

Research on reconfigurable computing architectures has been an active area for 15 years or more,
although arguably the roots of this area go back to the early 1960s [11]. Throughout most of
this period, the predominant use of reconfigurable computing involved a hybrid architecture of
some sort, meaning that the reconfigurable hardware was used in a system that also included a
conventional processor, often called a host computer. Compton and Hauck identify four different
classes of hybrid architectures in their survey of reconfigurable computing [12]. They classify
architectures by how closely coupled the reconfigurable hardware is with the conventional pro-
cessor(s), ranging from systems in which there is little or no regular communications with the
host to systems in which the reconfigurable hardware takes the form of a functional unit in the
host processor itself. HASTE is an instance of the second-most closely coupled style of architec-
ture, in that it operates as an independent coprocessor that can run without being controlled by
the host, once the host initializes the hardware and provides the data to to be processed and/or
the location of that data. The third-most closely coupled style generally communicates with the
host only using external I/O and in general appears more like a separate processor.

Many reconfigurable architectures have been designed that operate essentially as coprocessors,
as HASTE does, although unlike HASTE they all require that the reconfigurable hardware be

programmed using something other than the sequential executable run on the host. Examples of

12

these architectures include such projects as Garp [13], Napa [14], OneChip [15], REMARC [16],
and MorphoSys [17]. Other architectures such as PipeRench [18] and RaPiD [19] are not quite
as closely coupled to a host processor, but would most likely be used in a manner more similar
to that of a coprocessor, as with the systems listed above, as opposed to the loosely-coupled
separate processor model.

All of these systems have shown substantial performance improvements over conventional se-
quential systems and the advent of commercial products show that these kinds of coprocessors are
feasible and practical solutions to some of the problems facing more conventional architectures.
However, all of these architectures suffer from the necessity to develop a conventional executable
for the sequential processor and a very different configuration for the coprocessor. As has been
discussed, this presents problems that HASTE is designed to circumvent by dynamically translat-
ing from one form to the other. Dynamic translation from one form of executable to another has
been investigated by other projects, albeit in quite different contexts. The DAISY project [20]
at IBM investigated the dynamic conversion of PowerPC executables to VLIW code. The Trans-
meta Cruesoe processor similarly translates x86 machine code into VLIW code at runtime [21].
While these are converting the code to target a different architecture, they are still targeting
essentially sequential hardware, with inherent limits to parallelism, especially as compared to
highly parallel spatial fabrics.

Many other research projects ([22] [23] [24] [25], among others) use some form of hardware-
based dynamic translation or optimization to change a running executable on a conventional
superscalar processor for better performance. While some significant performance gains have
been realized, the hardware cost of these techniques is high and the performance still lags behind
that observed with the reconfigurable coprocessors previously discussed. These techniques are
again limited by the parallelism of the underlying processors. These approaches makes sense
for general-purpose computing, but they are not well-suited to the high levels of parallelism and
restrictions on power and area that the sorts of embedded multimedia applications that HASTE
is targeted to tend to exhibit. Numerous projects, including [26], [27], and [28], have dealt with
the memory access bottlenecks by implementing specialized hardware, similar in purpose to the

MAU.

13

Chapter 3

HASTE Systems and Applications

Chapter 2 discussed some of the challenges facing the designers of digital systems due to
increasing silicon complexity and increasing system complexity. Reconfigurable computational
fabrics were shown to have many desirable characteristics but to present considerable drawbacks
as well. Hybrid systems were introduced as a partial solution to some of these problems, but
the need for two separate executables was shown to present additional difficulties. The HASTE
concept solves the problems introduced by separate executables and provides mechanisms for
close coupling of processors and reconfigurable fabrics by requiring only a single executable. This
chapter will discuss the operation and basic characteristics of HASTE systems and applications

and will define some of the terminology that will be used in the remainder of this thesis.
3.1 Haste Overview

HASTE is targeted towards embedded systems and SoCs that must efficiently implement highly
parallel applications that operate primarily on streaming data. This category includes many
applications of interest, especially those in the signal, image, and video processing domains, as
well as encryption, channel coding, and other communication applications. These are the types
of applications whose computationally intensive portions are typically implemented as custom
datapaths in SoCs or ASICs. HASTE provides performance characteristics similar to custom
datapaths for these applications, but since it is programmable it can be used with hardware
platforms and programmable SoCs. While these applications seem to be the best fit for HASTE,
this does not rule out the applicability of HASTE for more conventional processor workloads.

That will remain the work of future research, however.

14

[] ACTIVE

¥ 1li. L iC

Control | _Control
SPU RCF SPU Handor™ RCF SPU < ondoff RCF
&N/ CTE j &N/ CTE j &N/ CTE j
(a) Sequential Execution Mode (b) Switch to (c) Return to Sequential Execution
and Code Transformation Spatial Execution Mode Mode (No Code Transformation)

Figure 3.1: Basic HASTE Architecture and Operation

HASTE is an architectural concept, rather than a single architecture. This thesis will outline
the design space and general characteristics of HASTE systems, and will then explore some
specific implementations. It is important to note that there is no single HASTE architecture,
only specific HASTE implementations, just as there is no single RISC architecture, only specific
RISC implementations such as the MIPS 4KEc [29] or ARM 720T [30].

Figure 3.1 illustrates the operation of the basic HASTE architecture. All HASTE architec-
tures have these same components: a sequential processing unit (SPU), a reconfigurable compu-
tational fabric (RCF), a code transformation engine (CTE), and a memory access unit (MAU).
The RCF is an array of reconfigurable logic, reconfigurable interconnects, and storage, arranged
to form a pipelined datapath; it will be discussed in detail in Chapter 5. The SPU is a Von
Neumann processor which operates sequentially on a series of instructions which can implements
control flow as well as data processing. It may be very similar to a conventional RISC proces-
sor, or a more specialized processor architecture may be used. With some minor changes to the
HASTE concept as presented here, a modern superscalar processor could be used for the SPU;
however, that will not be explored in this thesis. The CTE converts portions of the sequential
instruction stream for the SPU into a configurations for the RCF. The MAU provides access
to memory and memory-mapped I/O for both the SPU and the RCF, using streaming memory
access instructions. The SPU may also access main memory directly, bypassing the MAU. The
CTE, SPU, and MAU are covered in Chapter 6.

A HASTE application is composed of sections of sequential code, interspersed with computa-

15

tionally intensive kernels, each kernel being comprised of a single loop body which iterates a fixed
number of times and has a single entry point and a single exit point. In the next section this
application model will be considered in more detail. The basic operation of HASTE proceeds as
follows: the SPU executes the code outside of the kernel or kernels, then executes one iteration
of the loop body comprising a kernel, while the CTE creates a configuration for the RCF, as
shown in Figure 3.1(a). Once this is complete, control is handed off to the RCF as shown in
Figure 3.1(b). On subsequent loop iterations, the RCF uses this configuration to execute the
loop body as a pipelined datapath, effectively executing the entire loop body in parallel. While
memory access in the SPU can use either the MAU and streaming memory access instructions
or conventional memory access instructions (loads and stores), the RCF must use the MAU and
streaming memory access instructions exclusively. Once the kernel is complete, control passes
back to the SPU, as shown in Figure 3.1(c), which executes sequential code until encountering
the next kernel or the end of the program.

In a typical hybrid architecture, if it was desired that a kernel potentially run on both portions
of the architecture, the kernel code would need to be compiled into an executable to run on the
processor and then separately synthesized into a configuration for the reconfigurable logic, giving
two separate executables. While the configuration could be embedded into the executable to
create a so-called ‘fat binary’, the fact remains that there are two completely separate executables
and there is no guarantee that they actually perform the same function. HASTE, by contrast,
requires only a single executable that can run on both the processor and the reconfigurable logic,
and in a properly designed HASTE system, the functionality of the kernel will be the same
regardless of which type of hardware it is run on.

To make the HASTE concept work an appropriate application representation must be chosen.
It must have a valid sequential semantic and yet also contain the information necessary for the
CTE to create a spatial configuration. This application representation is an important part of
the HASTE concept and this thesis will investigate and compare several different application
representations. The idea of an application representation in this context encapsulates several
things, including the form and encoding of the HASTE executable, which must be associated with
the specific SPU architecture needed to process the it; the format of kernel configurations in the

RCF; and the CTE algorithms used to convert the instruction stream into RCF configurations.

16

The remainder of this chapter will present models of the various components that make up both

the application representation and the HASTE system itself.

3.2 Application Model

Before application representations are discussed, it is first necessary to be able to describe the
applications themselves. For this purpose, a common application model (and corresponding
C+—+ class; see Chapter 7) has been developed for HASTE. A HASTE application is composed
of segments of sequential code and one or more computationally intensive kernels, sections of
parallelizable code. Models for these two types of code will initially be examined separately and
then unified later in this section. A number of assumptions about applications and kernels will be
introduced in this section, some of which are inherent to HASTE and some of which are adopted
for other reasons. Both types of assumptions will be identified when first introduced and then

summarized at the end of the section.

3.2.1 Operations

An application is considered to be formed of a number of operations chosen from a set O of
possible operations. This set is divided into three subsets: computation operations, data move-
ment operations, and control flow operations. The set of operations of each type will be called
Oc, Om, and Oy, respectively, such that O. U O, U Oy = O. Each operation consumes some
number N; of input operands and produces some number N, of outputs, with either or both N;
and N, allowed to be equal to zero in certain cases. Each operation is represented in a control
dataflow graph (CDFQG) as a node, with data edges corresponding to operands and control edges
corresponding to control low. Note that the same operand can be carried on multiple data edges
leaving an operation, so a node may have a number of outgoing data edges greater than N,. If
an operation produces a single output value (N, = 1), than all outgoing data edges carry the
same output value If an operation produces two or more distinct output values (N, > 1), then
each outgoing data edge must be designated as to which output value it carries. Inputs to nodes
represent source operands, and only one value per input is allowed. So nodes may only have as

many incoming data edges as their value of N;.

17

Control flow operations do not produce data, so they have N, = 0. A conditional branch may
evaluate data, so N; > 0 for control operations. Computation operations are required to have
N; and N, both greater than 0; they take in one or more operands, perform some calculation
on them and output one or more results. Data movement operations do not change operands,
but instead move them in some architecturally dependent way, typically between registers, or
between registers and memory. Operands moved from memory are not represented by input
edges and are not counted in N;; similarly, operands moved to memory are not represented by
output edges and are not counted in NV,, so it is possible to have a data movement node with
no edges in the case of a memory-to-memory transfer. Since memory-to-memory data transfers
are not included in the current application model, however, all data transfer nodes have at least
one input edge or one output edge, and may have both. A data transfer node with N; = 0 and
Ny > 0 is called a data source and a data transfer node with N; > 0 and Ny = 0 is called a
data sink. Figure 3.2(a) shows a graph with 5 different operation nodes. Nodes 1 and 2 are data
sources and node 5 is a data sink.

Note that this discussion of data transfer nodes indicates that a load/store architecture is
being assumed in this thesis; the HASTE concept as currently developed assumes a load-store,
aka register-register architecture, although it could potentially be expanded to other architecture
types such as memory-register or memory—-memory. It will also be assumed that every operation
has the same latency, specifically a single clock cycle. This is a reasonable assumption for a RISC-
type SPU architecture, except for load and store operations and possibly multiplication and other
complex operations. The HASTE model could encompass multi-cycle operation latencies, but

for this thesis, only single-cycle operation latencies will be investigated.

3.2.2 Sequential model

The sequential code model consists of a sequence of operations that can execute on the SPU,
each drawn from a set of possible sequential operations Og, which may contain all three kinds
of operations (computation, data movement, and control flow), but which may not necessarily
contain all of the operation in O, such that O, C O. The operations in sequential code of
each type will be called Os., Osm, and Oy, with Osc € O, Ogm C Oy, and O, C Oy. Having

operations that execute only in the RCF, i.e., operations that are in O but not in Oy, is counter to

18

l
foop BB2

2
BB2
II#

‘ B2 nmm)) t(g ‘

|
v
BB3
é
done?
v

(a) (b) (© (d)

Figure 3.2: Application Model

the goals of HASTE as presented here, since that would force code containing those operations
to run only on the RCF. Therefore, all operations are compatible with the SPU, so O, = O
for the purposes of this thesis. Any sequence of n operations can be represented as s,, with
Sn = (01,...,0n); 0; € O, Vi. This sequence refers to the order of operations in the executable,
which is just a particular representation of the application. As long as the data and control
dependencies implied by the executable are respected, the actual order of execution in the SPU
may be different than the order given in the executable.

The sequential code can be expressed as a conventional CDFG, with control flow operations
(operations in O,¢) determining the execution of basic blocks. In Figure 3.2(b), for instance,
a control operation, C2, is seen that determines whether basic block 3 (BB3) is followed by
BB4 or BB5. The basic blocks contain only operations from Oy, and Os.. Each basic block in
the sequential code is expressed as a dataflow graph (DFG); a DFG is similar to a CDFG, but
has no control flow. Each basic block has a particular sequential ordering applied to it. Note

that the DFG form of the sequential code is explicitly represented only in the compiler; once

19

a sequential ordering is imposed, the DFG structure is only implicit in the sequence. For any
given basic block DFG, potentially many different sequences of operations can be created. The
only restriction on the sequence is that a valid topological order is followed; i.e., no operation
can placed in a sequence before any of the operations on which it depends. Figure 3.2(a) shows
a basic block, BB1, made up of 5 operations. Since this is a basic block from the sequential
portion of an application, there are many different valid sequences for this basic block. For
example, (01, 03, 02,04, 05), (02,04, 01,03,05) and (01, 02, 04, 03, 05) are all valid sequences for this
basic block. Note that each instruction sequence corresponds to just one DFG, the original
DFG shown for BB1, so mapping from the set of DFGs to the set of instructions sequences is a

one-to-many mapping.

3.2.3 Kernel Model

Kernels must execute on both the SPU and the RCF, so they must have a valid sequential order
and otherwise meet all of the requirements discussed in Section 3.2.2. Kernel code has additional
requirements not imposed on sequential code, however, since it must run on the RCF, not just
the SPU. As in [31], the basic unit of code that can be executed in reconfigurable hardware is
defined as being comprised of a single loop body and a single back edge spanning the entire
code segment. However, HASTE requires that the loop body be a single basic block, instead
of a hyperblock. While it seems feasible to execute alternate paths on the RCF, as is done on
the Garp architecture described in [13], this concept will not be included in this discussion of
HASTE. The kernel model does in effect allow control flow through the conversion of control
flow into data flow. This is done by executing all paths in parallel and using select statements
to choose the value to be used by successive operations. Kernel code cannot contain any actual
control flow operations other than loop begin and loop end operations. While this may seem like
a limited model, it is more than sufficient to support kernels from a wide range of applications.
A kernel is thus a basic block, delimited by loop end and loop begin operations. These loop
delimiters execute the basic block a number of times as the body of a loop. The number of times
that the loop body executes must be fixed at the beginning of loop. This may be a runtime
value, however; the iteration count does not have to be known at compile-time. Figure 3.2 (c)

shows a kernel, composed of a basic block BB2 and loop delimiters. Not all basic blocks meeting

20

these requirements are kernels; only those that are compatible with operation on the RCF and
have been designated as such are considered kernels.

As with all other basic blocks, an ordering must be placed on the operations in the kernel
basic block so that can they be executed on the SPU as a sequential series of operations, and this
ordering must be topologically valid. However, those basic blocks that are designated as kernels
have further constraints placed on them. The algorithms used by the current CTE model, as
will be discussed in Chapter 6, place restrictions on the ordering of the kernel operations. A
further consideration for kernels is the source of operands and the destination of results. The
HASTE concept requires a streaming model of memory access for the RCF and most operands
will come from sequential memory locations (or addresses varying by a fixed stride) and most
results will be stored in the same kind of memory locations. More complex memory addressing
schemes could be used, as long as memory locations are known well in advance of their being
needed, but are not implemented at present. Each data source node in the kernel represents a
stream or vector of data that will be loaded from memory by the MAU and each data sink node
represents a stream or vector of results that will be stored in memory by the MAU. Equivalently,
MAU streams may instead be generated by or sent to external hardware using a standard FIFO
like interface located at a specific memory address. Anywhere reference is made to accessing
memory through the MAU, an external hardware interface may be in use instead, using this kind
of memory-mapped I/0, unless otherwise specified.

While in theory HASTE could support various kinds of feedback in kernels, only a very limited
form is currently supported. Allowing general feedback is problematic in a pipelined fabric and
may require techniques such as c-slow retiming [32] in order to maintain performance. Allowing
feedback also makes the task of the CTE much more complicated, since the source of a particular
operand may be anywhere in the fabric. Feedback through the MAU is also never allowed; in
other words, no address used as a destination for a data sink node can be subsequently read by a
data source node. This is due to the difficulties inherent in providing consistent behavior in both
the the RCF and SPU in the presence of unknown and arbitrary latencies in the MAU. Note
that the SPU can perform arbitrary memory loads and stores outside of kernels using traditional
memory instructions that bypass the MAU. While these restrictions on feedback may seem very

limiting, in practice most applications of interest can be implemented with only the feedback

21

allowed by HASTE, and in fact most vector processors do not even allow the feedback that
HASTE does.

There are some cases where a fixed value needs to be used in each loop iteration and that
value is not known at compile-time; a constant value that is a parameter of the loop, for instance.
This is represented as an edge that enters the basic block, with its source external to the block.
All such edges are considered to represent static operands; that is, operands that are only written
once by code outside the basic block, before the first iteration. These are also be called live-in
values, after the common convention in compiler design. In other cases it may be required that
a given value to be output only once after all iterations of the loop are complete; a sum of all
the results of each iteration would be an example. These kinds of operands appear as edges that
exit the basic block. These represent values that are read by code outside the hyperblock only
after the last iteration and will be referred to as live-out values.

Figure 3.2(d) shows a basic block intended to run on the RCF. Node 1 is a data source and
represents a stream of data read from memory. Nodes 7 and 8 are data sinks and represent
streams of data stored in memory. Node 1 produces a new value each loop iteration and nodes 7
and 8 each consume a value each loop iteration. Node 2 has an input that has its source external
to the basic block and is thus a live-in value. Node 3 and node 4 both have out edges that have
targets external to the basic block and they represent live-out values. A node that produces a
live-out value does not behave differently in regard to other nodes in the basic block than nodes
that do not produce live-out values. For instance, node 5 has the output of node 4 as one of its
source operands; it get the value produced by node 4 each iteration. The only value that gets
passed outside the basic block, however, is the the last value produced by node 4. Other than
live-in and live-out values, all data passed into and out of a kernel must go through the MAU.

In general, no feedback is allowed in kernel code; the DFGs for the kernel DFG must be
acyclic. However, node 3 shows the limited feedback that is allowed: the output of a node can be
used as one of its own inputs. This is particularly useful for counters and accumulators. These
must have an initial value; in this example, this is represented by the in-edge for node 3 that has
its source external to the basic block. This is a live-in value, but because it is the same input
to node 3 that is also written by the output of the node, it does not stay constant like a typical

live-in value. So if node 3 is a counter, for instance, the live-in value to node 3 represents an

22

initial value to the counter, and the live-out value represents the final count of the node.
Kernel code can be executed either in the SPU or in the RCF; thus all operations executable
in the kernel, by definition members of the set Oy, must be compatible with both. Since every
operation that can execute in the RCF can execute in the SPU, but not the converse, O D
Os = O, Ogm 2 Ogimy = Oy, and Oy 2 O = O,. Since there is no control flow in the kernel,
Ors = . The absence of control flow in kernels means that the sequential execution of kernels

in the SPU is always the same, which is of course not true of SPU code in general.

3.2.4 Complete Application Model

As has been discussed, applications for HASTE consist of a sequence of operations, each corre-
sponding to an instruction that can be executed on the SPU. This sequence can be divided into
basic blocks of computation and data movement operations, with control operations determining
the order of basic block execution. A complete HASTE application is shown in Figure 3.2(b).
This application has five basic blocks, BB1-BB5, and two control operations C1 and C2. Basic
blocks are represented as DFGs, with a sequential order applied to each DFG. The basic blocks
may contain only operations from O, and O,,, while control flow operations are by definition
from Oy.

One of these basic blocks, BB2, has been designated as a kernel and therefore may only contain
operations in the set O. This kernel may execute on either the SPU or the RCF, and in either
case it must produce the same results and have the same side effects on the SPU state. In order
to execute on the RCF, the kernel operation sequence must be converted into a configuration by
CTE. If it cannot be so converted, than it executes on the SPU only. A number of assumptions
and restrictions are imposed on the application model by the HASTE concept and others are
adopted for simplicity in this early research on HASTE. Table 3.1 lists these assumptions and

the reasons for each.

3.3 System Model

Given this application model, a method is needed to describe the system that the application

executes on in terms of this application model. On the system hardware, each operation is

23

Table 3.1: HASTE Application and Kernel Assumptions

| Assumption | Reason

All operations execute in a single clock Simplifies HASTE modeling and simulation.

cycle.

All operations can execute on SPU. RCF only operations complicate HASTE for lim-
ited gain.

Kernel loop body is a basic block. Simplifies RCF design.

Kernel basic block DFGs are acyclic. General feedback difficult to implement in
pipelined architecture.

No feedback through MAU. Possible in general, but very dependent on MAU
operation and latency

Tteration count must be fixed before first | Simplifies MAU and RCF operation.

loop iteration.

No memory-stored operands allowed for General memory access difficult to implement in

computation operations in kernel pipelined fabric.

represented by a single machine instruction. The SPU can execute an entire application as a series
of instructions executed in the order determined by the control flow instructions. Using a simple
SPU model, it might be assumed that any sequence s,, of n instructions, s, = (01,...,0,);0; €
Og, Vi, can be executed on the SPU. To be precise, if S is the set of all possible sequences of
instructions s from Og, and Sspy is the set of all sequences that can be executed on the SPU,
then Sspy = S. For other SPU models, this may not be the case, so Sspy C S. An example
of this might be the restrictions on sequencing required by the branch delay slot found in MIPS
processors [33].

Any SPU program can be uniquely described as such a sequence of instructions. Note that
this sequence does not designate the order in which the instructions are executed, which is
determined by control flow operations that may be dependent on run-time data, but only the
order of instructions composing the program. Upon running the program, a particular sequence
of instructions will be executed; this executed sequence will be designated ex(s). Note that |ex(s)|
is not necessarily equal to |s| , since control flow instructions, if present, can cause instructions
in s to be skipped, resulting in a shorter sequence. For a sequence of length n, s,, there is a set
of p possible execution sequences EX (s) = {ex(s)1,...,ex(s),} whose lengths in general are not
equal to n. Since a kernel is a sequence of instructions that can be executed on the SPU, kernels

can also thus be represented as a sequence of instructions k& = (01,...,0,);0; € O, Vi, with

24

k € Sgpy. Since there is no control flow allowed in kernels, p = |[EX (k)| =1 and |ex(k)| = |k| .

The RCF does not execute sequentially, so a program running on the RCF cannot be described
by a sequence. Instead, it is necessary to specify a configuration for the RCF. A configuration
for the RCF requires the specification of where in the fabric each operation is located, where
each operand is produced, and where each operand is consumed. This can be accomplished by
specifying a dataflow graph, G, with each vertex in the DFG representing an operation in the
kernel and each edge designating where an operand is produced and consumed; and a mapping
m, composed of two one-to-one functions m,, and m., which map vertices and edges, respectively,
to specific locations in the fabric. Note that the DFG is implicit in the instruction sequence but
is not explicitly represented. It is the same DFG used for the basic block in the application
model, as described previously, and thus there is one correct DFG that represents a particular
kernel. There may potentially be many different valid mapping functions, however.

The mapping functions must meet several criteria. Every operation (vertex) in the DFG
must be placed at a location in the fabric such that all of the operations it is dependent upon
are located where they can be accessed. In addition, it must be possible to implement each edge
given the available interconnect resources, and there must be enough of these resources so that all
of the edges in the graph can be implemented. As will be shown, there are many different kinds
of possible RCFs, and it is not necessarily true that a valid mapping can be found for a given
DFG on a given fabric. Given a valid DFG and mapping, the fabric configuration is generated
by specifying an operation for each processing element in the fabric and specifying the necessary
values to control the fabric interconnect in such a way as to implement the DFG and mapping.

The goal of the CTE is thus to take a sequence of instruction representing a kernel, and from
them produce the DFG and mapping functions so that the fabric can be configured. Given a
sequence of instructions representing a kernel, k, the CTE should produce a configuration c(k),
or equivalently, a DFG G and a mapping, m, if one is possible for the fabric. If Cror is the set
of configurations that can be implemented on the fabric and Sj, is the set of all kernel sequences,
than CTE performs the function f : Sy — Crcr. However, in general, a CTE may not be
able to perform all such transformations. Only some sequences may be understood by the CTE
and a valid configuration may not be possible to generate for every sequence. So Scrg is let

to represent all kernel sequences that a given CTE can both understand and generate a valid

25

configuration from. Then Corp represents the set of all configurations that the CTE can produce
from elements of Scrg, so fore @ Scre — Ceorg. Note that a CTE will always produce the
same configuration for a given sequence. Ideally, Sorp = Sk and Corp = Cror; but this is not
usually the case. If a kernel sequence is not in Scrg then that sequence can only be executed
on the SPU. A different CTE might have a larger set of transformable sequences so that same
sequence might be transformable on this more powerful CTE.

So the system model describes a HASTE system as having an SPU which can execute some set
of sequences of instructions Sgpy with an individual sequence s composed of instructions from
Os. The actual executed sequence is ex(s) and this executed sequence may vary in length from the
original sequence. Some portions of these sequences are designated as kernels; a kernel sequence
k is composed of instructions from O. A kernel sequence always executes in the same order, so

ex(k) =k. If k € Scrg, than then CTE can transform it into an equivalent configuration c(k).

3.3.1 Component Completeness

There are several different system characteristics that can now be described using this termi-
nology. The first is SPU completeness. An SPU is complete if it can execute any sequence of
instructions from Og; this implies that Sspy = S. An SPU is incomplete if it cannot execute
some sequences of instructions (without generating an exception or other error condition), imply-
ing Sspy C S. The queue ISA SPU that will be discussed in Chapter 4 is incomplete, because
only sequences of instructions with certain properties can run on the SPU. Other sequences do
not have a defined behavior or will have undesirable or unexpected behaviors. Most conventional
SPU architectures are at least partially complete, although this of course does not mean that all
sequences performs any sort of useful computation.

Given a sequence of SPU instructions, it can be designated as a kernel if it meets certain
criteria, namely that it contains only instructions in O and that it meets the control flow
requirements mentioned earlier. This kernel code can be guaranteed to run on the SPU if the
SPU is complete or if the sequence is in Sgpy. (If neither is true and the code doesn’t run on
the SPU, than there is no reason to have any further interest in it!). In order to run on the RCF,
however, there are two additional requirements. The first is that at least one configuration c

exists that provides a proper mapping from the edges and vertices of a DFG G that is isomorphic

26

to the original kernel DFG, to the routing and computational resources of the RCF. If not,
the kernel is not physically implementable on the specific RCF, at least as it was expressed in
sequential code for the SPU. Changing the original DFG implementing the kernel in the compiler
could avoid this problem in some cases, particularly if the exact RCF to be used was known in
advance, but that is not always the case. If any kernel sequence that can be run on the SPU
can be implemented on the RCF, than the RCF is called complete, assuming that the fabric is
always sufficiently large. For a complete RCF, then for every sequence in Sy, there is at least
one corresponding configuration in Crcor that performs the same computation.

However, there is another criteria for running a kernel on the RCF, and that is that the CTE
can correctly implement the kernel on the fabric, given the SPU sequence. It is possible for a
RCF to be complete, but for the CTE to still be unable to map kernels that could be implemented
on the RCF. If, however, the CTE can map any valid kernel sequence that can be run on the
RCF to the RCF, than the CTE is called complete and it can be said that Scrg = Sk and
Ceore = Crer. Note that it is possible to have an incomplete RCF and still have a complete
CTE, if all sequences that do have mappings to configurations on the RCF are transformable by

the CTE.

3.4 Observations

A general description of HASTE applications and kernels and the operation of the SPU, CTE,
MAU, and RCF has now been presented. However, these have all been described in very general
and mostly abstract terms. In the next chapter, Chapter 4, the instructions sets that will be
used to represent operation sequences will be discussed using more specific terms. The chapter
after that, Chapter 5, will describe the HASTE hardware more thoroughly and in particular will
describe the RCF in detail, which will provide the background necessary for understanding what
RCF configurations consist of. Once the instructions sets and fabrics have been explained, it will

be possible to describe how the CTE works in detail; this will be covered in Chapter 6.

27

Chapter 4

Instruction Set Architectures

The previous chapter described the application and system models for HASTE, but it must
still be explained how executables that run on a sequential processor can be transformed into
configurations for a spatial fabric. There are two main components that make this possible. One
is the CTE, which will be covered in Chapter 6, and the other is the set of instructions that
kernels are expressed in, which is the subject of this chapter. The kernels need to be expressed
in a manner that will ensure that the kernels will run and give the same results on both the
SPU and the CTE. So the executable for each kernel must have a valid sequential meaning and
also must contain enough information to allow for the construction of a valid configuration. A
configuration means information about the placement of operations and the connections between
operators needed to produce the same results as the sequential semantic; in effect, placement
and routing of the fabric. There are several possible ISA types that meet these requirements and

they will be presented in this chapter. Experiments comparing them are reported in Chapter 8.

4.1 Generic HASTE Assembly Language (GHAL)

All HASTE applications are initially expressed in the Generic HASTE Assembly Language, or
GHAL. This is a conventional register-based assembly language, based on the Portable Instruction
Set Architecture developed for use with the SimpleScalar simulator [34]; PISA in turn is based
on the MIPS ISA [33]. GHAL serves as an intermediate format between the original application

source code and the ISA-specific executables that actually run on HASTE architectures. Unlike

28

most intermediate formats, however, it can be executed directly using a simulator. Simulations
of GHAL are performed using a modified version of SimpleScalar; this was possible since GHAL
is an extension of PISA. The main differences between GHAL and PISA are threefold; the
addition of special instructions to designate the beginning and end of kernel loops and control
loop execution; the addition of streaming memory instructions; and the introduction of a select
instruction that allows for the implementation of some control flow by converting it into data flow
using if-conversion [35]. In addition, GHAL has 32 more general purpose registers than PISA
does. This reduces register spills in the compiler and simplifies the process of creating GHAL
code. There are a few other minor difference between the GHAL and PISA,| relating mainly
to some instruction names and operand ordering. These can be seen by comparing the GHAL
reference in Appendix B to the PISA instruction reference in [34]. The three main differences
between GHAL and PISA are covered in this section, however, and a list of the most important
new instructions in GHAL and not in PISA is shown as Table 4.1. A simple PISA assembly
program and its GHAL equivalent are shown in Figures 4.1(a) and 4.1(c), respectively, and these
will be used as examples throughout this section. These programs both implement the kernel
portion of the simple C program shown in Figure 7.3. Note that this particular example is also

covered in more detail in Chapter 7.

4.1.1 Loop Delimiters

Loop delimiters have two important functions in HASTE: they are used to identify kernel code
and they can also control iteration of kernel loop bodies. The identification function is used
for profiling execution and can also be used to tell the SPU that a kernel is starting and that it
should start passing instructions to the CTE for transformation into a configuration. The control
function implements the actual iteration of the loop body if it executes on the SPU and it enforces
the requirement that the number of loop iteration be known before the first loop iteration. There
are two kinds of loop delimiters; dummy loop delimiters and active loop delimiters. The dummy
loop delimiters DLPBGN, DLPEND, and DLPDONE do not actually execute; they are only
used for profiling kernels and are not counted in any simulation statistics. Technically, they are
not even part of GHAL, but are used for profiling PISA versions of kernels. In Figure 4.1(b),

the dummy loop delimiters are present on lines 6, 24, and 26. The DLPBGN instruction on

29

Table 4.1: New Instructions in GHAL

Instruction | Syntax

Description

DLPBGN DLPBGN Dummy loop delimiter, used for profiling only. Placed
before beginning of loop body.

DLPEND DLPEND Dummy loop delimiter, used for profiling only. Placed
as last instruction in loop body.

DLPDONE | DLPDONE Dummy loop delimiter, used for profiling only. Placed
as first instruction after end of loop body.

LPBGN LPBGN rd, rs Loop delimiter for beginning of loop. Register rd is
used to hold loop iterator and iteration count is taken
from value in rs.

LPBGNI LPBGN rd, uimm | Loop delimiter for beginning of loop. Register rd is
used to hold loop iterator and iteration count is taken
from unsigned immediate uimm.

LPEND LPEND rd, target | Loop delimiter for end of loop. Register rd holds loop
iterator and target is label at beginning of loop (af-
ter LPBGN). Value in rd is decremented and if > 0,
execution branches to target.

SETB SETB p, addr Set base address for port p to addr.

SETS SETS p, uimm Set stride for port p to unsigned immediate uimm.

RECV RECV rd, p Receive word from memory port p into register rd.

RECVB RECVB rd, p Receive byte from memory port p into register rd and
sign-extend.

RECVBU RECVBU rd, p Receive byte from memory port p into register rd.

RECVH RECVH rd, p Receive half-word from memory port p into register
rd and sign-extend.

RECVHU RECVHU rd, p Receive half-word from memory port p into register
rd.

SEND SEND p, rs Send word in register rs to memory port p.

SENDB SENDB p, rs Send low byte in register rs to memory port p.

SENDH SENDH p, rs Send low half-word in register rs to memory port p.

SEL SEL rd, rs, rt, ru | If rs is zero, copy value in register rt to register rd.

Otherwise, copy value in register ru into register rd.

30

1) simple_ kernel: 1) simple kernel: 1) simple_kernel:

2) . frame $sp,0,$31 2) . frame $sp,0,$31 2) .frame $sp,0,$31
3) .mask 0x00000000,0 3) .mask 0x00000000,0 3) .mask 0x00000000,0
4) .fmask 0x00000000,0 4) .fmask 0x00000000,0 4) .fmask 0x00000000,0
5) addu $7,$5,20000 5) addu $7,$5,20000 5) setb P1,0($4)
6) $L43: 6) dlpbgn 6) sets P1,3
7) 1lbu $2,0($4) 7) $L43: 7) setb P2,1($4)
8) 1lbu $3,1($4) 8) 1bu $2,0(s$4) 8) sets P2,3
9) lbu $6,2($4) 9) 1lbu $3,1(84) 9) setb P3,2($4)
10) srl $2,52,2 10) 1lbu $6,2(54) 10) sets P3,3
11) addu $3,$3,$2 11) srl $2,$2,2 11) setb P4,0(S$5)
12) sltu $2,$6,$3 12) addu $3,83,%2 12) sets P4,2
13) beqg $2,$0,$L44 13) sltu $2,$6,$3 13) lpbgni $40,10000
14) move $2,5$6 14) beq $2,$0,8L44 14) $L35:
15) 3j $L45 15) move $2,$6 15) recvbu $2,P1
16) $L44: 16) j $L45 16) recvbu $3,P2
17) addu $2,$3,4 17) $L44: 17) recvbu $6,P3
18) $L45: 18) addu $2,$3,4 18) srli $2,$2,0x2
19) sh $2,0($5) 19) $L45: 19) addu $3,$3,%2
20) addu $5,$5,2 20) sh $2,0($5) 20) addiu $48,$3,4
21) addu $4,$4,3 21) addu $5,85,2 21) sltu $44,$6,$3
22) slt $2,$5,87 22) addu $4,$4,3 22) sel $2,$44,$6,$48
23) bne $2,$0,$8L43 23) slt $2,$5,87 23) sendh P4,$2
24) 3 $31 24) dlpend 24) lpend $40,$L35
25) .end simple_kernel 25) bne $2,$0,8L43 25) 3j $31
26) dlpdone 26) .end simple_kernel
27) j $31
28) .end simple kernel
(a) Original PISA Code (b) Instrumented PISA Code (c) Equivalent GHAL Code

Figure 4.1: Equivalent PISA, Instrumented PISA, and GHAL programs

line 6 identifies the beginning of the loop body and is placed just before the first instruction
in the loop body. It only executes one time, and the next instruction after DLPBGN is the
first instruction in the first iteration of the loop. The DLPEND instruction on line 24 identifies
the last instruction in the loop body except for the loop-closing branch statement on line 25.
DLPEND executes once for each loop iteration. The DLPDONE instruction on line 26 identifies
the end of all loop iterations and is placed after the loop-closing branch. It executes only once,
after all loop iterations are complete. These three instructions are all needed for accurate kernel
profiling. The profiling process is covered in Chapter 9.

The active loop delimiters LPBGN and LPEND are actually executed and perform the branch-
ing for kernels when executing on the SPU and otherwise delimit the code that is contained in
a kernel. The LPBGN instruction specifies a register to hold the loop counter and a count of
the number of times to iterate; this may be supplied as either a constant (in which case the
immediate instruction version LPBGNI is used) or the value may be in a register (in which case

LPBGN is used). In Figure 4.1(b), there is a LPBGNI instruction on line 13. It designates reg-

31

/* * simple.c * */
#define NUM_DATA 10000
#include <stdlib.h>
void simple_kernel (unsigned char* in_data, unsigned shortx* out_data);
int main(void) {
unsigned char *p_in;
unsigned short *p_out;
int i;
p_in = malloc(3*NUM_DATA*sizeof (unsigned char));
p_out = malloc(NUM_DATA*sizeof (unsigned short));
for (i = 0; i < (NUM_DATA*3); i++) {
p_in[i] = randQ);
}
simple_kernel(p_in,p_out);
return 0;
}
void simple_kernel (unsigned char* in_data, unsigned short* out_data) {
int i;
unsigned char a,b,c;
unsigned short x,y,z;
asm("dlpbgn™);
for (i=0;i<NUM_DATA;i++) {
a = in_datal[i*3];
= in_data[(i*3)+1];
= in_data[(i*3)+2];
a>> 2;
=b + x;
if (y > ¢)

Z = c;

< X 0o o
1]

else
z =y + 4;
out_datal[i] = z;
asm("dlpend™);
}
asm("dlpdone");
}

Figure 4.2: Original C code for simple example program

32

ister $40 as the loop counter and sets an immediate loop iteration count of 10,000. The LPEND
instruction specifies the loop count register and a branch target. The instruction decrements the
counter register and checks to see if it is greater than zero. If it is, execution continues at the
branch target address. If not, iteration is complete and execution continues to the next instruc-
tion in memory. The LPEND instruction can be seen on line 24 of this example. It identifies
the same register as the loop counter as was used for LPBGN, register $40, and specifies the
branch target address using the label $L.35 placed just before the first instruction in the loop
body. These two instructions replace the instructions on lines 5, 21, 23, and 25 of the original
code in Figure 4.1(a). Although nothing actually prevents it, modifying the loop counter register
during execution of the loop body can cause unexpected results and complicates operation of the
MAU. A general purpose register was used here to allow for more flexible loop iteration in future
versions of GHAL and HASTE; a special interlocked loop counter could have been used had it

been deemed necessary to enforce the restriction on modifying the loop counter.

4.1.2 Streaming Memory Accessors

To match the streaming memory model mentioned earlier, GHAL has a set of streaming memory
access instructions. These send and receive instructions correspond to store and load operations
of a conventional ISA. Rather than referring to memory addresses, however, they refer to memory
access ports. The current GHAL design assumes hardware with 32 memory ports; ports 0-15 are
receive ports and ports 16-31 are send ports. Prior to issuing a send or receive instruction, and
prior to kernel initiation, the port must be set up by supplying a base address using the SETB
command and a stride using the SETS command or their variants. Only some of the variants on
SETS and SETB are shown in Table 4.1, but all are covered in Appendix B. The first receive
instruction using a port gets the memory value at the base address; subsequent receives of the
same port get the values in memory at subsequent addresses that are obtained by adding the
stride value to the base address at each access. Send instructions work similarly, with the first
send to a port sending data to the base address, and subsequent ones sending data to subsequent
addresses. A stride of zero may be used for access to memory mapped I/0. In Figure 4.1(b), three
receive ports and one send port are in use. The receive ports, ports 0,1, and 2, are set up in lines

5 through 10, and the receive port, port 16, is set up in lines 11 and 12. In this example, port 0 is

33

set with a base address of 0($4), meaning a zero offset from the address in register $4, port 1 has
a base address of 1($4), meaning a one-byte offset from the address in register $4, and port 2 has
a base address of 2($4), meaning a two-byte offset from the address in register $4. Each of these
three receive ports has a stride of 3 bytes (set in lines 6, 8, and10). Just as for the load and store
instructions in PISA, there are send and receive instructions for words, half-words, and bytes;
the receive instructions for half-words and bytes have both signed and unsigned versions which
control whether sign-extension is performed. All of these memory accessors are listed in Table
4.1. In this example, it can be seen that all three receives, in lines 15, 16, and 17, are receives
of unsigned bytes. So the access patterns is that in the first iteration three consecutive bytes
are read from addresses 0($4), 1($4), and 2($4), in the next iteration three consecutive bytes are
read from addresses (0+3)($4) = 3($4), (1+3)($4) = 4($4), and (2+3)($4) = 5($4), and so on.
Looking at lines 8, 9, 10, and 22 in Figure 4.1(a), it can be seen that the GHAL code is in fact
reading the same data from memory as the PISA version. The GHAL code is simpler, because
address incrementing is done automatically, so no instructions equivalent to those on lines 21 and

22 of the original PISA code are needed in the GHAL code.

4.1.3 Select Instructions

Since no control flow is allowed in the kernels, select instructions are introduced into the ISA; see
sel in Table 4.1 for the syntax. The instruction has three source operands; a single selector and
two possible select values. Depending on whether the selector is zero or non-zero, either the first
or second select value is passed to the destination operand. In the PISA code in Figure 4.1(a),
it can be seen that a different value ends up in register $2 depending on whether the branch in
line 14 is taken or not. If it is taken, then $2 gets the sum of registers $3 and $4 in line 18; if the
branch is not taken, it gets the value in register $6 in line 15. This corresponds to the if..else
construct in the original C code. In the equivalent GHAL code registers $3 and $4 are always
summed on line 20. Then either this sum or the value in register $6 is placed in register $2 by
the select statement on line 22. Note that the number of instructions executed in the PISA code
varies depending on the branch taken, but the number of instructions executed in the GHAL

code is always the same.

34

4.2 ISA Requirements

While GHAL has several features that improve its suitability for HASTE, it is still not easily
transformable, at least not without further consideration of the transformation process. It is nec-
essary to be able to take the sequential code for the kernel, k, and from it determine the mapping
function m, and at least indirectly the kernel DFG, G. Equivalently, the kernel application needs
to be placed and routed on the RCF. To construct G, it is necessary to determine the nodes
and edges of the graph. To determine the mapping function, it is necessary to know where on
the fabric each of these nodes and edges goes. The ISA needs to implicitly or explicitly provide
enough information to the CTE so that it can produce G and m. As discussed in the previous
chapter, m is composed of two sub-functions, m, and m. which map vertices(nodes) and edges,
respectively, from G to the fabric. In order to discuss what the requirements are for the ISA, it

is necessary to discuss G, m,, and m. in more detail.

4.2.1 Operations and Placement

In the current HASTE implementation, the nodes in G correspond on a one-to-one basis to
the instructions in the kernel sequence, with the exception of the loop delimiters, which are
not considered part of the kernel. So a sequence of n instructions (not including delimiters)
corresponds to a DFG with n nodes, and vice versa. The functionality of each operation in the
fabric thus corresponds to the functionality of each corresponding instruction in the sequence. So
determining the number of nodes and the operation performed by each is simple. An instruction
sequence like that shown in Figure 4.1(b) with three recvbu instructions, and one each of srli,
addu, addiu, sltu, sel, and sendh instructions, will have a corresponding DFG with three
recvbu nodes and one each of srli, addu, addiu, sltu, sel, and sendh nodes. Note that the
loop delimiting instructions and label on lines 13,14, and 24; the memory access setup instructions
on lines 5-12; and the subroutine-related code on lines 1-4, 25, and 26 are not part of the kernel
DFG.

In addition to the number and type of nodes, the CTE needs to determine where in the fabric
to place each node. While in theory the CTE could determine the placement entirely by itself
from an arbitrary sequence of instructions, this would require a much more complex CTE than

would be practical. The HASTE concept assumes that most of the work of determining the

35

B

NOP
, ®® :

o e A A B New row
A B New row o e e clp E
(©) () (&) . ciolel g = =F
E> :> D Fla c

F C o e . —— New row
° e H New row H G

G 0 F

0 F New row
New row NOP
H H

(a) Mapping without explicit spacing. (b) Mapping with explicit spacing.
Figure 4.3: Application Mapping in Compiler

configuration will be done at compile time, so it is only necessary to give enough information
about the desired configuration for the CTE to recreate the configuration. So for a given DFG,
the compiler determines a mapping for that DFG to a specific ISA and fabric. In Figure 4.3(a)
can be seen a mapping for a DFG to a simple fabric with four rows (or pipeline stages) and
three columns. Since it is desirable that the CTE be able to complete its job as quickly as
possible, ideally within a single loop iteration, it would be preferable to be able to determine the
placement for each node as soon as it is seen by the CTE. Given the pipelined nature of the RCF,
it makes sense to order the instructions in the sequential code such that all instructions for a
given pipeline stage are in the sequence before any instruction for any subsequent pipeline stages.
This also ensures that the topological ordering requirement for sequential code is met. This still
leaves the question of where in each stripe to place each operation. Again keeping with the the
premise that the CTE’s job should be made as simple as possible, the instruction sequence is
simply created such that each instruction appears in the order that it is placed in the fabric.
The instruction sequence in Figure 4.3(a) was created by simply copying the operations from
right to left, starting with the first pipeline stage and continuing on to successive pipeline stages.
Figure 4.4 shows how the DFG is recreated by the CTE by reading the instruction sequence and
“pushing” each instruction onto the pipeline stage (Note that this process is covered in much
more detail in Chapter 5). Some indication of the need for a new row is needed; the exact form
this takes differs between ISAs. In any case, the new row signal causes the current row to move

up into the fabric, and the CTE can start placing the next row. Determining the nodes in G

36

B
A
row
E
D D
C C
New row New row New row
G G A G
F F F
New row 1 New row New row
H H H
B B B
A A A
New row New row New row
E E E
D D
C B A c
New row New row New row
G E G
F F F
New row 4 New row New row
H H H
B B
A A A
New row New row
E B E (o]
D D
C D C F
New row New row
G G G H
F
New row 7 New ro)
H

Figure 4.4: Placement of Operations by CTE

and where each node goes in the fabric (m,) is thus quite straightforward. The only complexity
arises when it is necessary to place operations in the fabric such that are spaces between them,
as shown in Figure 4.3(b). This might need to be done because of routing restrictions in the
fabric, for instance. In this case, NOOP instructions are inserted into the instruction sequence to
properly space the operations on each row. This causes some inefficiency in the sequential code,
since these NOOPs must be fetched and decoded, but this is necessary in order to keep CTE
operation simple. These same placement techniques are used for all ISAs; the only difference is

in how the “new row” signal is generated, and this will be discussed for each ISA in turn.

37

4.2.2 Data Flow and Routing

The more difficult part of determining the structure of G is finding the edges, which represent
data dependences between instructions, or equivalently, represent data flow between operations.
The exact manner that these dependences are determined is different for each specific ISA. Once
these are known, the CTE must determine how to configure the interconnect to implement the
correct data flow. This is in effect implementing routing for the RCF and is covered in detail in
Chapter 5. Performing a general routing task where connected operations could be anywhere in
the fabric would be quite difficult to do at run time with RCF. However, the pipelined nature of
the RCF greatly simplifies the routing problem. For any given operation, it is only necessary to
route operands from a register in the current stripe, and the result of each operation needs only to
be routed to a register in the next stripe. So once the input operands for an operation are known,
as long as the locations of those operands are known, the required routing can be determined.
Since all of the input operands for any given instruction must have been generated or stored in
the previous stripe, and since instructions are sequenced in stripe order, all input operands must
already have been seen by the CTE for any given operation needing those operands. So the main
information the CTE needs is what input operand(s) each operation needs. This varies from ISA

to ISA and will be covered in the section for each ISA.

4.3 Queue ISA (QISA)

The easiest kind of ISA for the CTE to convert is a queue ISA, which is an ISA targeting a queue
machine. A queue machine is analogous to the more familiar stack machine, such as the Java
Virtual Machine [36], except that it uses an operand queue rather than an operand stack. Figure
4.5(a) shows an operation using an operand stack. In a stack machine operands are always taken
off of the top of the stack and the result is placed back on the top of the stack. In this example,
the operation is an add, so the top two values, 1 and 2, are taken from the stack and added. The
result, 3, is placed back on the top of the stack.

An operand queue does not have a top, but instead has a head(front) and tail(back). Operands
are always taken from the head of the queue and results are always placed on the tail of the queue.

In the example shown in Figure 4.5(b), the same operation performed in the stack machine

38

Top—»{ 1 1+2 =3 <— Top Head—»| 1 4 |e— Head
2 4 ?
add 2 add ?
4 ? 4 142 =3 |a— Tail
> Tail—»{ 2
(a) Stack machine operation. (b) Queue machine operation.

Figure 4.5: Stack and Queue Machine Operation

example is performed using a queue machine. The two operands, 1 and 2, are taken from the
head of the queue and added. The result, 3, is placed on the tail of the queue.

The queue machine is used for HASTE because the inherent ordering of operations better
matches the requirements for the types of instruction sequences needed to ensure that a simple
CTE can be used. Because of the use of a fixed data storage structure and rules that determine
where operands are taken from for each operation, both queue and stack machines place strict
limits on the instruction sequences that are valid for a given DFG. Figure 4.6 shows a simple DFG
and the instruction sequences generated from it for a stack machine and for a queue machine.
Note that in the stack machine schedule, operations that are on the same level of the DFG are
separated by operations on a different level. The arrows connect blocks of operations that are
on the same level of the DFG. The queue machine schedule has all of the operations that are
on the same level of the DFG in sequence. While there are different possible stack and queue
machine schedules, it is shown in [37] that any correct sequencing of the example DFG for a stack
machine will separate operations that are on the same level and should be adjacent for correct
CTE operation. Further, a correct sequencing for a queue machine will always keep operations
together that should be on the same level. So queue machines require instruction sequences
that are an exact match for the type of instruction sequences that are desired for simple CTE
operation.

Given some arbitrary stream of instructions, it may be possible to reorder them so that they
can run on a queue processor, but this is not true of most instruction sequences. Fortunately there
is a correspondence between certain properties of a DFG and the correct ordering of instructions
for a queue machine. Any DFG that is both level and planar will produce an instruction sequence
that will run correctly on a queue machine [37]. A level graph is one that can be drawn with

the nodes in rows such that every edge goes from a node in one row to a node in the next row

39

Stack Schedule: Queue Schedule:
Op_1 Op_1
(3) Op 2 Op_2
Op 5 Op_3
G Op_ 3 Op 4
Op 4 Op_5
Op 6 Op 6
Op.7 Qp_7

Figure 4.6: Instruction Ordering for Stack and Queue Machines

and no edge skips a row. An example of a non-level graph and a level graph are shown in Figure
4.7(a) and Figure 4.7(b), respectively. A planar graph is one that can be drawn without any
edges crossing. An example of a graph that is both level and planar is shown in Figure 4.7(c).

By adding new nodes to a DFQG, a level-planar graph can be produced from any arbitrary
DFG, so queue machines can be used to implement any instruction sequence, if certain queue
manipulation instructions are allowed. These instructions are SWAP, which replaces edges that
cross, and PASS, which allows edges to cross levels. In the queue machine, a PASS instruction
removes an operand from the head of the queue and places it on the tail of the queue, and a
SWAP instruction removes two operands from the head of the queue, reverses their order and
places them on the tail of the queue. This process of making an arbitrary DFG both level and
planar is illustrated in Figure 4.7. The original non-level, non-planar graph is shown in Figure
4.7(a). The graph is first made level by add PASS nodes to each edge that crosses more than
one level; the level version is shown in Figure 4.7(b). Next the graph is made planar by inserting
SWAP nodes everywhere that two edges cross. Finally, the graph is made level again by inserting
PASS nodes for all edges spanning the level where a SWAP node was added. The final graph is
shown in Figure 4.7(c).

The queue ISA has some drawbacks that seem to make it a rather poor choice for use in
HASTE. Use of the queue ISA requires that the SPU be a queue machine, which requires con-
struction of a novel type of processor. Further, all application code would have to be compiled to
run on the queue-based ISA. Many PASS and SWAP operations have to be added to queue DFGs
to make them level planar, so the corresponding code is longer than it would be otherwise. The
level planarity property makes it impossible to directly indicate feedback in a queue ISA DFG as

can be done in a generic DFG, as was shown in Figure 3.2(d). Currently single operator feedback

40

is only possible in QISA by using a special instruction type which includes feedback implicitly.
The only such operation currently implemented is ZACC, the accumulate from 0 operation, as
described in Appendix B. Finally, the queue ISA allows a fanout of at most 2 from any node;
in other words, any result may only be read at most 2 times. The PASS2 instruction takes an
operand from the head of the queue and places two copies of it on the tail of the queue. This
allows a result to be read more than twice, but this requires the addition of yet more instructions.

The queue ISA does have several advantages, however. Because the operands used by each
operation are implied by the ordering of operations in the sequence, no explicit operation desig-
nation, like specifying register numbers in a conventional ISA, is needed. This means that each
instruction need only contain a field to designate what operation is to be performed and can
thus be much smaller than instructions for other types of ISAs. The job of the CTE is simplified
because it doesn’t have to keep track of explicit operand designations; it can determine implicitly
where to get the operands for each operation. All result operands are written to the same column,
so the CTE always knows where to find them. In addition, the CTE can determine when a new
row is needed just by observing the number of operands available in a given row. A queue ISA
allows the use of a very simple CTE, as will be discussed in Chapter 6.

The queue ISA has all of the instructions in GHAL, except that unlike GHAL, no register
operands or other operands designation is required. The only operands needed are immediate
values for instructions that require them. In addition to the standard GHAL operations, the
SWAP and PASS instructions, as previously described, are also included. Another queue specific
instruction is DROP, which simply consumes a value off of the queue. This is typically only
needed for instructions that produce two different values, only one of which is needed. The
queue ISA requires some variants on the standard GHAL instructions as well. Normally, a queue
instruction places one copy of its result on the queue, which means that operand can only be used
once. Equivalently, each node in the DFG would only have a single out edge. This is impractical
for most applications, so instructions are allowed to have variants that produce two identical
results. To designate this a ‘2‘ is simply appended to the instruction. Thus an ADD instruction
adds two operands and places the sum on the queue; an ADD2 instruction performs the same
addition but places two copies of the sum on the queue. This is illustrated in Figure 4.8(a). The

ISA reference in Appendix B shows which instructions can have their output doubled in this way.

41

(a) Non-level,, non- (b) Level Graph
planar Graph

P PASS node

@ SWAP node

Figure 4.7: Examples showing the level and planar properties of graphs

(¢) Level-planar Graph

42

A

B A B A B A B
C cC ¢ Cc C
C=A+B C=A+B C=A-B C=B-A

(a) Double outputs. (b) Reverse inputs.

Figure 4.8: Queue ISA Instruction Variants

Other problems with the queue ISA come from the limitations placed on the DFG due to the
level planarity requirement. One way to simplify meeting this requirement is the allow the ability
to reverse the order that operands are used in. If this were not possible, than the DFG would
have to restructured to place the operands in the correct order. This is designated by adding
an 'R’ to the instruction and is is illustrated in Figure 4.8(b). Note that this is only required
and implemented for operations with non-commutative operands, like subtraction; hence there
is no ADDR (reversed input addition) instruction. An instruction can have both reversed inputs
and doubled outputs. The ISA reference in Appendix B shows which instructions can have their
inputs reversed. The select instruction has three inputs, which means that there are six possible
input orderings. This is implemented by having three different versions of the select instruction
in the queue ISA, each of which can be reversed. All of the possible select operations are shown
shown in Figure 4.9.

The final instruction variation is needed only for instructions which have two different outputs;
for example, multiplying two 32-bit numbers produces two 32-bit results, one for the high bits and
one for the low bits of the result. If the output order is reversed, or exchanged, then an X is added
to the instruction. In the SimpleScalar simulation of the Queue ISA, these instructions variants
(2R, and "X’) are implemented as annotations to the original GHAL instructions; however, in
actuality, there would be different instructions with different opcodes for each instructions and

variant.

43

B

B B
A Cc A Cc A C
D D

D

D=A?B:C D=B? A:C D=C? A:B
B B B

A Cc A Cc A C
D D D

D=A? C:B D=B? C:A D=C? B:A

Figure 4.9: Select Instruction Variants

The Queue ISA has relatively simple instruction formats, as shown in Figure 4.10(a). As with
all the instruction formats in HASTE, it is assumed that instructions must be some multiple of 8
bits in length. Most queue ISA instructions require one byte to identify the specific instruction.
Since the identity of operands is determined implicitly due to the nature of the queue architecture,
no fields are needed to specify what the inputs to an instruction are or where the results should
go. R-type instructions require no other information than an 8-bit instruction field. Queue ISA
instructions with small immediate values, e.g, port number or shift amount are specified in the
S-type instruction format. S-type instructions have one byte to identify the instruction and 5
bits to represent the port number or shift amount, with 3 unused bits needed to reach a width
that is a multiple of 8 bits. QISA instructions with numeric immediate values use the I-type
instruction format, with one byte for the instruction and 16 bits for the immediate value. It
would have been possible to allow larger immediates, perhaps with the addition of new versions
of immediate instructions that specify the immediate width, but this was not done due to limited
utility (few immediates in the kernel need more than the standard 16 bits) and to maintain

compatibility with PISA, RISA, and RRISA, all of which use a 16-bit immediate width. The

44

final QISA instruction format is the J-type, used for jump instructions. To maintain compatibility
with the PISA compiler, a 26-bit target address is used. To avoid requiring an extra byte for
J-format instructions, the J format instructions can be specified using only the upper 6 bits of
the instruction field. This 6-bit field plus the 26-bit address field requires only 32 bits, rather
than the 34 bits needed if the full 8-bit instruction field was used. The 34 bits instruction would

need to be stored in 5 bytes, rather than just 4.

4.4 Register ISA (RISA)

Given some of the difficulties inherent in using the queue ISA, using a more traditional register
ISA would seem to be a desirable alternative. Using a register ISA makes the construction of
the SPU easy, since a conventional or nearly conventional processor architecture can be used.
However, extracting parallelism and constructing a spatial configuration from code produced
by a standard compiler is an extremely difficult, if not impossible, task. It is necessary to
produce executables in this register ISA that allow for the creation of a configuration that can
be implemented on the fabric that they will be run on. Thus the compiler must know the base
parameters of the fabric and the algorithms used by the CTE, and modify the DFG accordingly.
It does this by producing a spatial configuration as part of the compilation pass. Then register
assignments are made and the sequential code can be written out. This will be covered in more
detail in Chapter 7.

Another problem is that the task of the CTE is more complicated than for the queue ISA.
Since operands are identified only by register numbers, the CTE must keep track of the location of
these values and route the fabric accordingly. There is no correspondence between the architected
register file number used in the SPU and the register location in the fabric. To completely specify
the location of a register in the fabric, both the column of the register file and the number of the
register file entry must be specified. Figure 4.11 shows a sequence of three instructions, the first
of which is a NOOP placed there just for spacing. Given an SPU with 8 registers, registers would
be accessed as shown in the middle portion of the figure. First, for the SUB instruction registers
1 and 5 are read. The result is placed in the register file in register 4. Next, registers 6 and 3 are
read for the ADD instruction, with its result placed in register 7. Both the source and destination

of operands is given explicitly for the SPU. For the RCF, however, these register numbers have

45

R-Type

S-Type

I-Type

J-Type

R-Type

I-Type

J-Type

R-Type

1-Type

J-Type

(a) Queue ISA

‘ OP[8] ‘ 8

OP [8] ‘SHAMT(PORT) [5]‘ 13] ‘16
‘ OP [8] ‘ IMM [16] ‘ 24
‘ oP 8] ADDR [26] ‘ 32

(b) Register File [SA
‘ OP[8] E SR1[R] S'_S'AR,\Z/}TF],SLQT) SR3[R] ‘ DR[R] E AR+12
‘ OP [8] SR1[R] ‘ DR[R] ‘ IMM[16] E 2R+25
‘ OP [6] ADDR [26] ‘ 32
(¢) Relative Register ISA

‘ OP [8] ‘ SR1[R] ‘ SO1[F] ‘ SR2[R] ‘ SO2[F] ‘ SR3[R] ‘ SO3 [F] ‘ DR[R] ‘ DO [F] E 4(R+F)+9

OP [8] ‘ SR1[R] ‘ SO1[F] ‘ DR[R] ‘ DO [F] ‘ IMM[16] E 2(R+F)+25
‘ oP[6] ‘ ADDR [26] ‘ 32

Figure 4.10: HASTE ISA Instruction Formats

46

SPU RCF

NOP E g PE 0 PE 1 PE 2 PE 3
SUB %4, $1, $5 R2| R2] RO [R1 RO | R1 RO | R1 RO | R1
ADD $7,$6,$3 = % R2|R3 R2[Ra} §[R2|R3 R2 | R3
[R5] [R5] oy ™ -
| R6 | [R6 |
NoP suB ADD NoP
SUB ADD i I

Figure 4.11: RISA Register Addressing

no relation to their locations in the fabric. The CTE uses the register designations to keep track
of the dependences, but must assign and track fabric registers itself. In order to allow the CTE
to do this, result operands are always placed in the same column they are generated in. The
first open register in the register file in that column is used to store the result. The CTE keeps
track of the column and register number in the RCF that the SPU register is associated with for
use when operations need that operand. In order to free up registers when they are no longer
needed, the last use of a particular value must be marked as such. The HASTE tools take care
of this determination and indicates it using an exclamation mark after the register number of a
source operand. A bit in the corresponding instruction field is set if this is the last use of that
value. This bit is labeled RK in 4.10(b). Note that there will typically be more registers in a
single row of the fabric than there are registers in the SPU. CTE operation for the register ISA
is covered in Chapter 6.

Another modification is necessary to allow use of a fabric with limited interconnect. In the
fabric, if an operation needs operands that are in columns too far apart to be read in any single
PE, than one or both operands must be moved. A move instruction can be implemented to read
operands from one column and write to another. The CTE interprets a move instruction as a
routing directive that reads a value from a register in one column and writes it to a register
in a different column. The move instruction would be treated as a NOOP by the sequential
processor, since the value being moved would still be referred to by the same register number
and be in the same location in the SPU’s register file. Rather than introduce a new instruction,
the PISA pseudo operation MOVE is promoted to be a true instruction. A move from one register
to the same register is interpreted by the CTE as move from the column the operand is in to

the column the MOVE instruction is in. Other than these minor changes, and the mapping and

47

transformations performed by the tools, RISA is no different than GHAL.

The Register ISA formats are shown in Figure 4.10(b). There are three instruction formats,
R-type, I-type, and J-type. R-type and I-type instruction formats have an additional single
bit field labeled NR. This bit indicates whether the current instruction is the last one on the
current row. Note that the J-type instruction does not have this field, since jump instructions
are never part of kernels and rows have no meaning in sequential code. The NR bit is ignored
in sequential code for instructions using the R-type and I-type formats. The remaining fields are
very conventional; the OP field designates the specific instruction. As in QISA, this is an 8-bit
field for all instructions except those that use the J-format, in which case it is a 6-bit field. This is
done only for compatibility with QISA. In both the I- and R-type instructions, the RS1, RS2, and
RS3 fields are source register designators; note the SEL instructions is the only one that actually
uses all three source registers. The RD field is the destination register. The one exception to
this is the full-width multiply instruction, which uses the RS1 and RS2 fields to designate the
source values and the RD and RS3 fields to designate the result registers for the low and high
bits of the result, respectively. Note that the widths of all of the register fields are labeled R,
and the format widths are given as functions of R. R in this case designates the number of bits
needed to select a specific register. As such, it depends on the number of register in the SPU,
since that is what these register designators refer to (the CTE does the transformation to actual
RCF registers). So R = ceil[log,(#0f SPU registers)]. The width of the largest format for any
given value of R is used as the width for all formats. For example, with 32 registers, R = 5, so
the R-type instructions have width 4-54+ 12 = 32 bits, I-type instructions have width 2-5+ 25 =
35 bits, which is rounded up to 40 bits, and J-type instructions always have a width of 32 bits, so
all instructions are 40 bits wide. 40 bits are sufficient for up to 128 SPU registers. It is important
to remember that the number of registers in each RCF row is not limited by the number of SPU
registers, nor does the number of SPU registers determine how many different live register values
can be in the fabric at any row. Any sequential kernel that can be implemented within the limits

of available SPU registers can be implemented on any RCF fabric with sufficient registers.

48

4.5 Relative Register ISA (RRISA)

Determining the routing for the PEs is difficult for a register file ISA because the only available
information about operands is the SPU register file number. Another problem is that the size
of the application is limited by the size of the architected register file. Rather than require the
CTE to determine which register file and register entry to read and write operands to and from,
it would be nice if this information was present in the executable. An efficient way to do this is
shown in Figure 4.12. In Figure 4.12(a) are two example instructions. Each register is addressed
by a register number and an offset. The meaning of this in the RCF is straightforward. The
register number refers to a register in the register file of each PE in the fabric. The offset refers
to the column location of the register file in the fabric, relative to the current column. So in
this example, the SUB instructions first operand is located in register 2 at offset -1, meaning the
column one to the left of where the instruction is being implemented, and the second operand is
in register 3 at offset 0, meaning the current PE. Figure 4.12(b) shows the locations of operands
for the example instructions. Note that RRISA allows results to be placed in a column different
than the one that they were calculated in, while QISA and RISA require that results are always
placed in the same column as the one they were calculated in. As in QISA, feedback cannot be
expressed directly with RRISA, since results can only be placed in a register file in the next row.
RRISA supports the ZACC instructions as does QISA.

Since register addressing refers specifically to the RCF in RRISA, an equivalent method
for addressing the correct registers in the SPU is needed. One way to implement this ISA
would require the SPU to use a register file with a sliding window. The column location of each
instruction would need to be tracked in the SPU and the register file window indexed accordingly,
as shown in Figure 4.12(c). The size of the window is dependent on the read and write spans
and the size of each register file in the fabric. Since the movement of the register file window is
predictable, register values that aren’t needed can be cached, allowing for a very large register
file and thus allowing for very wide fabrics. Some kernels will require modification of their DFG
to allow for operands to be read from locations outside the register window; this can be done
by using MOVE instructions, as discussed for the register ISA. These move instructions may
be needed for all portions of the application, not just the kernels. New row indicators are also

needed just as for the register file ISA and these will also be needed for the whole application,

49

TRO
1. - PEO PE 1 PE 2 PE 3
0RO TR0
ORT R1 =
SUB o Al RO |R1 0 | R1 RO |R1 RO |R1
AR3
% RS =2 (& Rr2 [R2|R3 R2|R3
+TRI ORT = o
TR ADD 0R2 SUB ADD
+1R3 0R3
. +1.R0
+TRI
+TR2
RS
SUB -1.R2, 0.R3, 0.R1 5
ADD -1.R0,+1.R3,+1.R1 -
(a) Sample (b) Register - (c) Register
instructions addressing in SPU addressing in RCF

Figure 4.12: Relative Register ISA Addressing.

since it is necessary to properly index the register window. Except for the register file, a mostly
standard RISC CPU can be used for this ISA. Alternatively, translation could be performed from
relative register numbers to fixed conventional register numbers using a technique analogous to
conventional register renaming. However, a sliding window register file model will be assumed
for the RRISA SPU, more details of which will be covered in Chapter 6.

The Relative Register ISA instruction formats are shown in Figure 4.10(c). These formats
appear quite different than those used for RISA. Since, as discussed, relative register addresses
consist of a register number, corresponding to a register number in an RCF register file, and an
offset, corresponding to a column offset relative to the instructions location, the operands are
thus designated by a two number designator R,0O, with R the register number and O the offset.
In Figure 4.10(c), the source operand pairs are thus SR1 and SO1; SR2 and SO2; and SR3 and
S03. The destination register is designated by DR and DO. The other difference between the
R2ISA and RISA formats is that a register kill bit is not needed for proper CTE operation. If
an RCF location holds a value that is no longer needed, it can be overwritten by another value
explicitly. The width of these fields is determined by the range of possible offsets, with F' =
ceil[log, (max(RC, WC))], where RC' is the number of columns that can be read from the current
column, and W' is the number of columns that can be written from the current column; and
the number of registers in each PE register file, with R = ceil[log,(#of RCF registers per PE)].
So as with RISA, instruction width depends the specific fabric architecture targeted. Since only
fabrics with read connectivity RC' = write connectivityW C' are being considered in the current

HASTE implementation, the max(RC,WC) term in the formula for F can be replaced with just

50

RC. For example, with a fabric with RC' = 3 (and thus WC = 3), and number of registers NR
=4 has F = 2 and R = 2, so each register designator takes 4 bits total. The width of the
R-type instructions would then be 25 bits and I-type 33 bits. As with the other ISAs rounding is
done to the nearest byte, giving a 40-bit instruction word. A widely connected fabric with large
register files, for instance with RC' = 17 and NR = 10, would have F = 5 and R = 4, requiring 9
bits per register designator. This means 45 bits are needed for R-type instructions and thus the

instruction word would be 48 bits wide.

4.6 Observations

In this chapter the requirements of HASTE ISAs and three different ISA types have been shown,
each with their own advantages and disadvantages. All three provide enough information for
the CTE to recreate a valid fabric configuration for the kernel. The details of this process are
covered in Chapter 6. Before covering this material, however, specific details of the RCF must be
introduced so that the exact task performed by the CTE can be determined. The next chapter
will cover the RCF model and the parameters that define specific fabrics. While there are many
possible RCF fabrics, three styles of RCF will be primarily considered, each of which corresponds

to one of the ISAs introduced in this chapter.

51

Chapter 5

RCF Architecture

As discussed in Chapter 3, the HASTE architecture consists of three main computational com-
ponents, the sequential processing unit (SPU), the code transformation engine (CTE), and the
reconfigurable computing fabric (RCF), plus the memory access unit (MAU). While these com-
ponents will exist in any HASTE system and will perform the same functions, the actual char-
acteristics of each component are not fixed and may vary substantially from implementation to
implementation. The characteristics of each of the components are dependent largely on the ISA
used and the other components in the system; all four components and the ISA must be designed
as a unit in order to create a functioning system. In order to make comparisons between different
HASTE implementations, parameterizable models of the components are needed. These models
need to be broad enough to allow for design space exploration across a large range of possible
system implementations, but not so broad as to make comparison difficult.

In this section a parameterized model of the RCF is presented. In addition to the parameters
needed to describe the characteristics of all of the parts that make up the RCF, the signals needed
to configure each RCF fabric have been determined, so that the configuration signals that CTE
must generate are known. In addition to the parameterized architectural models described in
this chapter, physical models for estimating area and performance are discussed in Chapter 10.

Models of the CTE and the SPU are covered in Chapter 6.

52

Column

Tile

o T re | N

—=7=—==1 — {h==7—=""==1 i1 =7==
L L <™
@] a @] a 4 a
e e e et S e e
gy == L == L L __1
e —— e | = == ==
R w IR w L w
o M \vPL_lv “ & M \.Pg_lv o LPL_lv
iy ==1 [Ty == [Ty L B
— == e = — ==
e b i e L e o e
Le—m@——=d |Z B —=1 2|} =B —=1
I==27 0T 2 hEe1E T g s Er
[T [T [T
\TR\ML%T% “R\M\.%L_lvm “RLML%T
Lt ——=d | e —fi—eat [} =i ==
IT=0E _m T\ A= m T\ A=
TR w R w L w
Ere e E e e e e e
(il R | el ey DW“ ()
== === == === === ==
m w w w L w
\TR\ \'Pg_lv “R\ \.Pg_lv “Rl lPL_lv
(R e e | [Py By | S Sy

Stripe

Figure 5.1: RCF Model
53

5.1 Global RCF Model

The RCF model assumes that the fabric consists of coarse grained processing elements, register
files, and programmable interconnect, arranged to form a pipelined datapath, as shown in Figure
5.1. Each pipeline stage, or stripe, is composed of several tiles and two programmable interconnect
networks. Each tile contains a programmable processing element (PE), and a register file (RF).
One interconnect network allows the PEs in one stripe to read values from the RFs in the same
stripe. The other interconnect network allows the PEs in one stripe to write values into the
RFs in the next stripe. All of these components have their own set of parameters, and these
parameters, in addition to a set of global parameters, describe an individual RCF instantiation.
Each of these parameter sets will be discussed in this chapter. All of the RCF parameters are
shown in Table 5.1.

Customized datapaths for each specific application kernel are implemented by programming
the PEs, RFs, and interconnect. A single wide configuration word specifies all of the necessary
programming for each tile, including the PE, the RF, and those portions of both the read and
write interconnect networks associated with that tile. A set of configuration words, one for
each processing element in a stripe, provides all of the necessary information to configure that
stripe. Each configuration word is composed of several fields, with each field corresponding to
a particular hardware structure. The hardware model specifies the specific fields that make up
the configuration word for each processing element. The number and types of fields required will

vary between different RCF classes.

5.1.1 Global Parameters

There are several global parameters that either apply to every component of the RCF or which
apply to the structure of the RCF as a whole. The first and most important is the datapath
width, B. This represents the width in bits of all data in the RCF. This means that all data
interconnect, data storage, and data processing in the RCF is designed to work with data words
of Bbits wide. It is possible to design HASTE implementations such that operations on data
wider than B can be implemented automatically by the CTE; in others, all data and operations
wider than B are handled by decomposition into narrower widths in the DFG before the kernel

assembly code is produced. Most of this thesis assumes that all data and operations in the DFG

54

Table 5.1: RCF Model Parameters

| Symbol | Name

| Description

Global Parameters

B Datapath width The width in bits of all data and datapaths in fabric.
F, Fabric width The width of the fabric in tiles/columns.
Fy Fabric depth The depth of the fabric in tiles/stripes.
| Register File Parameters
Myw # of write muxes Number of write muxes per register file.
Mp # of read muxes Number of read muxes per register file.
Inw Write mux inputs Number of inputs to each write mux.
Iyr Read mux inputs Number of inputs to each read mux.
Ts # of static registers | Number of static registers in each register file.
Tp # of pass registers Number of static registers in each register file.
r # of registers per file | Total number of registers in each register file.
| Processing Element Parameters
P # of input operands | Maximum number of input operands for any instruction.
T # of outputs Maximum number of outputs produced by any instruction.
Mo # of operand muxes | Number of operand muxes in each processing element.
Iyvo Operand mux inputs | Number of inputs to each operand mux.
| Interconnect Parameters
Re Read connectivity Number of different tiles that the current tile can read from.
We Write connectivity Number of different tiles that the current tile can write to.

are B bits wide or narrower; however, the composition of wider operations than B is mentioned
in Chapter 12. The second global parameter is F,,, the width of the fabric in columns, where a
column is simply a horizontal position that tiles can occupy, or equivalently, the set all of tiles in
a fabric at the same horizontal position, as can be seen in Figure 5.1. For purposes of the thesis
it is assumed that F), is always wide enough to hold the maximum width of any kernel to be
implemented on it. The final global parameter is Fy, the depth of the fabric in pipeline stages.
As with the width, it is assumed that the physical depth of the RCF is sufficient for any kernel

to be implemented. Some justification for these two assumptions is given in Chapter 12.

5.2 Register File

Each register file in the RCF is identical to every other RCF register file. Each register file
consists of a number of registers, each of which is B bits wide. These registers can be of two
types, either static registers or pass registers. A static register is simply a conventional register

that can only be read using the register file’s read ports and which can only be written to using

55

From Previous Stripe

Write Muxes

Ll

Read Muxes
To Next Stripe

Figure 5.2: Pass Register File

the register file’s write ports. A pass register is one in which all register values which are not
overwritten in the current stripe are passed to the corresponding registers in the register file in
the same column in the next stripe. A pass register file is shown in Figure 5.2. Since all values in
the pass register file are accessed each clock cycle, as they are transferred to the next register file
in the pipeline every clock cycle, it is not necessary to consider read ports as would be done for
a conventional register file. Instead, it is only necessary to have sufficient read multiplexers and
other interconnect resources to read as many register values as needed by the read interconnect
value, as will be covered in the next section. Any of the pass register values can be read by
processing elements in the current stripe, by selecting the value to be read using one of the read
multiplexers. Similarly, it can be assumed that it is always possible to write as many new values
into the pass registers as might be needed according to the write connectivity, since all values
are being written anyways. By default, each pass register is overwritten by the corresponding
register from the previous stripe. A multiplexer at the input of each register allows the selection
of a different value to be written into the register; these values come from functional units in the
previous stripe. There are My write multiplexers and Mp read registers in each register file.
Each write multiplexer has Iy inputs, one for each PE that can write to it, plus one for the
value passed from the previous stripe, and each read multiplexer has Iy;r inputs, one for each

register.

56

Operand

Immediate
Select Muxes

Registers

l 1-bit
l B-bits

Figure 5.3: Processing Element

The number of static registers, rs, is another parameter for the register file, as is the number
of pass registers, r,. The total number of registers of both types is r, where r = r; + r,. While
mixed register files, register files with both r; > 0 and r, > 0, can be useful in some circumstances
and for some ISAs, the remainder of this thesis will only discuss those with only one or the other
type of register, as mixed register files are not needed to implement any of the different ISAs
being studied. Further, it will be shown that register files with static registers will only require
a single register, while those with pass registers will need at least two. Therefore, it is only
necessary to specify r, with r =1 = (r, =1,7, =0) and r > 1 = (ry = 0,7, > 1). In order to
configure the pass register file, the select values for each of the read and write muxes must be
set, the exact number of which depends on the specific interconnect parameters in use. A static
register file with a single register, the only kind that will be considered, may have a single write
mux that needs to be configured, but no read muxes; this will be shown more clearly in Section

5.5.

5.3 Processing Elements

The main processing element parameters are B, the processor element bitwidth, which is the
same as the global bitwidth parameter; the number of input operands, P; and the number of
outputs, 7. For the purposes of this thesis only PEs with P = 3 will be considered. The two

primary inputs are both B-bits wide; the third input is only used for the select operation, which

57

has a boolean input for the third input. Thus only a single-bit input is needed for the third
input. This single bit input is connected to the LSB of the B-bit wide values used elsewhere in
the connect. In most cases it is only necessary to consider PEs with T'=1, although it is necessary
to consider PEs with T=2 in two instances. The first is if there is a full-width multiplier in the
ALU, in which case two outputs are needed, one for the B low bits of the result and one for the
B high bits of the result. The second is for the queue ISA that was introduced in the chapter,
which requires an instruction to swap the order of two inputs and thus requires two outputs.

The processing element is shown in Figure 5.3. There are three operand muxes, one for each
input, so the number of operand muxes Mo = P = 3. These select where each input operand
is being read from, either a register file, an immediate value, or a constant zero. The number of
inputs to the operand multiplexers, Ij;0, depends on the number of register files each PE can
read from, designated Rc. The PE can read at most two values from any column other than the
current one, and three from the current column. The read mux in the register file determines
the specific register being read from the register file selected by the operand mux. The third
operand mux has fewer inputs because a select with an immediate select value or constant zero
value isn’t necessary.

All PEs in a given RCF are identical and all can execute any of the operations that are
specified as being legal for the RCF. In addition to the typical arithmetic operations, the ALU
also contains logic for getting data from and sending data to the MAU. Three different ALU types
are considered in this thesis, with the only difference being the kind of multiplier, if any. The
three choices are no multiplier, a full-width multiplier, or a half-width multiplier. As mentioned,
the full-width multiplier multiplies two B-bit values and produces a 2 - B-bit result, which is
expressed as a B-bit low result and a B-bit high result. The half-width multiplier multiplies two
B/2-bit values and produces a B-bit result. The inputs to the multiplier are taken from the low
B/2bits of each B-bit input value. To configure the PE, it is necessary to specify the select values
for each input mux, specify an operation for the ALU to perform, and specify a value for the
immediate register(s) if needed. The immediate registers are full width, because an immediate

value may also be a live-in value instead of a true compile time immediate.

58

=== ===
| [RE] [REJ R] ([RETN R
g E
stipe N1 |{L7] StipeN <1 | 1 | 0| 1o SEREEIl T
5 | | | il | il i |
Writes 1[Pe H PE :: Pe]! I[Pe :: PE :: Pe]!
(b) Read span = 1 (c) Read span =3
Reads [
Stripe N
| 1 1] 1 1 " 1] 1 1 1] 1] 1 1
Stripe N | 1[PE J1[PE Ju[Pe]i t[Pe Jn[Pe JnfPe i 1[Pe Jn neeufee]l
| Qs s) Qg) | g | | e g | s mpun | g) | | Qempnmpu J § prmgn g | s npuny
=1 H P ST,
Stripe e R s S I o
N _ swpe VENTENTRT) | |IEONTEIN e | |iT e T e e
(a) Inter- and intra- N+1 | 1 " | | n n]] 1" " n 1" 1
stripe connections X . .
(b) Write span = 1 (¢) Write span =3 (d) Write span =5

Figure 5.4: Interconnect Model

5.4 Interconnect

A somewhat simplified interconnect model is shown in Figure 5.4 and as was shown in Figure
5.1. There are two sets of interconnect resources, as shown in sub-figure (a). One set connects
the register files in a stripe with the processing elements in the same stripe. These resources
perform reads of values in the register files. As was shown in the previous section, these read
resources may consist of a set multiplexers in both the register file, if » > 1, which select the the
specific register to be read by each PE input, and a set of multiplexers in the PE, which select
which register file each input reads from. Each register file can be read by R PEs, where R¢
is referred to as the read span. R¢ is always odd and the PEs that are connected are always
symmetrical, so Rc = 3 means the current PE and the PEs to the immediate right and left can
read the register file; Rc = b means that two PEs on either side and the current PE can all read
the register file, and so on. In Figure 5.4 can be seen examples of read spans equal to 1,3, and 5
in (b), (c), and (d), respectively. Each PE can read three different values from the register file
in its own column, but only only two from other register files, one of which must be a single bit
value.

The second set of interconnect resources connect the processing elements in a stripe with the
register files in the next stripe. These wires perform writes of results produced by the PE into
register files. The architecture has an associated write span, W, similar to the read span, which
determines how many different register files each functional unit can write to. In Figure 5.4, can
be seen examples of write spans equal to 1, 3, and 5 in (e), (f), and (g), respectively. If the write

span is larger than one, a write mux is required in the register file for each register, as was shown

59

Table 5.2: RCF Classes

| | Ts | Tp | T | Wc| Rc‘]Vlwi]WR|]\/10 | []\,jVV | I]\/[R | [1\,10 |

?sttitrl(;?iilgc 1|0 2 1 [RC| 0| 0| 3 n/a n/a | 2RC+4
Asymmetric 1

Pass Regis- | 0 | NR 1 | RC| NR| RC| 3 2{3} NR | 2-RC+5
ter Fabric {or 2}

Symmetric 1 RCO+1

Pass Regis- | 0 | NR RC| RC| NR| RC| 3 NR 2-RC+5
ter Fabric {or 2} {2RC+1}

Note: Values in curly brackets are for T = 2 case for pass register fabrics.

in Figure 5.2. Note that only two types of interconnects will be considered; interconnects with
We =1 and Roc > 1 and interconnects with W = Re > 1. These two classes encompass the
requirements of the ISAs that will be explored and limiting the interconnect possibilities in this

way reduces the search space to a manageable extent.

5.5 RCF Classes

There are three main classes of RCF that will be examined in this thesis. The parameters of
each are summarized in Table 5.2. While the overall RCF model can model a wider range of
fabrics, a large part of the design space and almost all of that portion of the design space that is
relevant to the ISAs being investigated, can be covered using just these three RCF classes. For
each class, only two parameters, NR and RC, are needed where NR is the number of registers and
RC is the connectivity. From these two parameters all of the other parameters can be derived.
Examples of each class are shown in Figures 5.5, 5.6, and 5.7. For each RCF class, there are a
set of configuration fields that will define the functionality of the RCF and which must be set by
the CTE. These will be described as each RCF class is covered below.

5.5.1 Static Register Fabric

A portion of a static register fabric with a connectivity of 3 is shown in Figure 5.5. This fabric
would be described as an NR1_RC3 fabric, which is enough information to determine all of the

necessary parameters from Table 5.2. There is no real write interconnect, since W = 1 and

60

PE PE

RF RF RF

ALU
PE PE PE
I

5

Figure 5.5: Static Register Fabric

b
!

Read IC
Region

< 4}%

there are no pass registers. For clarity, only one PE output is shown, in actuality there are
always two for this class of fabric, and the immediate registers are not shown. The static register
fabric is designed for use with QISA. No pass registers are needed for QISA, since the graph must
be level, and PASS operations are implemented in tiles, so every variable passed from one level
to another lower level has storage explicitly designated as that in the tiles consumed by PASS
operations. Assuming only half-width multipliers, only a single register is then needed per tile,
assuming the SWAP operation uses the feedback/immediate registers in the ALU as shown in
Figure 5.3. Since the queue ISA has no way to specify where results should be stored, they are
stored in the same column they are produced in, which is equivalent to saying that W¢o = 1. The
only configuration fields needed for this fabric are a select for each operand mux, to select which
register it is reading from, a function select field to tell the ALU what to do, and possibly one or
two immediate values. These fields need to be set for each tile (PE/RF pair) The configuration
fields needed for each tile are are shown in Table 5.3, with the field size given in brackets (note

that the symbol [z] indicates ceiling(z)).

61

Table 5.3: Static Register Fabric Configuration Fields

FUNC[6] | Function select for ALU.

ATMM1[32] | Immediate value 1 for ALU.

ATMM2[32] | Immediate value 2 for ALU.

Operand select for ALU input 1 - determines
OS1SEL [[loga(2 - RC +4)1] which register is being read.

Operand select for ALU input 2 - determines

052SEL[[loga(2 - RC +4)[1 which register is being read.

Operand select for ALU input 3 - determines

0S3SEL[[log2(2- RC +2)[] which register is being read.

>5_/=‘! s = =
Read IC
Region
R | ﬂ e
11 11 11 [IINE | 11 LT T
- \d N\ N\ N\
\/ /_ \/ /ZJ \ V ;_
ALU ALU ALU
—— PE —— PE T PE
e |c { r‘—j RF r‘—j RF r‘—j RF
egion

Figure 5.6: Asymmetric Pass Register Fabric

62

Table 5.4: Asymmetric Pass Register Fabric Configuration Fields
FUNC[6] | Function select for ALU.

ATMM1[32] | Immediate value 1 for ALU.

ATMM2[32] | Immediate value 2 for ALU.
0S1S8EL[[log2(2 - RC + 5)]1 | Operand select for ALU input 1.
082SEL[[log2(2- RC +5)]] | Operand select for ALU input 2.
0838EL[[log2(2 - RC + 3)]1 | Operand select for ALU input 3.
WSELn selects whether the nth register is written
by an ALU result or by the previous passed value.
RSEL#n selects which register is being read for the
nth register file being read from.

WSELn [1]

RSEL% [[log2(R)™|]

5.5.2 Asymmetric Pass Register Fabric

A portion of an asymmetric pass register fabric with a read connectivity of three, a write connec-
tivity of one, and two registers per tile is shown in Figure 5.6. This is called an asymmetric fabric
since W # Re. This particular fabric would be designated as an NR2_WC1_RC3 fabric. Even
though We = 1, write interconnect is still needed, since there are pass registers, and a mux is
needed for each register to determine whether the previous register value is passed in, or if the
register is written with the result of the previous ALU in the same column. Again, for clarity, the
ALU is shown with a single output. A double output is only necessary if a full-width multiplier
is used. The asymmetric pass register fabric is designed for use with RISA. Since RISA DFGs
do not need to be level, pass registers are needed to make operands available to more than just
the one stripe immediately after the one in which they are produced. Since RISA has no way to
specify where results go, they always go to the register file in the same column and in the next
row, so the write connect value W = 1 is sufficient. The same function and operand select fields
are needed as were needed for the static register file, plus a new set of fields to determine whether
or not a register is being written by the ALU in its column. In addition, for each ALU which
could be reading from the file a field is needed to determine the specific register being read. The

configuration fields for each tile are are shown in Table 5.4.

5.5.3 Symmetric Pass Register Fabric

A portion of a symmetric pass register fabric with a connectivity of three and two registers per tile
is shown in Figure 5.6. This is called a symmetric fabric, since W = R¢. This particular fabric

would be designated as an NR2_ WC3_RC3 fabric. It has a more complicated write interconnect,

63

Write IC
Region

Write IC
Region

PE

PE

[|
v ¥ v |
A2 A
i [i ! __ﬂ ! Ii ::I Eii
- - /o
\/ \/ \/
—AI!'EA/A_ PE —AF PE Al /_ PE
|
{
|
T RF T RF { T RF

Figure 5.7: Symmetric Pass Register Fabric

64

Table 5.5: Symmetric Pass Register Fabric Configuration Fields
FUNC[6] | Function select for ALU.
ATMM1[32] | Immediate value 1 for ALU.
ATMM2[32] | Immediate value 2 for ALU.
0S1S8EL[[log2(2 - RC + 5)]1 | Operand select for ALU input 1.
082SEL[[log2(2- RC +5)]] | Operand select for ALU input 2.
0838EL[[log2(2 - RC + 3)]1 | Operand select for ALU input 3.
WSELR selects whether the nth register is written
WSELn [[loga(RC +2)]] by an ALU result or by the previofs passed value.
RSEL#n selects which register is being read for the
nth register file being read from.

RSELn [[loga(NR)™]

since ALU results can be written into register files in columns other than the one it was produced
in. This fabric class was designed for use with RRISA. Since RRISA can specify where to write
results, having W¢ > 1 is needed to make it possible to write to those other columns. The register
specification format for RRISA makes the symmetric read and write connectivity desirable so
that the same field size can be used for registers being read and registers being written. Like
RISA, RRISA doesn’t require level graphs, so it needs to have pass registers. No new fields are
needed, there are just more inputs to choose from for the write muxes. Instead of just choosing
between the default passed register value or the ALU result (or one of the ALU results if T
= 2) in the same column, ALU results from other column may also need to be selected. The
configuration field list is the same as for the asymmetric pass register fabric, with just a change in
widths. The width required depends on the value of T', which is 1, unless a full-width multiplier

is being used. The configuration fields for the fabric are shown in Table 5.5.

5.6 Observations

A general fabric model was introduced in this chapter. From this model, three parameterizable
fabric classes were derived, one for each of the ISAs covered previously. Note that there are two
main types of register files; static register files and pass register files. The fabric best suited for
QISA is the single register static register fabric. The fabrics best suited for RISA and RRISA are
both pass register fabrics; they differ only in that the RISA fabric requires results to be written
to the same column they are computed in and RRISA allows results to be written to different

columns, since this is possible in the ISA as well. The asymmetric pass register fabric best suited

65

for RISA and the symmetric pass register fabric best suited for RRISA vary only in their write
interconnect.

All of the fabrics are parameterized. The most important ones to explore are the interconnect
distance and the register file size. The register file size is fixed at one for QISA. Having a wider
interconnect should allow for better hardware utilization, but may run more slowly and have
larger areas, due to the more complicated interconnect. These trade-offs will need to be examined
to determine what parameters work best and may vary for different applications.The general
operation of the fabric and the configuration fields necessary for each class were also covered.
With this information, plus the information covering the ISAs themselves in the previous chapter,

operation of the CTE can now be discussed in the next chapter.

66

Chapter 6

CTE and SPU Operation

The code transformation engine (CTE) and the sequential processing unit (SPU) are closely
integrated and will be covered together in this chapter, although the primary focus will be on
the more novel component, the CTE. As has been explained in previous chapters, the SPU
processes sequential code. When a kernel is encountered, the CTE accepts a stream of sequential
instructions from the SPU and produces a set of configuration words for the reconfigurable fabric.
It must do this stripe-by-stripe, in the order that the instructions are presented, and it must do
S0 in a reasonable amount of time, ideally within a single iteration of the loop. Since it is required
that the architecture be scalable to very large fabrics, CTE designs which require arbitrary access
to the entire fabric are not allowable. The CTE must also be feasible to implement in a reasonable
amount of hardware. CTE designs meeting these requirements have been developed and will be
presented in this section. Due to the differences between ISAs, each ISA requires its own specific
CTE design. As each ISA requires its own RCF class, CTE designs are specific to particular RCF
classes as well as specific [SAs. An example CTE for each ISA discussed in Chapter 4 will be
shown in this chapter, along with a specific RCF implementation suitable for that ISA. However,
the CTE algorithms presented here will work for any RCF of the same class, even if they have
different parameters than shown in the example.

The general CTE hardware design shown in the lower portion of Figure 6.1 is used for all
CTE types; the details of the hardware inside the blocks labeled Issue Unit and Config Station is
what actually varies for the different CTEs. The CTE is shown along with the other components
of the HASTE system, in order to show how the CTE interacts with the other components. The

CTE itself consists of two main portions: an issue unit, which receives the sequential instruction

67

DATA

[contur M AU

DATA

DATA

DATA

DATA

hstuctons S P U

g g g 2

5 5 5 5

(&) (&) (8] O
Config Config Config Config
Dat) Station Dat% Station Data\ Station|Data)y - -- [Datm) Station
"o 1 2 Ry -1

Figure 6.1: CTE and System Model

stream and runtime data from the SPU; and a chain of configuration stations, one for each column
of the fabric, where the final configuration word for each tile is determined. The configurations
for the tiles are stored in the fabric itself.

While SPU and CTE operation is different for different ISAs, some aspects of their operation
are common to all ISAs. The SPU fetches and executes all instructions in the application sequen-
tially. It sends MAU configuration information (instructions setting the base and stride for one
or more memory ports) to the MAU when encountered. The MAU can be used with the SPU for
non-kernel code, so MAU configuration instructions do not necessarily indicate the presence of a
kernel. All kernels use the MAU, however, so kernel execution can be considered to begin with
the configuration of the MAU by the SPU. Once the SPU encounters a loop begin instruction,
it is then certain that a kernel is being executed and the SPU will then start sending the fetched
instructions to the CTE. In addition to the instructions, the SPU also sends the current values
of one or more of the input operands for each instruction to the CTE, in case these values are
live-in values. The SPU continues to execute instructions as usual. The CTE reads an instruc-

tion, along with any input operand values, each clock cycle into the issue unit. A lookup table

68

is maintained in the issue unit to convert the operation field or fields of the instruction into a
suitable value for the FUNC (ALU function) field of the configuration word. The lookup table
also contains other information about the instruction needed by the CTE algorithm, such as the
number of operands. The issue unit does other processing, which will be covered in detail for
each ISA. The issue unit passes the decoded instruction and other data into the first configura-
tion station. Every clock cycle instructions advance from one configuration station to the next.
In the configuration station, the final configuration for each tile is determined. When a row is
complete, the configuration for the row is passed into the fabric. There are significant differences
in operation for the different ISAs, of course. The following sections will provide details of SPU
and CTE operation for each ISA type and will show the execution of an example running in the
SPU and being processed by the CTE. The configuration produced by the CTE for each ISA will
be shown as well.

All of the examples will use the same loop body, which implements the pseudo-code shown
in Figure 6.2(a). The original DFG for this loop body is shown in Figure 6.3(a); in this figure,
the letters shown below each node producing a value correspond to the values produced by
each line of pseudo-code. A version of this loop body DFG mapped to a specific fabric for a
QISA implementation is shown in Figure 6.3(b), and a version mapped to a fabric for RISA and
RRISA implementations shown in 6.3(c). Note that the loop delimiters are omitted for clarity.
Note the NOOP instructions in Figure 6.3(b); these are inserted to allow for routing to a QISA
fabric (equivalently, an NR1 RC3 fabric, as described in the previous chapter). The insertion of

NOOPs to allow for routing to a specific fabric is discussed in more detail in Chapter 8.

6.1 Queue ISA SPU and CTE Operation

6.1.1 QISA SPU Operation for Example

The QISA code for the example is shown in Figure 6.2(b) and the corresponding DFG is shown
in Figure 6.3(b). This code sequence implements the loop body for the pseudo-code shown in
Figure 6.2(a). For this example, it is assumed that the queue is empty when the first loop
iteration starts. If the queue is not empty when a loop body starts, the value on the queue
(only one entry is allowed) is stored in a loop constant register in the SPU and inserted into the

queue at the beginning of each successive loop iteration. In the example pseudo-code shown in

69

suBI37

(a) Pseudo-code (b) QISA (c) RISA (d) RRISA
A = X[i] RECV2 PO RECV $1, PO RECV :0, PO
B = Y[i] NOQP RECV# $2, P1 RECV# :0, P1
C=4<<3 RECV2 P1 SLLI $3, $1, 3 SLLI -1:1, -1:0, 3
D=B+ 21 SLLI 3 ADDI $4, $2, 21 ADDI -1:1, -1:0, 21
E=B - 37 PASS SUBI# $2, $2!, 37 SUBI# :0, :0, 37
F=C+ A ADDI 21 ADD $1, $3!', $1! ADD :0, :1, :0
G D -E SUBI 37 SUB# $2, $4!, $2! SUB# :0, :1 :0
H=F >> G ADD SRA# $1, $1!, $2! SRA# :0, +1:0, :0
Z[il] = H SUB SEND# P16, $1! SEND# P16, :0

NOQP

SRA

NOQP

SEND P16

Figure 6.2: Example Loop Body

(a) Original DFG

Sku3 (suBl a7)
(o}

(b) Mapped QISA DFG

Figure 6.3: DFGs for CTE Examples

(c) Mapped RISA/RRISA DFG

START RECV2 PO NOP RECV2 P1 SLLI 3 PASS ADDI 21

| | A A A A B B
A A A B B C
B B C A
B C A D
SUBI 37 ADD SUB NOP SRA NOP SEND P16
c| (o | [F|[F [H][H][
A E G G
D F
E

Figure 6.4: Queue Contents for QISA SPU Implementation

Figure 6.2(a), the (implicit) loop variable is 4, and X[i] and Y[i] represent input streams, while
Z[i] represents an output stream. MAU initialization for these streams is assumed to have been
already completed.

In Figure 6.4 the contents of the queue are shown before and after the execution of each
instruction. Each letter corresponds to a variable in Figure 6.2(a) and is shown in its position in
the queue, with the head of the queue at the top. Queue items shown with a gray background
correspond to items that were produced by the preceding instruction. Starting in the upper left
corner, this figure shows the loop body starting with an empty queue. The first instruction,
RECV2 PO, causes the SPU to receive a value, A, from MAU port PO, and place two copies of
A on the queue. The next instruction is a NOOP and thus no changes are made to the queue.
The next instruction, RECV2 P1, causes the SPU to receive a value, B, from MAU port P1, and
place two copies of B on the queue; note that they appear on the tail, or bottom of the queue.
The next instruction, SLLI 3, takes a single value, A, from the head of the queue, performs a
logical shift left by three places, and then places the new value, C, on the queue. The PASS
instruction takes the value at the head of the queue, A, and places it at the tail of the queue;
note that no new value is produced. The next instruction, ADDI 21, takes a single value, B,
from the head of the queue and adds 21, placing the resultant sum on the queue as new value
D. Similarly, the next instruction, SUBI 37 takes the value B (the second of the two identical

B values placed on the queue) and subtracts 37, giving the new value E. The next instruction

71

is a two-operand instruction, ADD, which sums the two values at the head of the queue, C and
A | and places the sum on the queue as value F. The next instruction is also a two-operand
instruction, but it unlike ADD, SUB is non-commutative. In QISA, SUB is defined so that the
the second value taken from the queue, E, is subtracted from the first value taken from the queue,
D, thus implementing the expression G = D - E defined in the pseudo-code. Note that this is
not evident in the DFGs shown in Figure 6.3; however, the order of operations is maintained in
the data structures used in the HASTE tools and is clearly defined in the GHAL definitions in
Appendix B. The next instruction is a NOOP, so the queue is not affected. The next instruction
is SRA, which implements the expressions H = F > > G, followed by another NOOP. The final
instruction is a SEND P16, which sends the single remaining value on the queue, H, to MAU
port 16, leaving an empty queue. This is the same queue state as was found at the beginning of
the loop body, and the next and all succeeding loop iterations can proceed exactly as the first
iteration did, if the loop body is running solely on the SPU. This loop body can run on the RCF,
however, so in normal operation, while the SPU runs the first loop iteration, the CTE is creating
the configuration, as will be described in the next section, and succeeding iterations will run on

the RCF.

6.1.2 QISA CTE Operation

The static register fabric as used with the queue ISA and as shown in Figure 5.5 has only a
few fields that need to be set for each tile. These are the ALU function select field FUNC, two
immediate value fields for those instructions needing them, AIMM1 and AIMM2, and the three
operand select values OS1SEL, OS2SEL, and OS3SEL. The inputs to the CTE are the current
instruction and the current first queue value seen by the SPU for that operation, Q1. The value
of Q1 is needed for a possible live-in value, of which only one is currently supported for QISA,
and which can only occur for the first operation on the first row; Q1 is ignored thereafter. The
instruction itself contains the instruction opcode field OP, as well as possibly a immediate value
IMM, representing a true 16-bit immediate or a 5-bit shift or port immediate value for those
instructions requiring them (no instruction can have more than one immediate value in QISA, so
only one field is needed). The input and output fields are shown in Table 6.1. For each output

field, an abbreviated version is shown in parentheses; the shorter version will be used in some

72

Imm -1 0 +1 1 0 +1 Imm - Imm 1 0 #+1 4 0 +1 Imm
I I I I T L 11|

0s1 0Ss2 0s1 02
W

s |
—]

a) QISA Configuration Fields b) RISA and RRISA Configuration Fields
Figure 6.5: Fabric Configuration Key

Table 6.1: CTE Inputs from SPU and CTE Outputs to RCF for QISA

Input Description Output Field, Description
Field per PE
0P Instruction Opcode FUNC (FN) Function select for ALU.
IMM Instruction immediate, ATMM1 (AM1) Immediate value 1 for ALU.
shift amount or port
number
Q1 First queue value ATMM2 (AM2) Immediate value 2 for ALU.
0S1SEL (0S1) Operand select for ALU input 1.
0S2SEL (082) Operand select for ALU input 2.
0S3SEL (083) Operand select for ALU input 3.

figures and tables for brevity. The output fields are replicated for each tile across the width
of the fabric; they are shifted into the fabric so as to configure each tile. Figure 6.5(a) shows
graphically how each output field is used in each tile; the entire configuration for the example is
in Figure 6.7. Note that these figures are simplified somewhat in that only two operand select
multiplexers are shown, since three-input instructions do not occur in the example.

The hardware comprising the CTE is shown in Figure 6.6. The issue unit consists mainly of
two special FIFOs for storing column locations, an instruction look-up table, a multiplexer, and
control logic in the form of an issue controller. The FIFOs are special in that up to three values
can be removed from or added to them in a single cycle and in that the value of all elements
stored in the FIFO can be incremented simultaneously. The configuration stations have some
fairly simple logic in a configuration controller and registers to hold configuration data as it is
shifted across the width of the fabric. Algorithm 1 shows pseudo-code for the queue ISA CTE

algorithm. As indicated, portions of the code represent the functionality of the issue unit and

73

FN AM1 0S1 FN AM1 0S1

Ao AM2 0S2 i AM2 0S2
0s3 083
'y Iy
4 A
Lc1 LC1out
—» LC2 > o » LC20ut — o Lk X T}
Lo3 Config LC3out Config
Control Control
T A A T A A A
» FN > _ > FN > e
op Instruction numinputs_y, > M1 > 2 H— M N NP
Lookup numOutputs | ssue > M2 - E’ > M2 5 > cee
immNeeded - - >
Controller > 1c [— IC 000
IMM » NR » NR > oo
)] -
ISSUE UNIT CONFIG STATION 0 CONFIG STATION 1

Figure 6.6: Queue ISA CTE

portions the functionality of the configuration stations.

As each instruction is received by the CTE, the lookup table in the issue unit returns the
number of inputs and outputs for the current OP, as well as the value for the FN field of the
configuration word. The lookup also determines if there is an immediate value that needs to be
passed from IMM to either the IM1 field or IM2 field. If this is the first operation in the first
row there may be a live-in value, in which case the Q1 field is passed to the IM1 field. The IC
signal tells the configuration stations which immediates to use for each instruction. The issue
unit needs to maintain two lists of column numbers to track the locations of operands. These
are stored in the FIFOs. One is used to track the column location of operands which will be
used in the current row and is referred to as the this FIFO, and the other is used to maintain
the column location of operands which were produced in the current row and will be used in
the next row, and is referred to as the next FIFO. Each output of the current instruction is
represented by an entry in the next FIFO. Since each instruction starts in column 0, at the left
of the fabric, a 0 is inserted into the next FIFO for each output of the current instruction. As
each instruction is shifted onto the configuration stations, the location of operands for the next
row in the next FIFO are incremented, to reflect that the position of each instruction is also
increasing by one column. The FIFOs have a control input, not shown, which increments all
of the FIFO values and thus enables this updating of column locations. The location of each
input for the current instruction is retrieved from the this FIFO. These locations are shifted onto

the configuration stations as location values numbers LC1, LC2, and LC3. The configuration

74

Algorithm 1 Queue ISA CTE Algorithm

Issue Unit:
Inputs : instruction = [OP, IMM, Q1]
Outputs : LOC1, LOC2, LOC3, FUNC, ICTRL, IMM1, IMM2, NEW_ROW

liveInPossible = true;
clear next;
clear this;
for each instruction in kernel

Configuration Station:
Inputs: FUNC, IMM1, IMM2, LOC1, LOC2, LOC3
Outputs: FUNC, AIMM1, AIMM2, OS1SEL, OS2SEL, OS3SEL, LOC1, LOC2, LOC3

75

station logic converts these absolute column numbers into relative settings for the OS1, 052, and
0853 fields that control the operand select multiplexers, by decrementing them as they pass from
station to station. The decremented values produced by the configuration station in column 0
are shown in Figure 6.6 as LClout, LC20ut, LC3out. These are the values for LC1, LC2, and
LC3 supplied to the next station.

If there are no more operands in this FIFO, the CTE starts a new row, and all configuration
words in the configuration stations are shifted down into the fabric. The NR (New Row) signal
is asserted by the issue unit to control the starting of a new row. At the start of a new row the
algorithm requires that the contents of the nezt FIFO should be copied into the this FIFO, since
the values produced in the previous row will be used as inputs in the new row. In actuality, the
usage of each of the two identical FIFOs is switched using the multiplexer, so it is not necessary

to actually copy the values from one FIFO to the other.

6.1.3 QISA CTE Operation for Example

The process of converting this code into a configuration is shown in Table 6.2. This process is the
implementation of Algorithm 1 using the hardware shown in Figure 6.6 and will be explained in
detail. Table 6.2 shows the value of important signals throughout the conversion process. Each
row shows the values for one stage of the conversion process, each stage corresponding to a shaded
box in Algorithm 1. Stage a involves reading the lookup table and the setting of immediate values
and the immediate control signal. Stage b involves the preparation of the this and next FIFOs
by either incrementing the next FIFO to account for the addition of a new node in the current
row, or the shifting of values from the this FIFO to the next FIFO. Stage c involves updating
the FIFOs by adding and removing operand locations. Stage d involves the generation of the
final configurations in the configuration stations and shifting the finished configuration into the
fabric after the completion of each row. Note that stages a-c take place in the issue unit, while

stage d takes place concurrently in each configuration station.

76

6.1.3.1 Table and Configuration Description

The leftmost column of each row of Table 6.2 identifies the stage and clock cycle represented by
that row. The next three columns represent the instruction being processed. The “Inst” column
shows the instruction as sent to the SPU. The next two columns, “OP” and “IMM” show the
instruction broken down into opcode and immediate fields, as are sent from the SPU to the
CTE. The value for Q1 should be shown in this section, but since the example does not have
a runtime constant, it was not needed and the corresponding column was removed for brevity.
The next twelve columns show the signals and values in the issue unit itself. The first four show
the values returned by the instruction lookup based on the input opcode; note that numlInputs is
shown as nl, numQutputs is shown as nO, and immNeeded is shown as iN. The next two show the
contents of the FIFOs, with input values inserted at the right end of the list and output values
removed from the left end of the list. The next two columns show the operand location values
as read from the this FIFO. Note that only LC1 and LC2 are shown, since there are no three
operand instructions in the example and thus LC3 is not needed. The next four values show the
outputs of the Issue Controller, including both immediate values (IM1 and IM2), the immediate
control signal (IC) and the new row signal (NR). Finally, the next four sets of five columns each
show the outputs of each configuration station. Since the example is four columns wide, four
configuration stations are shown. For each station, the values for the ALU function select (FN),
the ALU immediates (AM1 and AM2), and operand selects {OS1 and 0S2) are shown. The OS3
field is not shown since there are no three-operand instructions in the example. The character
'x’ is used to designate entries as “don’t cares” and the ’-’ character is used for the FIFOs only,
to indicate that they are empty.

The fabric configuration produced in the example is shown in Figure 6.7. This figure shows
each ALU used by the example, with the ALU function (FN) shown inside the ALU symbol.
ALUs in the fabric that are not used are not shown. Each ALU input multiplexer (operand select
multiplexer) that is used has its operand select value (OS1 or 0S2) and the active connection
shown; unused interconnect is not shown. The two immediate registers are also shown for each
used ALU, with the contents (AIMM1 or AIMM2) shown inside the register if it is used. Figure
6.5 serves as a key to the configuration, showing the names of the configuration fields in their

location. Finally, the output produced by each ALU is shown in its output register for comparison

7

A — ﬁﬁﬁ
EIEI“EI D

25 Z=

E¥ t%;‘!ﬂ.g o=
Sel= R T

B] 2 I S I B]
B]

e b d

EIZIZIEI
B]

[Rgsr.
P

Figure 6.7: QISA Fabric Configuration for Example

ﬁ

5

“

v
H

to Figure 6.3(a).

6.1.3.2 Processing of Example Instructions

The first instruction is RECV2 P0Q, which in the SPU receives a value from Port 0 of the MAU
and places two copies on the queue. The opcode is “RECV2” and the immediate (port number)
is 0. In stage a, the instruction lookup returns the ALU function “RECV”, and calls for no inputs
(nI = 0), two outputs (nO = 2), and an immediate as the first operand (iN = 1). Note that the
RECV ALU function does not include the 2’ suffix; this is only needed in the SPU and CTE and
does not matter in the RCF, since the configuration is the same for a PE regardless of how many
times its result is read. The controller outputs the corresponding immediate value and control
signal (IM1 = 0 and IC = 1). In the next stage, stage b, nothing happens since a new row is
not needed and there are no entries in the nezt FIFO to increment. In stage c, the next FIFO is

updated by adding 0’s for the two outputs of the instruction; the 0’s correspond to the location

78

Table 6.2:

QISA CTE Example

Conflg Statlon 3
FN AM1 AM2 OS1 0S2

Imm
X

-1
X

X
x

SLL
=
X

Conflg Statlon 2

FN__AM1 AM2 0OS1 0S2

X
m—

X X

RECV 0O

imm

x

Imm

SLL

X
x

X
x

m—
X

X

x +1

X

ADD

Configuration Stations

Statlon 1

Confl
FN AM1 AM2 OS1 0S2

X__Imm x

0

RECV

X

NOP

x
X
X
x
X
Imm
X

X +1

X

-1 __Immfi PASS
X X

21
X

X
x

X

X 42 +1

X

0

X

+1

X

Conflg Statlon 0
FN AM1 AM2 OS1 0S2

X

Imm

X

X

X

X Imm x

1

X
Imm
X
X
x
X
X

x
X
X
x
X
X
X

21 0 Imm]PASS

X

Imm] ADD
—

[1]
X

37

U
x

X +3 +2

X

0 _JADD

X +1

X

+2 +1

x__Imm_+1

16

Issue Unit
FIFOs

next

0 JRECV 0

1

o JRECV.

1

X

x
SLL
X
x
x
0 JPASS
x

2
2
1]
4]
[4]
0
2

21

21

0 JADD

2

21

37
37

0 _JADD

4]

0 _JsuB

0

16
16
16
16

0 JSEND

1

LOCL LOC2_|I_MM1 IMM2 ICTRL_NR

x
X
x

4]
[{]
x

this

0-0
0-0
0-0
1-1

1-1
1-1

1-1
2-2
2-2-0-0
2-2-0-0
2-2-0-0

2-2-0-0

20-0
2-0-0
20-0
20-0
0-0
0-0
0-0

2-1

0-0

2-10
2-1-0

3-2-1-0

3-2-1-0

3-2-10

1-0

1-0

1-0
1-0
1-0

2-1

2-1

2-1

2-1

2-1

Inst. Lookup

iN
1

no

RECV 0 2

[

NOP

1

RECV 0 2

SLL

1 0
1 2

1

PASS 1
ADD

2

ADD

SuB

[

NOP

SRA

0 0 O

NOP

0 1

CTE Inputs

IMM | FUNC nl

opP

1]

NOP

1

3

SLLI

X
21

PASS
ADDI

37

SuBl

ADD

suB

NOP

SRA

16 |SEND 1

Inst

NOP

SLLI 3

PASS
ADDI 21

SuBI 37

ADD

suB

NOP

SRA

1a | RECV2 PO |RECV2

1b
1c

1d
2a

2b
2c

2d

3a | RECV2 P1 |RECV2

3c

3d
4a

ab
4c

4d
5a
5b
5c
5d

a

6b

6c

6d

7a
7b
Tc

7d
8a

8b

8c

8d

9a

9b
9c

9d
10a
10b
10c

10|
11a
11b}
11c]|
11d

12b)
12c

12d|

13a| SEND P16 | SEND

13b|
13c

13d|

79

of the first node in a stripe, since instructions are issued from the left and the leftmost column
is column 0, as shown in Figure 6.1. Finally, in stage d, the OS1 value for the first configuration
station is determined to be “Imm”, meaning that the first immediate should be read, due to the
value of IC. This value, plus the FN code and the immediate value, provide the configuration
needed for the tile that will implement this instruction.

The second instruction is NOOP. In stage a, the lookup returns 0 inputs, O outputs, and no
immediates, as well as the NOOP function code. In stage b, the values in the next FIFO are
incremented. Since a new instruction, the current NOOP instruction, has been issued on this
row, the first instruction moves to column 1, so the incremented values represent the location
of the instruction that produces the first two operands produced in the current row. Nothing is
done for this instruction in stage c, since it has no inputs or outputs. In stage d, it can be seen
that the first instructions is now in column one and the NOOP instruction is in column 0, with
no fields other than FN needed for the NOOP.

The third instruction is RECV2 P1, identical to the first instruction except that the port
number (immediate value) is 1. Stage a is the same as for the first instruction. In stage b, the
next FIFO is not empty as it was for the first instruction; it contains the values “1-1”. These
values are incremented to “2-2”, since with the introduction of the new instruction on the current
row, the first instruction moves to column 2. Then in stage ¢, two 0’s are added to the FIFO,
representing the outputs of the current instruction. In stage d, the final configurations for each
of the columns in the current row are shown.

The fourth instruction is SLLI 3, the first instruction in this example with an input operand.
The lookup results are one input (nl = 1), one output (nO = 1), immediate as second operand
(iN =2), and FN = “SLL”. Note that the second operand takes the immediate for this instruction
(if it was necessary for immediate to be the first operand, the SLLIR instruction could have been
used) and that the function code does not indicate an immediate; instead the IC signal indicates
the immediate. In stage a, the immediate value and control signals are set (IM2 = 3 and IC
= 2). In stage b, an input is needed, but the this FIFO is empty. Therefore the NR signal is
asserted and the row shown in the gray box on line 3d is shifted into the fabric. The next and
this FIFO mux is also switched, so that the location of operands generated by the previous row

can now be used to determine the location of the operands to be consumed in the current row.

80

In stage c, the location of the input operand is taken from the this FIFO; it is column 2. This is
passed to the configuration stations as LOC1. In addition, a 0 will be placed on the next FIFO
to represent the operand produced by the current instruction. Note in stage d, the configuration
has function code “SLL”; the use of an immediate is indicated by the second operand select value,
052 = Imm. Also, the first location is shown as +2. Currently, this instruction is in column
0, and it needs to get its input from column 2. Therefore, the operand select multiplexer is set
to +2, meaning to select a value from two columns to the right. Thus the configurations in the
fabric rely on relative, not absolute locations.

The fifth instruction is PASS, which returns one input (nI = 1), one output (nO = 1), no
immediate (iN = 0), and FN = “PASS” from the lookup. Stage a produces an indication of no
immediate (IC = 0). Stage b increments the next FIFO, since the SLLI instruction now moves
to column 1, and then stage ¢ gets the location of the input operand as column 2 and places
another 0 on the next FIFO. In stage d, the configurations are generated. Note that the operand
select value for the SLL instruction has been decremented from +2 to +1. The input operand
for the instruction is still in column 2, but the instruction is now in column 1, so the offset is
now only +1, or one column to the right. The sixth and seventh instructions are similar to the
SLLI instruction; all have one input operand, one immediate operand as the second input, and
one output value. The final configuration for this row is shown in row 7d. Note that the final
operand select value for the SLLI instruction is now -1, since the instruction ends up in column
3 and the input operand is in column 2, so it must select from one column to the left.

The next row starts with a NOOP inserted for spacing; this fabric has Rc = 3, so this NOOP
is needed so that the next instruction, an ADD, is in a column where it can read values from both
column 3 and column 2. This next instruction is the first instruction with two non-immediate
input operands in the example. It is processed just as before, except that two values are taken
from the this FIFO in stage c. The order is important in general, although not in this case, since
addition is commutative. It is important for the next instruction, which is a SUB instruction.
The first operand for the subtraction is the first one from the this FIFO and the second operand
is the second one. This does the correct subtraction as required by the original pseudo-code. If
the inputs were not in the correct order, a SUBR instruction could be used instead. The place

and route tools account for the ordering of operands where needed and convert instructions to

81

the reversed input versions if necessary. The completed third row is shown in row 10d.

The fourth and fifth rows proceed just as the previous rows did. The completed row configu-
rations are shown in the table on rows 12d and 13d. At the end of the kernel, the this and next
FIFOs are both empty, which is the expected result. After the loop end instruction is encoun-
tered, the final row is shifted into the fabric and the fabric is completely configured. Execution
then switches from the SPU to the RCF. It can be seen that the final RCF configuration as shown
in Figure 6.7 corresponds to the gray boxes in Table 6.2 and that the configuration implements

the DFG shown in Figure 6.3(b).

6.2 Register ISA SPU and CTE Operation

6.2.1 RISA SPU Operation for Example

The RISA code for the example is shown in Figure 6.2(c) and the DFG shown in Figure 6.3(c)
corresponds to this code sequence. This code sequence implements the loop body for the pseudo-
code shown in Figure 6.2(a). For this example, there are no live-in variables, as can be seen
from the pseudo-code. It will be further assumed that there are no live-out register values and
thus in this application all input and output to and from the loop body is carried by streams.
Most streaming applications have this same characteristic; the HASTE concept does not require
this, however. In the example pseudo-code in Figure 6.2(a), all data passed into the loop body
is carried by input streams X[i] and Y[i] and all data passed out of the loop body is carried by
output stream Z[i], all using with loop variable i . As f the QISA example, MAU initialization is
assumed to have been already completed.

In Figure 6.8 the contents of the SPU registers after the execution of each instruction are
shown. Only the four registers actually used by the loop body example are shown and it is
assumed that there is nothing significant in any of the registers at the start of the loop body.
Each letter corresponds to a variable in Figure 6.2(a) and is shown in the register where it is
stored. Registers shown with a shaded background correspond to values that were produced by
the preceding instruction. Registers surrounded by a thick outline show register locations that
were read by the preceding instruction, although a new value may have also been placed in that

location (and will have a gray background if so). Starting in the upper left corner, this figure

82

START RECV $1,P0 RECV# $2,P1 SLLI $3,$1,3 ADDI $4,$2,21

$1 A $1 A $1 A $1 A $1
$2 $2 B $2 B $2 B $2
$3 $3 $3 C $3 C $3
$4 $4 $4 $4 D $4

SUBI# $2,$2!,37 ADD $1,81!,83! SUB# $2, $4!, $2! SRA# $1,81!,82! SEND# P16, S$1

A $1 A* F$1 F $1 F*H$1 $1
B* E$2 E $2 E* G$2 $2 $2
C $3 $3 $3 $3 $3
D $4 D $4 $4 $4 $4

Figure 6.8: Register Contents for RISA SPU Implementation

shows the loop body starting with an empty register file. The first instruction, RECV $1,P0
causes the SPU to receive a value, A, from MAU port P0, and place it in register $1. Since a
register can be read from multiple times, unlike a queue value, it is only necessary to store one
copy of A, as opposed to the two copies that were stored in the QISA example. No NOOPs
are required in the RISA version of the example, again unlike the QISA version, so the next
instruction is RECV# $2,P1 which causes the SPU to receive a value, B, from MAU port P1,
and places it in register $2. The '#’ character indicates that this is the last instruction on a row.
Unlike QISA, the CTE cannot determine the end of the row itself, so the last instruction in the
row is annotated by the compiler. This is ignored by the SPU, but is necessary for the CTE.
Next is the first arithmetic instruction, SLLI $3,$1,3, which reads the value A from register
$1, performs a logical shift left by three places, and then places the new value, C, in register
$3. The next instruction, ADDI $4,$2,21, reads value B from register $2 and adds 21, placing
the resultant sum, value D, in register $4. Similarly, the next instruction, SUBI# $2, $2!,37
reads value B from register $2 again, and subtracts 37, giving the new value E, which it places
in register $2. Note that this instruction is the last instruction to use value B, which is stored in

register $2. The compiler realizes this and therefore allocates the same register for value E. The

83

' after the second $2 in the in the instructions also indicates that this is in fact the last read of

the value stored in source register $2 (The first $2 is the destination register; it just so happens
that this is the same as the source being used for the last time, but this is not always the case).
The SPU can ignore the ' and just use the register allocation designated by the compiler, but
the CTE will use this information so that it can efliciently allocate registers in the fabric, as will
be shown in the next section. The ’#’ after SUBI indicates that is the last instruction on the
current row, as was the case for the second RECYV instruction.

The next instruction is a two-operand instruction, ADD $1,$1!,$3!, which sums the two values
C and A, and places the sum (value F) in register $1. Both A and C are read for the last time
from registers $1 and $3, as indicated; register $3 is not shown as being empty, however, because
I notation is ignored in the SPU and thus values stay in registers unless they are overwritten
by another value. Values that aren’t used again are shown in gray text in the register file. Note
that A was written on the first row, used previously on the second row, and is used here on the
third row of the DFG. The next instruction, SUB# $2,$4!,$2! is also a two-operand instruction,
subtracting E in register $2 from D in register $4, and placing the result in register $2. The next
instruction is SRA# $1,$1!,$2!, implements the expressions H = F > > G, and is otherwise the
same as the preceding instruction. The final instruction is a SEND# P16 $1!, which sends the
value in register $1, H, to MAU port 16. This register is read for the last time by this instruction.
Now the next and all succeeding loop iterations can proceed exactly as the first iteration did,
if the loop body is running solely on the SPU. This loop body can run on the RCF, however,
so in normal operation, while the SPU runs the first loop iteration, the CTE is creating the
configuration, as will be described in the next section, and succeeding iterations will run on the

RCF, just as was seen in the QISA example.

6.2.2 RISA CTE Operation

The asymmetric pass register fabric is used with the register ISA and is shown in Figure 5.6. It
has all of the same fields as the static register fabric: the ALU function select field FUNC, two
immediate value fields AM1 and AM2, and three operand select values OS1, OS2, and 0S3. In
addition, it has two new sets of fields: RSn and WSn. The first are the read select fields, which

determines which register is being read for each possible read. At first glance it might appear

84

there would need to be n such fields, with n equal to the product of the read connectivity of the
fabric and the number of input operands. For the simple fabric used in this example, there is a
read connectivity of three and only two inputs are used, so one might expect there to be six RS
fields, RS1 through RS6; more complicated fabrics would have even more RS fields. However,
the read register fields are not stored with the register file being read but instead are actually
stored in the tile that is reading from the register file; since not all possible reads are performed,
only enough fields for the reads actually performed are needed. Since there can be at most three
input operands per tile, it is only necessary to store at most three RS values per tile, so n =
3; in the example only two are needed. These are passed to the appropriate register file using
the operand select values. Since register file sizes are small, each field is only a few bits, so this
does not require a large number of configuration bits. These fields were not needed for the static
register fabric, since there was only one register to be read for each operand select multiplexer
input location. The second set of fields are the write select fields, with n in this case equal to
number of registers in a register file. These are single bits that determine whether a new value
should be written to the register from the ALU or if register should just pass in the value from
the previous corresponding pass register. For the example fabric that will be used, with two
registers per register file, there will be two single-bit write select fields, WS1 and WS2; these
will be concatenated to form a single two-bit field, WS, in succeeding figures. These fields were
not needed for the static register fabric, since the single register in each tile was always written
by the corresponding ALU. In Figure 6.5(b), the locations of the PE configuration fields for the
example fabric shown. The complete configuration is shown in Figure 6.9.

The inputs to the CTE are the current instruction and the current values of the first two source
registers, IR1, IR2. These current register values are needed for live-in values, which can occur
anywhere in a fabric, and cannot be changed after loop execution has begun. Thus they represent
run-time constants; note that the third source for instructions using three sources cannot be a
live-in value, as enforced by the compiler. The instruction itself contains the instruction opcode
field OP; a destination register field, DR; source register fields SR1, SR2, and SR3; source register
kill fields RK1, RK2, and RK3 (these correspond to the 'V characters seen previously); a new row
field NR (this corresponds to the ’#’ character which indicates a new row); and an immediate

field IMM. The input and output fields are shown in Table 6.3, with both full and abbreviated

85

Figure 6.9: RISA Fabric Configuration for Example

86

Table 6.3: CTE Inputs from SPU and CTE Outputs to RCF for RISA

| Input Field [Description | Output Field | Description
op Instruction Opcode FUNC (FN) Function select for ALU.
DR Destination register. ATMM1 (AM1) Immediate value 1 for ALU.
SR1, SR2, SR3 | Source registers. AIMM2 (AM2) Immediate value 2 for ALU.
RK1, RK2, RK3 | Register kill fields. 0S1SEL (0S1) | Operand select for ALU input 1.
NR New row field. 0S2SEL (0S2) | Operand select for ALU input 2.
IMM Instruction immediate, 0S3SEL (083) | Operand select for ALU input 3.
shift amount or port
number
LR1, LR2 Live-in register values. RSELn (RSn) Register read selects.
WSELn (WS) Register write selects.

forms shown. For the register specification fields, (SR1, SR2, SR3, and DR) a -1 value indicates
that a register is not specified; this usually represents the largest possible value for that field,
which cannot be a valid register by convention. The SPU decoder fills in this value as needed,
depending on the instruction opcode and instruction format.

The hardware comprising the CTE is shown in Figure 6.10. It is similar to the QISA CTE.
Instead of FIFOs to store operand locations, there is a register table and there are some different
input and output fields. Otherwise both the issue unit and the configuration stations are similar
to their QISA counterparts. Algorithms 2 and 3 show pseudo-code for the register ISA CTE
algorithm. Algorithm 2 represents the functionality of the issue unit and Algorithm 3 represents
the functionality of the configuration stations.

As with the QISA CTE algorithm, the first step of the RISA CTE algorithm is to look up
the OP field in the instruction lookup. This provides information about the usage of immediates
for each instruction and allows the configuration of the related fields. The register table contains
information that allows for translation between SPU registers and fabric registers. As each new
instruction on a row is processed, the register table must be updated to reflect the new location
of those instructions on that same row, as new instructions are issued from the left and old ones
on the same row are pushed farther to the right. The register table is then used to find the
location of source registers for the current instruction; since they come from the previous row,
their locations are already fixed. If a source register is not in the table, it is assumed to be a live-
in value and that value is placed in the fabric as a constant. If the current instruction produces

an output, this is then noted by an entry in the register table. The configuration stations use the

87

FN AM1 OS1 WS R$1 FN AM1 OS1 Ws RS1
AM2 0S2 RS2 AM2 OS2 RS2
T 0s3 RS3 T 0s3 RS3
— T — T
Register Lc1 Config Lc1out Config
Table Lc2 —» Control Lc2out 4 Control .o
Lcs Lc3out
FN H—» Fn > ooe
or — » Instruction ‘
Lactup immNeeded M1 H—» w1 L > eee
DR > > M2 » M2 > > ooe
SR1,SR2,SR3 > »IC -G H»>ic > E 1 eee
% 2
RK1,RK2,RK3 RS1 2 RS1 5
NR » Issue » RS2 X1l . RS2 mELL e ee
IMM »| Controller RS3 RS3
LR1,LR2 > » RK » H >Rk > > oeo
ws H—» ws = ooe
» SC » SC > eoe
» NR » NR > eee
ISSUE UNIT CONFIG STATION 0 CONFIG STATION 1

Figure 6.10: Register ISA CTE

information from the issue unit to determine everything except for write locations. The values
for register reads are also examined so that the register tables can be updated to reflect register
locations that can be cleared due to register kills. Finally, at the end of each row, the final
locations of SPU register in the fabric can be determined and stored in the register table. The
usage of registers in each column is stored in the configuration station register tables, mirroring
that in the issue unit. In addition, if the current row has tiles that read from registers in previous
rows that are to the right of the rightmost register in the current row, the current register reads
are shifted into the fabric so that the register tables in the configuration stations can be updated.

This entire process will be covered in more detail in the next section.

6.2.3 RISA CTE Operation for Example

The process of converting this code into a configuration is shown in Tables 6.4 and 6.5. This
process is the implementation of Algorithms 2 and 3 using the hardware shown in Figure 6.10
and will be explained in detail in this section. As was the case for the QISA example, the tables
shows the value of important signals throughout the conversion process. Rather than one table,
the number of signals in the RISA CTE required two tables, one for the issue unit and one for
the config stations. Each row in both tables shows the values for one stage of the conversion
process, with each stage corresponding to a shaded box in Algorithm 2 and/or Algorithm 3.
Stage a involves reading the lookup table and the setting of immediate values and the immediate

control signal. Stage b involves the translating SPU register numbers into fabric locations. Stage

88

Algorithm 2 RISA ISA Issue Unit Algorithm

Issue Unit:
Inputs :instruction = [OP, SR1, SR2, SR3, RK1, RK2, RK3, RD, IMM, NR, LR1, LR2]
Outputs : LC1, LC2, LC3, FUNC, IM1, IM2, IC, RS1, RS2, RS3, RKx, WE, NR

clear IRT
read right = 0;

89

Algorithm 3 RISA ISA Configuration Station Algorithm

Configuration Control:
Inputs: LC1, LC2, LC3, FN, IM1, IM2, IC, RS1, RS2, RS3, RK, WS, NR, SC
Outputs: config[FN, AM1, AM2, 0S1, 0S2, 0S3, WS, RS1, RS2, RS3], LClout, LC20ut, LC3out

clear RT;
while (!done)

c tracks new register locations in the issue unit and begins forming the config word in the config
stations. Stage d takes place at the end of each row and involves fixing the locations of values
produced in the current row, as well as producing the final config words for each column. Note
that stages a and b take place in the issue unit only, while stages ¢ and d takes place in both the
configuration station and the issue unit. Stages a-c take place for each instruction, while stage

d takes place only at the end of a row.

6.2.3.1 Table and Configuration Description

For Table 6.4 (as well as for Table 6.5), the leftmost column of each row identifies the stage and
clock cycle represented by that row. The “Inst” column shows the instruction as sent to SPU.
The next eight columns show all of the fields that can be sent from the SPU to the CTE. Not
all of these fields will be used for any single instruction, as can be seen from the ISA formats as
shown in Figure 4.10. The “OP” column shows the instruction opcode. “SR1”, “RK1”, “SR2”, and
“RK2” columns give the register and register kill fields for the first and second source registers.
Note that since there are no three operand instructions in the example, a third source register is
never needed and thus the “SR3” or “RK3” fields are not shown. There is also single destination
register field “DR”; if the design were using a 64-bit multiplies, as discussed in Chapter 4, there
would be second destination register field here as well. There is an immediate field, “IMM?”, which
is used both for 16-bit immediates for I-Type instructions, as well for 5-bit shift amounts and
port numbers. Finally, the “NR” column holds the new row bit. The live-in values “LR1”, LR2”,
and “LR3” would be shown in this section, but the example does not have any live-in values, so
the corresponding columns were removed for brevity.

The next eighteen columns show the signals and values in the issue unit itself. The first
two show the values returned by the instruction lookup based on the input opcode; “FN” is the
function to be performed by the ALU for that instruction and “IN” signifies if an immediate is
needed, and if so, whether it should be in the first or second operand location (immediates are not
supported for the third operand location). The next six show the contents of the issue register
table (IRT), with an entry for each register in each column of the fabric. A separate entry should
be included for the “live” register values, but instead these values are shown in the table using

a bold italic font, in order to save space. The next ten columns show the outputs of the Issue

91

Controller, including both immediate values, “IM1” and “IM2”; the immediate control signal “IC”,
two operand location signals,“LC1” and “LC2”, (the third operand location is not needed for this
example); register select signals “RS1” and “RS2”; two register kill signals concatenated as “RKx”;
the write enable signal “WE”; and the new row signal “NR”.

In Table 6.5 there are three sets of twelve columns, each set of which shows the outputs and
internal signals of a configuration station. Since the example is three columns wide when mapped
to RISA, only three issue stations are shown. For each station, the output values ALU function
select “FIN”, ALU immediates “AM1” and “AM?2”, operand selects “OS1” and “OS2”, register selects
“RS1” and “RS2”, and concatenated write selects “WS” are shown. As always, signals referring
to the third input operand are not shown. In addition, the internal values are shown for the
concatenated register kills signals “RKx”, the write enable “WE”, and the internal register table
values “RT”, one for each of the registers in the column.

The fabric configuration produced in the example is shown in Figure 6.7. This figure shows
each ALU used by the example, with the ALU function (FN) shown inside the ALU symbol.
ALUs in the fabric that are not used are not shown. Each ALU input multiplexer (operand select
multiplexer) that is used has its operand select value (OS1 or 0S2) and the active connection
shown; unused interconnect is not shown. The two immediate registers are also shown for each
used ALU, with the contents (AIMM1 or AIMM2) shown inside the register if it is used. The
rectangle to the left of the register files shows the write enable signals, while the small squares
above each operand select multiplexer show the register signal for the register being read. The

values stored in each register are shown although the pass register wires are not shown.

6.2.3.2 Processing of Example Instructions

As previously discussed, the processing of the example kernel is shown in Tables 3 and 2, and
the final configuration is shown in Figure 6.9. At the beginning of kernel processing, the issue
register table and the configuration station register tables are cleared. The first instruction is
RECYV $1,P0, which in the SPU receives a value from Port 0 of the MAU and places it in register

$1. Tt has an opcode of RECV, DR = 1, and an immediate value of 0. In stage a, the instruction

92

Table 6.4: RISA CTE Example - Issue Unit

Issue Unit
—
Issue Register Table
1st. Lookup
CTE Inputs Col0 | Coll | Col2
Inst OP |SR1 RK1 SR2 RK2 DR IMM NRJFUNC iN |0 1|0 1 I 0 1]RR|IM1 IM2 IC LC1 LC2 RS1 RS2 RKx WE SC NR
la RECV $1,PO RECV | x X X X 1 0 0 JRECV 1 - - - - - -1 0 X 1 X X X X X X 0 4]
1b “ “ “« e w w om e “ 3 oo e o x x x 00 x * #
1c “ “ w o w m om W ow “ sl . o . o el o x " x x x x " 1 = =
1d “ “ w o w om om wow “ g oo 0 0 el x " x x x x % m w ow
2a RECV# $2,P1 RECV | x X X X 2 1 1 | RECV 1 - - 1 - - -|-2 1 X 1 X X X X X X - 1]
2a “ “ « o w w m W ow “ w 1 - - el ox " x x x x 00 x v
2 “ “ « e w w w W ow “ el o1 o o el ox " x x x x % 1 e o
2d “ “ “« e w w w W “ o o1 0 0 ol o x v x x x x v s« o« 1
=
3a SLLI $3,$1,3 SLu 1 V] x x 3 3 0 SLL 2 2 -1 - - -] x 3 2 x x X x x x “ [+]
3b “ " « e« w w ow oww “ 2 .1 . - 1l x o« * 1 x 0o x 00 x * =
3c “ N « o« w w ow ww “ el 31 . - el x s o« o« x o« x & 1 « u
3d “ “ w o w m om wow “ a3 1 . 0 el x m e e x e w a a w
=
4a ADDI $4,%2,21 ADDI | 2 [1] X X 4 21 O | ADD 2 2 -1 3 - - [1] X 21 2 X X X X X X - (1]
ab “ “ w o w om om wow “ w2 .13 - - |x » = o x 0o x 00 x * -
ac “ “ “« e w w w e o “ vl a1 3 - e x o+ ow e x e x w1 w
ad “ “ “« e w w m e “ o a1 3 - e x 0w e e g e w e
e
5a | SUBI# $2,$21,37 | SuBI | 2 1 X X 2 37 1 SuB 212 -1 4 3 -|-1|x 37 2 X X x X x - 0
5b B “ “« e w w om e “ . o143 || x “ +« o0 x 0o x 01 x =~
5¢ B “ “« e w w om e B vl .1 a3 | x o+ s e ke w1 e
5d “ N « e« w w ow oww “ « |2 14 3 | x 0w e v a a w g
=
6a | ADD $1,$1!,$3! |ADD | 1 1 3 1 1 x O JADD ¢f2 - 14 3 -|1]x x 0 x x x X X X - 0
6b “ “ “« e w w w W “ N P 4 - -|2]lx x * 1 2 o o 11 x =+ =
6c “ “ “« e w w w W “ wlag - a4 - e x ox vow e e e w g ww
6d “ “ “« e w w w e “ v laa -4 -]| x «x “w e e o m a w W
e
7a | SuB# $2,$4!,$2' | SuB | 4 1 2 1 2 x 1] sus o2 - 14 - -J1]x x 0 x x x X X X - 0
7b “ “ “« e w w m e “ el o1 o o el x ox 1 0 1 6 11 x * -
7c “ “ w o w m om wow “ « |2 1 - - o lx x v ¢ e e« w7 o«
7d “ “ w o w om om wow “ -2 .1 o1l x o x e e e e w w e g
8d w w w & ow om om ow ow “ 12 . 1 . - -Jo]lx x * * ® ® w«w w a 1 =
e
9a | SRA# $1,$1!,$2! SRA 1 1 2 1 1 X 1 SRA [2 -1 - - -]-1 X X 0 X X X X X X 0 0
9b “ “ “« e w w om W ow “ o o 0 0 l1lx o x * 1 0 o o6 11 x *
o “ “ “« e w w w W “ e oo o e x o x v e e e e w1 a
od “ “ “« e w a om e B N B P I T e |
_—
10d u .. w & ow o ow omowow u 1 . - . - -Jolx x * * ® & w w wa 1 1
—
1lla| SEND# P16,$1! |SEND| 1 1 X X x 16 1 JSENnD 1 |1 - - - - -1-1|16 x 1 X X x x x x] 0
11b “ “ w o w m om wow “ <l . o o el x * x o x 0 01 x =~ -
11c “ “ w o w m om owow “ L o o e x r x v x v w9 w ow
11d “ “ w o w m om owow “ o e e x e x o x e w a e g

93

0ons

RISA CTE Example - Config Stat

Table 6.5

Config Station 2

FN__AML AM2 OS1 0S2 RSL RS2 Ws |0 1| RK_WE

0 0 xx
00

XX

xx

XX

0 0 xx
0 0

XX

XX

0 0 xx
00

XX

XX

Xx

xx 0 0 00
01|1 0 00

x

SLL
SLL

0

Imm

1 0 xx
10

XX

xx

XX

1 0 xx

Xx

0 0 xx
00

Xx

xx

XX

0 0 xx
00

XX

XX

XX

XX

xx

Config Station 1

FN__AM1 AM2 OS1 052 RSl Rs2 Ws |0 1| Rk WE

XX
00

00
00

xx

XX

x __Imm_ x

0

X

RECV

XX

10
10
10

XX

X

XX

XX

XX

XX

XX
0o

10
10

XX

e xx

Imm

0

SLL

E|
E|

1 0 xx
10

xx

x

XX

XX

X

xx 1 0 00 1
17'1100

X

X 21

ADD
ADD

X

0

Imm

-1

21

10 11

xx

ADD
ADD
ADD

11
XX

o1]1 o

0

0

X

00
00

XX

XX

xx

1 0 XX
0 0

XX

XX

XX

00 xx

xx

Station 0

Confif

[rr |

AM1 AM2 OS1 OS2 RS1 RS2 WS 0 1 RKx WE

FN

0 0 xx

XX

1

xx 0 0 00

x Imm x

0

RECV

xx
00

00

XX

1 JRECV

00

0i]: o

XX

1 x _Imm _ x

RECV
RECV.

X

X

X

00 1

0

+1 Imm 0 x

3

SLL

00 1

0

XX

0 Imm ©

21

ADD

x

1
1

xx 1 0 01
01'1 0 0l

X

SUB
SUB

X

0

Imm

37

ADD
ADD

1

11

suB
SUB

11

o110 11 1

0

0

0 0 xx

Xx

X

0 0 xx

XX

SRA

o i 0o 11 1

0

()

10 01

XX
O_TIO 0 01

0
0

16
x

x

E|

X

SEND

1a

1b
1c

1d
2a

2a

2c

2d
3a

3b
3¢

4a

4b
4ac

5a

5b
5¢
5d

6a

6b

6c

6d
7a

7b
Tc

7d

9a

9b

9c

1la
11b
11c

11d _JSEND

94

lookup returns the ALU function “RECV” and an immediate as the second operand (iN = 2).
The controller outputs the corresponding immediate value and control signal (IM2 = 0 and IC =
2). The register table is empty, so incrementing the column locations does nothing. In the next
stage, stage b, nothing happens since there are no source registers to be processed. In stage c,
since there is a destination register designated, the WE flag is set and the register number (1)
is inserted in the register table. Since it cannot be determined where the register value will be
stored in the fabric yet, this is still a “live” register value. For compactness, the register value is
shown in one of the register locations in the table; in actuality, it would be held in a separate
entry in the table for ’live’ register values. In the configuration station, the configuration values
relating to source operands are set; for this example, this means OS1 is set to "Imm” and AM2
is set to value “0”. Since the new row signal is not set, nothing happens in stage d.

The second instruction is RECV# $2,P1, is identical to the first instruction, except that
the port number (immediate value) is 1 and in that the new row bit is set, meaning that this
instruction is the last one on this row. Note that the previous instruction has been shifted to
configuration station 1 and configuration station 0 is ready for this instruction. In stage a, as for
the first instruction, the instruction lookup returns the ALU function “RECV” and an immediate
as the second operand (iN = 2). The controller outputs the corresponding immediate value and
control signal (IM2 = 1 and IC = 2). The live register in the register table, register 1, is moved
to the next column location, column 1. In stage b, again nothing happens since there are no
source registers to be processed. In stage c, since there is a destination register, the WE flag is
set and the register number (2) is inserted in the register table as a live register in column 0. In
the configuration station, OS1 is set to Imm” and AM2 is set to value “1”. Finally, in stage d,
the configuration can be finished for the row. All live registers in the issue station register table
are now placed into the first open register in the column in which the live register is located. In
the example, the live register 1 is in column 1; the first register open in column 1 is register 0, so
register 1 is stored in the register table at column 1, register 0. A normal font is used to indicate
that this is now a valid register table entry, not a live register. Similarly, register 2 is stored
in column 0, register 0. In the configuration stations, wherever WE is set an entry is stored in
the first open register. Note that these entries only indicate that the register is in use, but not

which SPU register is stored in that location. In both column 0 and column 1 WE is set, so the

95

first open register in each is set to 1; register 0 is open for both. The write select field is then
set to correspond to the first open register found previously, using a one-hot encoding. Since in
both columns register 0 is being written to, both WS fields are set to “01”, which indicates that
register 0 will be written to. At this point, the entire configuration for the first row is complete
and is shown in the gray boxes on line 2d in Table 6.7.

The next instruction is SLLI $3, $1, $3, the first instruction in this example with a source
register. This instruction in the SPU takes the value in register $1, shifts it left 3 places and
places the result in register $3. It has an opcode of SLLI, SR1=1, RK1=0, DR = 3, and an
immediate value of 3. In stage a, the lookup results are FN = “SLL” and an immediate as the
second operand (iN =2). The controller outputs the corresponding immediate value and control
signal (IM2 = 3 and IC = 2). There are no live registers, so nothing changes in the RT. In
stage b, the only source register, register $1, is found in the register table at LC1= 1 and RC1
= 0. Since RK1 is not set, nothing is changed in the register table. In stage c, since there is
a destination register, the WE flag is set and the register number (3) is inserted in the register
table as a live register in column 0. In the configuration station, OS1 is set to LC1 to +1, OS2
is set to "Imm” and AM2 is set to value “3”. Since NR is not set, nothing happens in stage d.

The next instruction is ADDI $4, $2, 21. As before, the previous instruction has shifted
to the next configuration station. The shifted value for OS1 has been decremented to 0. This
instruction in the SPU takes the value in register $4, adds 21, and places the result in register
$3. It has an opcode of ADDI, SR1=2, RK1—0, DR — 4, and an immediate value of 21. In
stage a, the lookup results are FN = “ADD” and an immediate as the second operand (iN =2).
The controller outputs the corresponding immediate value and control signal (IM2= 21 and IC
= 2). The location for live register 3 is shifted to column 1. In stage b, the only source register,
register $2, is found in the register table at LC1= 0 and RS1 = 0. Since RK1 is not set, nothing
is changed in the register table. In stage c, since there is a destination register, the WE flag is
set and the register number (4) is inserted in the register table as a live register in column 0. In
the configuration station, OS1 is set to LC1=0, OS2 is set to "Imm”, RS1 is 0 and AM2 is set to
value “21”. Since NR is not set, nothing happens in stage d.

The last instruction on this row is SUBI# $2, $2!, 37. This instruction in the SPU takes the

value in register $2, subtracts 37, and places the result back in register $2. It has an opcode of

96

SUBI, SR1=2, RK1=1, DR = 2, and an immediate value of 37. In stage a, the lookup results
are FN = “SUB” and an immediate as the second operand (iN =2). The controller outputs the
corresponding immediate value and control signal (IM2= 37 and IC = 2). The location for live
register 3 is shifted to column 2 and the location for live register 4 is shifted to column 1. In
stage b, the only source register, register $2, is found in the register table at LC1= 0 and RS1 =
0. Since RK1 is set, register 2 is cleared from the register table. Note that in the RCF, the value
stored in column 0, register 0 could be still be read by other tiles in the same row. However, in
order to maintain correspondence between the SPU and RCF, register assignment in the HASTE
tool flow will not allow access to killed registers in the same row. Since register $2 is killed, it
cannot be read until there is a new row. In can be written to however, as in this example. In
stage ¢ the WE flag is set and the register number (2) is inserted back in the register table as
a live register in column 0. It is live, so it cannot be found in the table until the locations are
fixed by a new row. In configuration station 0, OS1 is set to LC1=0, OS2 is set to "Imm”, RS1 is
set to 0, and AM2 is set to value “21”. Since NR is set, in stage d register locations are fixed in
the RT; register $2 is in column 1, register 0, which happens to be its previous location in this
example. Register $4 is in column 1; the first open register 1, so it is placed there. Register $3 is
in column 2 and is placed in register 0. Register $1 remains in its previous location, since it has
not been killed. In the configuration stations, any station with WE enabled sets the first open

register location and selects that register for writing in WS, as discussed previously.

6.3 Relative Register ISA SPU and CTE Operation

6.3.1 RRISA SPU Operation for Example

The RRISA code for the example is shown in Figure 6.2(d) and the corresponding DFG is shown
in Figure 6.3(c). This code sequence implements the loop body for the pseudo-code shown
in Figure 6.2(a). As with the previous examples, all input and output to the loop body is
carried by streams, with the loop variable i, and X[i] and Y[i] representing input streams and Z[i]
representing an output stream. As in previous examples, MAU initialization is assumed to have
been already completed.

Even though there are no columns per se in the RRISA SPU, registers are designated using

97

relative column notation. As discussed in Chapter 4, RRISA uses register designations that
correspond to the RCF and uses special hardware in the SPU, in the form of a special register
file and an instruction numbering queue, to use these register designations during SPU operation.
This is in contrast to RISA, which uses a more conventional register designation that corresponds
directly to the SPU and which must be translated into RCF register locations in the CTE. During
non-kernel RRISA SPU operation, more conventional register designations are used as well; only
during kernel execution is the register designation shown here used. In non-kernel instructions, a
column offset of 0 is always used and the column location is assumed to be zero for all instructions.
The sliding register file used in the SPU has 64 registers in column 0, regardless of the number
actually present in the RCF fabric. This allows the SPU to function just as the RISA SPU for
non-kernel code, with a conventional 64-entry register file. When running kernel code, other
column locations are used in the sliding register file, and these columns have only as many
registers as are actually present in each column of the RCF.

One complexity of the RRISA SPU arises from the fact that it is preferable to issue instruc-
tions into the CTE such that they can be configured and pushed onto the fabric in order, as
was done for QISA and RISA. This means that the final column an instruction will be in is not
known until the last instruction in a row is seen. This is not a problem for the RISA and QISA
SPUs, since is it not necessary to know the column an instruction will be in in the CTE in order
to correctly execute it in the SPU. It is necessary to know the column for correct execution in
the SPU for RRISA, however, since register locations are relative to absolute column locations.
Therefore, new row markers are located in the SPU instruction fetch queue and column loca-
tions are assigned to kernel instructions based on the number of instructions in the row. The
first instruction found in a row is then known to be at column n-1, where n is the number of
instructions in that row, the next instruction is at n-2, and so on, down to column 0.

In Figure 6.11 the contents of the SPU registers after the execution of each instruction are
shown. The column location, found as described above, is shown in parentheses next to each
instruction. Since mapping is being done to a fabric with three columns and two registers
per column, six registers are shown for the corresponding SPU register file (the extra registers
associated with column 0 for use with non-kernel code are not shown). Only four of these

registers are actually used by the loop body example (or corresponding fabric configuration) and

98

it is assumed that there is nothing significant in any of the registers at the start of the loop body.
Each letter corresponds to a variable in Figure 6.2(a) and is shown in the register where it is
stored. Registers shown with a gray background correspond to values that were produced by
the preceding instruction. Registers surrounded by a thick outline show register locations that
were read by the preceding instruction, although a new value may have also been placed in that
location (and will have a gray background if so). Starting in the upper left corner, this figure
shows the loop body starting with an empty register file. The first instruction, RECV :0,P0 is at
column 1, and causes the SPU to receive a value, A, from MAU port PO, and place it in register
0 in the same column, column 1. The next instruction, RECV# :0,P1, is at column 0, and causes
the SPU to receive a value, B, from MAU port P1, and places it in register 0 of the same column,
column 0. The ’#’ character indicates that this is the last instruction on a row. The column
counter is then set to the number of instruction in the current row minus 1; 2, in this case.
Next is the first arithmetic instruction, SLLI -1:1,-1:0,3, which reads the value A from register
0 one column to the right; i.e., register 0 of column 1, performs a logical shift left by three places,
and then places the new value, C, in register 1 of column 1. The next instruction, ADDI -1:1,-
1:0,21, reads value B from register 0 in column 0 and adds 21, placing the resultant sum, value
D, in register 1 of column 0. Similarly, the next instruction, SUBI# :0, :0,37 reads value B
from register 0 of column 0 again and subtracts 37, giving the new value E which it places in
the same register. Note that this instruction is the last instruction to use value B, which was
stored in register O of column 0. The compiler realizes this and therefore allocates the same

> is not needed to indicate this as was done for RISA, since

register for value E. Note that a ’!
the register allocations for the CTE are made explicitly. The '#’ after SUBI indicates that is the
last instruction on the current row, as was the case for the second RECV instruction.

The first instruction in the row is in column 1 and is a two-operand instruction, ADD :0,:1,:0,
which sums the two values C and A, and places the sum (value F) in register 0 of column 1. Note
that values that aren’t used again, such as C, are shown in gray text in the register file. Note that
A was written on the first row, used previously on the second row, and is used here on the third
row of the DFG and then overwritten by value F. The next instruction, SUB# :0,:1,:0 is also a

two-operand instruction, subtracting E in register 0 of column 0 from D in register 1 of column

0, and placing the result in register 0 of column 0. The next instruction is SRA# :0,+1:0,:0,

99

START (1) RECV :0,PO0 (0) RECV# :0,P1 (2)SLLT -1:1,-1:0,3 (1)ADDI -1:1,-1:0,21

coLo coL1 coLz coLo coLt coLz coLo coL1t coL2 coLg coL1 coLz coLo oLt coLz

B B| |A|C B|IDIA|C
0 1 Q 1 a 1 0 1 0 1 0 1 a 0 1 0 1 Q 1 1 0 1 0 1 a 1

L4 1 o 1 +1 | | A0 1+ | A4 1o 1+ | 4 1o 1+ |

(0) SUBI# :0,:0,37 (1)ADD :0,:1,:0 (0)SUB# :0,:1,:0 (0) SRA# :0,+1:0,:0 (0) SEND# P16, :0

coLo col1 coz coLocoLt cowz coo coLi colz coLo cot cos coLo colt co

Al [) EPRPE [) BLRFECL) BERAL S EREE)

0 1 0 1 a 1 0 1 0 Al 1 1 0 0 1 0 1 1 1 1 1 1
o 1+ | 40 T+ | | 10 1+ | | 10 1o+ | | R |

Figure 6.11: Register Contents for RRISA SPU Implementation

which implements the expressions H = F > > G, and is otherwise the same as the preceding
instruction. The final instruction is a SEND# P16, :0, which sends the value in register 0 of
column 0, H, to MAU port 16. This register is read for the last time by this instruction. Now the
next and all succeeding loop iterations can proceed exactly as the first iteration did, if the loop
body is running solely on the SPU. This loop body can run on the RCF, however, so in normal
operation, while the SPU runs the first loop iteration, the CTE is creating the configuration, as
will be described in the next section, and succeeding iterations will run on the RCF, just as was

seen in the QISA and RISA examples.

6.3.2 RRISA CTE Operation

The symmetric pass register fabric is used with the relative register ISA and is shown in Figure
5.7. It has all of the same fields as the symmetric pass register fabric: the ALU function select
field FUNC, two immediate value fields AM1 and AM2, and three operand select values OS1,
0852, and OS3, the read select fields, RSn, and the write select field WS. The read select fields
work just as they did for the RISA fabric as previously discussed. The write select fields are now
more complicated in that each tile may write to registers in other columns. As with the read
select fields, values are stored in the columns containing the ALUs doing the writing and not the
columns containing the registers being written. Since each ALU can only write to one location,
only one such write select field is needed for each column. The write control hardware of the
asymmetric pass register fabric is thus necessarily rather different than the simpler hardware
used in the symmetric pass register fabric. If a register is not written to, it receives the value
in the corresponding register in the previous row, just as for any other pass register fabric. In

Figure 6.5(b), the locations of the PE configuration fields for the example fabric shown. The

100

Table 6.6: CTE Inputs from SPU and CTE Outputs to RCF for RISA

| Input Field [Description | Output Field | Description
0P Instruction Opcode FUNC (FN) Function select for ALU.
DR Destination register. ATMM1 (AM1) Immediate value 1 for ALU.
DO Destination offset ATMM2 (AM2) Immediate value 2 for ALU.
S1R, S2R, S3R | Source registers. 0S1SEL (0S1) | Operand select for ALU input 1.
810, S20, S30 | Source offsets. 0S2SEL (0S2) | Operand select for ALU input 2.
NR New row field. 0S3SEL (0S3) | Operand select for ALU input 3.
IMM Instruction immediate, RSELn (RSn) Register read selects.
shift amount or port
number
LR1, LR2 Live-in register values. WSEL (WS) Register write select.

complete configuration is shown in Figure 6.13.

As with RISA, the inputs to the CTE are the current instruction and the current values
of the first two source registers, LR1 and LR2. The instruction itself contains the instruction
opcode field OP; a destination register and offset, DR and DO; source registers SIR, S2R, and
S3R, and source offsets S10, S20, and S30; a new row field NR (this corresponds to the '#’
character which indicates a new row); and an immediate field IMM. No register kill fields are
needed, since register usage is assigned explicitly in both the CTE and SPU. In RRISA code,
registers are specified in an offset:register format; if the offset is 0, it is not shown, for brevity.
The input and output fields are shown in Table 6.6, with both full and abbreviated forms shown.
For the register specification fields, (S1R, S2R, S3R, and DR) a -1 value indicates that a register
is not specified; this usually represents the largest possible value for that field, which cannot be
a valid register by convention. The SPU decoder fills in this value as needed, depending on the
instruction opcode and instruction format.

The hardware comprising the CTE is shown in Figure 6.12. It is simpler than either the QISA
and RISA CTEs. Since operand locations are specified explicitly, there is no hardware needed for
tracking operand locations, such as the operand queues in the QISA CTE and the register table in
the RISA CTE (there is a set of register flags in the Immediate Control logic that tracks whether
a register has been written to in the kernel). The only hardware required in the entire CTE is
for the handling of immediate values. The instruction lookup gives the base FN code for the OP
and determines if an immediate is needed. If so, the immediate control supplies the immediate

to the correct immediate field and sets the immediate control (IC) signal appropriately. The

101

FN AM1 0S1 WS Rs1 FN AM1 0S1 WS RS1

AM2 OS2 RS2 AM2 OS2 4 RS2
A 0s3 RS3 y 0s3 RS3
A A A
\ \
Config Config
Control Control
A
»| Instruction > FN - [FN >
oP
Lookup
- _ » (M1 - 1M1 -
MM o Immediate - M2 o He w2 »l
Control o) o
LR1,LR2 > »IC » B IC » @
: A & DO:DR > &
DO:DR I » & H—» DO: &
S10:S1R > I s10:81R >
S20:52R > s20:52R -
S30:S3R - I S30:S3R -
NR » NR -
ISSUE UNIT CONFIG STATION O CONFIG STATION 1

Figure 6.12: Relative Register ISA CTE

immediate control logic also checks if a register location is used for the first time; if so, the live-in
value is supplied as an immediate. Logic in the config stations sets the operand select signals
according to the immediate control value and source offset field. Other than those few fields,
all other configuration information comes directly from instruction itself. Algorithm 4 shows
pseudo-code for the register ISA CTE algorithm. As indicated, portions of the code represent

the functionality of the issue unit and portions the functionality of the configuration stations.

6.3.3 RRISA CTE Operation for Example

The process of converting this code into a configuration is shown in Table 6.7. This process is the
implementation of Algorithm 4 using the hardware shown in Figure 6.12 and will be explained
in detail in this section. As was the case for the RISA and QISA examples, Table 6.7 shows the
value of important signals throughout the conversion process. Each row shows the values for one
stage of the conversion process, each stage corresponding to a shaded box in Algorithm 1. Unlike
the previous examples, the algorithm is simple enough to require only two stages, instead of the
four requires by QISA and RISA. Stage a involves reading the lookup table and the setting of
immediate values and the immediate control signal in the issue station. Stage b involves the
generation of the final configurations in the configuration stations. Note that stage a take place

in the issue unit and stage b takes place subsequently in each configuration station.

102

Algorithm 4 RRISA CTE Algorithm

Issue Unit:
Inputs : instruction = [OP, IMM, S10:S1R, S20:S2R, S30:S3R,DO:DR, NR], LR1, LR2
Outputs : FN, IM1, IM2, IC, S10:S1R, S20:S2R, S30:S3R,DO:DR, NR

clear RegisterUsageFlags

103

6.3.3.1 Table and Configuration Description

The leftmost column of each row identifies the stage and clock cycle represented by that row.
The “Inst” column shows the instruction as sent to SPU. The next nine columns show all of the
fields that can be sent from the SPU to the CTE. Not all of these fields will be used for any single
instruction, as can be seen from the ISA formats as shown in Figure 4.10. The “OP” column
shows the instruction opcode. The “S1R”, “S10”, “52R”, and “S20” columns give the register and
offset fields for the first and second source registers. Note that since there are no three operand
instructions in the example, a third source register is never needed and thus the “S3R” or “S30”
fields are not shown. There are also register and offsets fields “DR” and “DO” for the single
destination register field “DR?”. There is an immediate field, “IMM?”, which is used both for 16-bit
immediates for I-Type instructions, as well for 5-bit shift amounts and port numbers. Finally,
the “NR” column holds the new row bit. The live-in values “LR1” and “LR2” would be shown
in this section, but the example does not have any live-in values, so the corresponding columns
were removed for brevity.

The next five columns show the signals and values in the issue unit itself (fields which are
unchanged in the issue unit are not shown). The first two show the values returned by the
instruction lookup based on the input opcode; “FN” is the function to be performed by the ALU
for that instruction and “iN” signifies if an immediate is needed, and if so, whether it should
be in the first or second operand location (immediates are not supported for the third operand
location). The next three columns show the outputs of the Immediate Control, including both
immediate values, “IM1” and “IM2”, and the immediate control signal “IC”.

The next three sets of eight columns each show the outputs and internal signals of each
configuration station. Since the example is three columns wide when mapped to RRISA, only
three issue stations are shown. For each station, the output values ALU function select “FN”,
ALU immediates “AM1” and “AM2”, operand selects “OS1” and “OS2”, register selects “RS1” and
“RS2”, and write select “WS” are shown. As always, signals referring to the third input operand
are not shown. The fabric configuration produced in the example is shown in Figure 6.13. This

figure uses the same notation as did the RISA example; refer to Figure 6.5(b) for details.

104

RRISA CTE Example

Table 6.7

HUnN anss|

5 S S S S S X XX XXX X XX 0 x 0 L T X ot] - - B - 6 |
x x x X x x X x x x x x x x KX X X X T x ot|9t anasf 1t 9t x x x x o0 0 |an3s 0:'91d #AN3S eg
I S S S X XXX X x xJ00 0 0 0 It 0 X X - - P - @ |
X x x X x x x x x x x x x x R o0 x x|lo ws|1 x 0o o o0 o0 1 o]ws 07'0:T+0 #WUS eg
X X X X X X X 0 T 0 0 X X 0 T 0 0 0 X X ” ” w ” ” ” ” ” ” ” ” ” ar
XX X x x X X X X 0 T [[X X X x X X [X X 0 ans 1 X 0 0 0 0 0 1 |18ans 0:'1:0: #8NS L74
L5 S S S S N T kR S T 5 T 0 © o x x| -1 - - - - - . -1 - 9 |
XX x X X x x x x XX x X X x x x x x x x 0 X X 0 aav 0 X 0 0 0 0 0 T aav B9
Y B N S S T S TR S] Te X X 0 w0 C Lt X | - - L < |
X0 ww T € X T5]Lr X 0 o TC. X X X X X z e x|z ans)t e o o x x o o]iens eg
S S S S S CI S] T X X0 wa A " .= . v
XX X x x b3 X X X T X 0 wuw € X X x X X Z 1T x (4 aav) 0 12 T T x x 1- 0 |laav ey
I A T LR XX X0 WO T Z € x| -1 - -5 5 - .- -1 TE |
x X X x x x x x X X x x x x x x Z € x Z ms 0 E I T x x I 0 ms Bg
S S S S e 53 S S TV - a—] S A - e - ;- Bl
X X x X X X X X X X ow X 0 X X X X 1 X T T A T T 0 0 x x x X | AD3d Td ‘0" #AJ3Y 4
k3 X X X X b3 X b3 X X X X X k3 X k3 a T X 0 » » . - - - - » » - - ” qT
XX X x x b3 b3 b3 X XX X x x X X b3 X x X X x x X 1 X 1] T AN O 0 0o 0 x x x x | AD3H 0d ‘0: AD3Y BT
SM ZSH TSH ZSO TSO ZWY TIW N4 SM ZSH TSH ZSO TSO ZWVY TW Nd SM ZSH TSH ZSO TSO ZWV TWY ONNJff DI ZWI TWi| NI JONNd [HN WWI O Hd ZOS 2¥S TOS THS| dO sul
Z UoRE}S Byuod T UOJIEYS BUU0D 0 UOIE}S BIUG) JoRuo) P sindul 310

105

Figure 6.13: RRISA Fabric Configuration for Example

106

6.3.3.2 Processing of Example Instructions

As previously discussed, the processing of the example kernel is shown in Table 6.7 and the final
configuration is shown in Figure 6.13. The first instruction is RECV :0, P0, which in the SPU
receives a value from Port 0 of the MAU and places it in register 0 with no offset. In stage a,
the instruction lookup returns the ALU function “RECV” and an immediate as the first operand
(iN = 1). The controller outputs the corresponding immediate value and control signal (IM1
= 0 and IC = 1). In stage b, in the configuration station, the configuration values relating to
source operands are set; for this example, this means OS1 is set to "Imm”. The second instruction,
RECV# :0,P1, is identical to the first instruction, except that the port number (immediate value)
is 1 and in that the new row bit is set, meaning that this instruction is the last one on this row.
Note that the previous instruction has been shifted to configuration station 1 and configuration
station 0 is ready for this instruction. In stage a, as for the first instruction, the instruction
lookup returns the ALU function “RECV” and an immediate as the first operand (iN = 1). The
controller outputs the corresponding immediate value and control signal (IM1 = 1 and IC = 1).
In stage b, the configuration, the OS1 value is set to “Imm” and configuration is finished for the
row, as shown in the gray boxes on line 2b in Table 6.7.

The next instruction is SLLI -1:1, -1:0, 3 the first instruction in this example with a source
register. This instruction in the SPU takes the value in register 0, at offset -1, shifts it left 3 places
and places the result in register 1 at offset -1. In stage a, the lookup results are FN = “SLL”
and an immediate as the second operand (iN =2). The controller outputs the corresponding
immediate value and control signal (IM2 = 3 and IC = 2). In the configuration station in stage
b, OS1 is set to S10 = -1, OS2 is set to "Imm” and AM2 is set to value “3”. The next instruction
is ADDI -1:1, -1:0, 21. As before, the previous instruction has shifted to the next configuration
station. This instruction in the SPU takes the value in register 0 at offset -1, adds 21, and places
the result in register 1 at offset -1. In stage a, the lookup results are FN = “ADD” and an
immediate as the second operand (iN =2). The controller outputs the corresponding immediate
value and control signal (IM2= 21 and IC = 2). In the configuration station, OS1 is set to
S10 = -1, OS2 is set to "Imm”, and AM2 is set to value “21”. The last instruction on this row
is SUBI# :0, :0, 37. This instruction in the SPU takes the value in register 0 of the current

column, subtracts 37, and places the result back in register 0 of the current column. In stage

107

a, the lookup results are FN = “SUB” and an immediate as the second operand (iN =2). The
controller outputs the corresponding immediate value and control signal (IM2= 37 and IC = 2).
In configuration station 0, OS1 is set to SIO = 0, OS2 is set to "Imm”, and AM2 is set to value

“21”. This instruction completes the current row, as shown in row 5b of Table 6.7.

6.4 Conclusions

In this chapter CTE designs for all three HASTE ISA were shown and their operation illustrated
by examples. All three CTE designs meet the requirements outlined at the beginning of the
chapter: they only require access to the first row of the fabric; they are scalable to fabrics of
arbitrary size; they take roughly a single kernel iteration to produce a configuration (slightly
more in the case of RRISA); and they require relatively simple hardware. While the QISA and
RISA CTE require some unusual hardware, neither has unreasonable hardware requirements.
The RRISA CTE is quite simple, with the most complicated component being the instruction
lookup table. Functional models of all of these CTE designs have been tested for a range of RCF
fabrics, showing that the relatively simple algorithms presented in this chapter do in fact produce

correct kernel configurations. More discussion of this testing is presented in Chapter 9.

108

Chapter 7

Tool Flow and Simulation
Environment

In order to evaluate different HASTE ISAs and show that the HASTE concept works, tools were
needed to simulate the operation of HASTE systems. In addition tools were needed to map
applications to different HASTE fabrics, and to evaluate and estimate the hardware implemen-
tations of kernels on HASTE, as well as competing technologies. In some cases, existing tools
could be used, although usually some modifications needed to be made to these tools for use with
HASTE. In other cases, custom tools had to be developed. Some of these tools work on entire
applications, while others only work on application kernels. In a few cases, steps in the flow must
be done manually.

The entire tool flow is shown in Figure 7.1. The broad arrows in the figure represent tools (or
in some cases manual procedures), the rounded rectangles represent simulators, the “card stack”
figures represent executables, and the rectangles with a wavy edge represent code or data of some
type. The key in the lower left of the figure gives more information about the flow, including
identification of which tools were created specifically for HASTE, which were modified versions
of existing tools, and which were existing tools used as-is. The tool flow can be broken down into
three sub-flows; application mapping, simulation and validation, and hardware implementation.
Rather than discuss the overall tool flow as a unit, sections will detail each of the sub-flows and
will cover all of the tools in the context of the sub-flows. Where there is overlap between the
sub-flows, specific tools will be discussed in the most relevant section.

A number of sometimes conflicting requirements had to be considered when creating the

tool flow for this project. The tools needed to be as flexible as possible, so that different ISAs

109

Findfidentify kernels

Annotated C code

ASIC
Area/Performance

FPGA

Area/Performance

)
8
8
E
£

PISA+ ASM

Partition &
Convert

gasHASTE

\i

ModelSim

Kemmel Outpis 4

RCF VHDL
Models

Testbench

Kernel
Mapping

Fabric

Parameters

Fabric
Area/Performance

J\

EXISTING
SIMULATOR

EXISTING TOOL

MODIFIED
SIMULATOR

MODIFIED TOOL

il

Generic Generic
HASTE HASTE
Kernel Sequential
ASM ASM
o
Q@
]
~
5
@

Kernel Inputs

|

18A-specific
HASTE
Kernel

ASM

Generi¢
HASTE

Sequential
ASM

1SA-Specific

HASTE ALU
VHDL

Kemel
+| 5 |

HASTE
executable

hl

Testhench
VHDL

ModelSim

Keel OutpLits 5

Figure 7.1:

110

ISA Specific
HASTE
SimpleScalar

Kemel Outpuits 3

Overall HASTE Tool Flow

88 executable

SimpleScalar
Simulator

Kemel Outputs 1

H/SS executable

HASTE
SimpleScalar
Simulator

Kermel Outpuits 2

and fabrics could be studied and compared. The use of test applications and kernels from
various sources was necessary to allow for comparison with other architectures and to ensure that
reasonable and relevant benchmarks were available. The mapping of applications to hardware
needed to be good enough to allow for valid comparisons between different implementations, but
also fast enough to allow for performing many experiments. The fast mapping of kernels to many
different architectures was deemed more important than being able to investigate a very large
number of kernels, so a semi-manual compilation flow was deemed acceptable. Comparison of
sequential code was not deemed important, as this was largely a traditional compiler problem
and not necessary for exploration of the HASTE concept. Due to the limited resources available
for tool development, existing tools were to be leveraged wherever possible.

The flow shown in Figure 7.1 succeeds in meeting the requirements of the project. Kernels
can be captured directly from C source code, written in HASTE assembly code, or captured
from directed acyclic graphs (DAGs) produced by other tools such as the DIL compiler [38] for
PipeRench (DAGs, as a form of dataflow graph, are used in the HASTE tool flow). Code can
be simulated at various points in the flow to verify kernel inputs and outputs. Code for any ISA
can be represented as a generic HASTE assembly program and kernels can be represented as
generic HASTE assembly or by an equivalent DAG. The generic DAG can then be converted for
specific ISAs and mapped to a specific fabric. The generic DFG can also be converted to VHDL
for synthesis for FPGA or ASIC implementations.

All of the tool development and modification of existing tools was done by the author, with
three exceptions. Some portions of the AppMap code for queue ISAs were originally written by
Benjamin Ylvisaker; these portions were subsequently entirely rewritten to match a newer set
C++ classes and APIs, but a few of the original algorithms were retained. The dag2vhdl code
was inspired by similar code originally written by Brian Van Essen for creating Verilog versions
of kernels in a specific queue ISA; substantial revision would have required to match the generic
HASTE assembly language, so the software was rewritten from scratch and additionally made to
generate VHDL rather than Verilog. Finally, the Graph Template Library (GTL) version 1.2 [39],
which was written by researchers at the University of Passau, Germany, was used throughout

AppMap to represent graphs and graph algorithms.

111

7.1 Application Mapping

The first sub-flow to be covered is application mapping, which is shown in Figure 7.2. Note
that this figure is just a portion of the overall flow which was seen in Figure 7.1. Application
mapping is the name chosen to describe the process of implementing an application and/or
application kernels on a specific HASTE architecture. Although part of the process resembles
compilation and even uses a standard C compiler, much of the process is more closely related to
traditional computer-aided design (CAD), such as that used for FPGAs. Rather than refer to
it as compilation, or placement and routing, the entire process will be referred to as application
mapping. Design capture of kernels can be done at either the level of annotated C code, generic
HASTE assembly code, or DFGs, as indicated in the figure. Sequential code can be entered as the
first two forms, excluding the DFG form; despite the conceptual representation of sequential code
as CDFGs, there is no actual graph-based representation of sequential code implemented in the
current tool flow. Note that design capture at the level of unannotated C code or PISA assembly
code is not considered, since these two forms are followed by manual steps in the flow, and thus
design capture is more efficiently done at the level of their succeeding forms. An example will
be presented in the next section that starts with unannotated C code and proceeds through the
entire application mapping flow. The application mapping flow is used at least in part by the
other two flows and for all of the experiments in the remainder of this thesis. Results comparing

application mapping to the different ISAs and different fabrics are presented in Chapter 8.

7.1.1 Kernel Annotation

C code from existing benchmarks can be used in the tool flow. Kernels in this C code need
to be identified manually, either by inspection, profiling of the code, or some combination of
both. The C code may need to be modified slightly to make kernels more suitable for HASTE;
if this is the case, care must be taken to ensure that the modified code works the same as
the original code. Once kernels are identified, they must be annotated by including assembly
language directives so that they can be identified in the assembly language version. The process
of finding and identifying kernels could be done in an automated manner; modern ILP compilers
such as IMPACT [40] have been used for this purpose in other projects. However, the amount

of time needed to learn such a compiler, modify it for use with HASTE, and evaluate methods

112

.
&-
‘Q
.
C code Findfidentfy kemels Annotated C code PISA+ASM AN
Sequential
" Design
58 c
= 2
= £
- apture
o i
I' "‘
o ’
K .
K '
h
Ke rnel Generic Generic ,’l
H cm= HASTE HASTE 4
DeS|gn ACTOPL A N Kernel + Sequential --t”
ASM ASM
Capture
s
~
.
.
‘N
~§
~~~..
Seal
Fabric o
Parameters 2
g
<
|SA-spacific Generic
HASTE + HASTE
Sequential

Karnal
ASM

ASM

|SA-Spedific
HASTE
exacutable

Figure 7.2: Application Mapping Tool Flow

113



for identifying kernels was deemed to be too time-consuming for this project. Indeed, similar
efforts have been the subject of entire PhD theses on their own. Given that large numbers of
benchmarks were not needed for this thesis, it was decided that a manual method for kernel
identification and kernel annotation was sufficient.

A simple example of an unannotated program written in standard C is shown in Figure 7.3;
it includes both a kernel (simple kernel) and a main procedure that basically just acts as a
wrapper for the kernel and provides some random input data. Both the input and output data
streams are stored in a memory buffer; in a real application, these streams might be sent to or
received from another procedure, received from a sensor, written to a storage device, or sent to
another device, but in any case, the same application mapping methods could be used, as long
as the memory access requirements of GHAL were met (i.e., fixed base address and stride, with
stride = 0 for memory-mapped I/0).

The first step of the process is to annotate the original C code so that the kernel could be
identified. Annotation is implemented using ASM statements, which insert assembly language
commands directly into the compiled code. The annotations can be seen in the listing in Figure
7.4; they are shown in a large, bold font. The annotations insert the dummy loop delimiters, as
discussed in Chapter 4, into the code. They are used to identify the kernel, with DLPBGN used
to identify the beginning of the kernel (placed just before the first loop iteration), DLPEND used
to identify the end of the loop body, and DLPDONE used to identify the end of kernel.

7.1.2 Compilation

Once the C code has been annotated to identify the kernels, it is compiled using a modified version
of the gce compiler, version 2.7.2.3, for the PISA instruction set. PISA (Portable Instruction Set
Architecture) is a MIPS-like ISA developed for use with the SimpleScalar simulator [34]. Since
SimpleScalar was a good choice for a simulator for this project and since PISA is a very generic
ISA, PISA was chosen as the basis for the HASTE assembly language. The modified version of
gece for SimpleScalar will be referred to as gceSS. Appendix B documents the HASTE assembly
language and details the differences between HASTE assembly and PISA.

A couple of minor modifications were made to the gceSS compiler. First, the number of

integer registers was increased from 32 to 64, with all of the new registers being considered as

114



/* * simple.c * */
#define NUM_DATA 10000
#include <stdlib.h>
void simple_kernel (unsigned char* in_data, unsigned shortx* out_data);
int main(void) {
unsigned char *p_in;
unsigned short *p_out;
int i;
p_in = malloc(3*NUM_DATA*sizeof (unsigned char));
p_out = malloc(NUM_DATA*sizeof (unsigned short));
for (i = 0; i < (NUM_DATA*3); i++) {
p_in[i] = randQ);
}
simple_kernel(p_in,p_out);
return 0;
}
void simple_kernel (unsigned char* in_data, unsigned short* out_data) {
int i;
unsigned char a,b,c;
unsigned short x,y,z;
for (i=0;i<NUM_DATA;i++) {
= in_datal[i*3];
in_datal[(i*3)+1];
in_datal[(i*3)+2];
=a>> 2;
=b + x;
if (y > ©)
Z = c;
else
z =y + 4;
out_datal[i] = z;

< X o o
1l

Figure 7.3: Unannotated C Code

115



void simple_kernel (unsigned char* in_data, unsigned short* out_data) {
int i;
unsigned char a,b,c;
unsigned short x,y,z;
asm("dlpbgn") ;
for (i=0;i<NUM_DATA;i++) {

a = in_datal[i*3];
b = in_data[(i*3)+1];
c = in_data[(i*3)+2];
x =a>> 2;
y =b + x;
if (y > ©)
z = c;
else
z =y + 4;

out_datal[i] = z;
asm("dlpend");
}
asm("dlpdone");
}

Figure 7.4: Kernel C code with annotations

temporary registers. Since the PISA instruction word is 64 bits long and has 8-bit register fields,
this did not require any major changes to the compiler. Increasing the number of registers beyond
64 caused numerous problems apparently related to subtle aspects of the machine definition and
it was not possible to fix these problems in a reasonable amount of time. The additional registers
greatly reduced the chance that the variables needed within a loop body would not fit within
the available registers and have to be spilled to memory. Since PISA, like MIPS, has only 8
temporary registers that do not have to be saved by a procedure, the new registers increased
by a factor of 5 the number of available temporary registers. The names of several assembly
language instructions were modified but no further modifications were made to gcc.

Annotated C code was compiled using gceSS with the following options:

-03: This tells gce to use numerous optimizations, in particular, this forces it to use more
registers, including the newly added ones.

-fomit-frame-pointer: This lets gcc omit the frame pointer for code which doesn’t need it,
freeing up an additional register.

-verbose-asm: This produces more verbose (and thus readable) assembly code.

116



-S: This tells gce to stop after compilation and emit assembly code.

Any code that can be compiled for SimpleScalar can be compiled with the modified SSgcc.
All normal C run-time libraries are available. The sequential portion of the example code after
compilation is shown in Figure 7.5 and the kernel portion of the example code after compilation
is shown in Figure 7.6. The only modification that is sometimes needed is the manual moving
of the DLPBGN and DLPEND commands to the actual loop boundaries to allow for accurate
profiling of the kernels. Note that the positions of the loop delimiters DLPBGN and DLPEND
are not in exactly the correct positions, but they are close enough that they can easily be moved
to where they need to be; the arrows in the figure show their correct locations. Again, a tool

could have been written to handle this detail, but it was not deemed worth the effort.

7.1.3 Conversion to GHAL

The PISA assembly language next has to be converted to the generic HASTE assembly language
(GHAL). There were three primary changes that had to made to the kernel code; those relating to
control flow for loops, those relating to memory access, and those relating to general control flow.
Since no control instructions are allowed in the HASTE kernel model, looping in kernels must be
implemented using only the loop delimiter instructions, LPBGN and LPEND, or their variants
LPBNGI and LPENDR, as discussed in Chapter 4. These must be inserted manually, replacing
the original code that implemented the looping. If the dummy loop delimiters, DLPBGN and
DLPEND, are present for kernel profiling, they should be removed as well. Ordinary load and
store instructions are not allowed in the HASTE kernel. Instead, the indexed memory send and
receive instructions must be used. In addition, the proper memory port setup instructions must
be inserted. Again, there is no automated way to do this at the present time. The specific
memory send and receive instructions and the setup instructions are covered previously and will
not be reviewed here. Finally, all control flow in the kernels must be eliminated. This is done
using a form of partially predicated execution. In effect, control paths are executed in parallel.
When an assignment is made to a value that depends on a particular control path being taken,
then a SELECT instruction is used to determine which value is assigned, based on the original
conditional; this instruction is covered in more detail in Chapter 4 and in Appendix B. Once

again, this part of the conversion process is also done manually, although there are tools and

117



main:

.frame $sp,40,$31 # vars= O, regs= 5/0, args= 16, extra= 0

.mask 0x800£0000, -8

.fmask 0x00000000,0

subu $sp, $sp,40

sw $31,32($sp)

sw $19,28($sp)

sw $18,24($sp)

sw $17,20($sp)

sw $16,16($sp)

jal __main

1i $4,0x00007530 # 30000

jal malloc

1i $4,0x00004e20 # 20000

move $17,%$2

jal malloc

move $19,%$2

move $16,$17

addu $18,$17,30000
$L29:

jal rand

sb $2,0($16)

addu $16,$16,1

slt $2,$16,$18

bne $2,$0,$L29

move $4,$17

move $5,$19

jal simple_kernel

move $2,$0

1w $31,32($sp)

1w $19,28($sp)

1w $18,24($sp)

1w $17,20($sp)

1w $16,16($sp)

addu $sp, $sp,40

j $31

.end main

Figure 7.5: Assembly for Example Sequential Code

118



simple kernel:
.frame $sp,0,$31

.mask 0x00000000, 0
.fmask 0x00000000,0
dlpbgn

addu $7,$5,20000 D
<

lbu $2,0($4)

lbu $3,1($4)

lbu $6,2($4)

srli $2,$2,2

addu $3,$3,%2

sltu $2,$6,8$3

beq $2,$0,5L44

move $2,5$6

J $L45
SL44:

addu $2,83,4
$L45:

sh $2,0($5)

dlpend

addu $5,85,2
addu $4,%4,3
slt $2,85,87 <

bne $2,$0,$L43
dlpdone

3 $31

.end simple_ kernel

SL43:

Figure 7.6: Assembly for Example Kernel

techniques that could have been adopted to perform this process. Figure 7.7 shows the kernel
code after it has been modified to use GHAL. Note that the pointers to the input and output
buffers, in registers $4 and $5 in the original code are now used as the base addresses in the
SETB instructions. Once converted into GHAL, the kernel code is now expressed in a form in
which all memory operations are expressed in the form used by the HASTE architecture and
all control flow has been converted into either loop constructs or dataflow operations. GHAL is
executable in a modified version of SimpleScalar for producing data vectors for simulation and
for obtaining information about HASTE execution. In addition, GHAL provides a base form
from which a dataflow graph for the kernel can be constructed and then transformed into any

ISA specific form.

7.1.4 Conversion to DAG

The next step in the application mapping process is conversion of the kernel (only) into a DAG.

This is necessary because the next step in the flow, mapping to ISA-specific code for a particular

119



simple kernel:

.frame $sp,0,$31
.mask 0x00000000,0
.fmask 0x00000000,0
[Tsetb P1,0($4)
Stream address sets P1,3
and base setup setb P2,1(S4)
\\ sets P2,3
setb P3,2($4)
sets P3,3
setb P4,0(S$5)
__sets P4,2

lpbgni $40,10000

Real loop SL35:

delimiters recvbu $2,P1 Stream access
recvbu $3,P2 instructions
recvbu $47,P3

srli $2,%2,0x2

addu $3,83,82

addiu $48,$3,4

sltu $44,547,83

sel $2,%44,5$47,548
Select sendh P4,$2
instruction lpend $40,SL35

J $31

.end simple kernel

Figure 7.7: GHAL Assembly Code

120



| recvbu $2,P1 | | recvbu $3, P2 | | recvbu $47, P3

srli $2, $2, 0x2

addiu $48, $3, 0x4 || sltu $44, $47, $3

sel $2, $44, $47, 548

Figure 7.8: DAG Generated from GHAL Code

fabric requires a DAG as input. In addition, kernels can be captured in DAG form from other
tool flows. A tool called ASM2DAG was written specifically for this task in C+-+. This tool reads
in a single kernel in GHAL and outputs a textual representation of the corresponding directed,
acyclic dataflow graph, which can be read by the mapping tools used in the next step. The DAG
file is written in GML, the Graph Modelling Language, which is part of the Graph Template
Library [39]. The DAG file for the example kernel shown in Figure 7.7 is listed in Appendix E.

A graphical representation of the DAG is shown in Figure 7.8.

7.1.5 Mapping to Specific HASTE Implementations

Once in DAG form, kernels can be transformed into a form appropriate for the specific ISA and
fabric that they will be run on. Such transformed kernels can than be run on either the RCF
or the SPU of the target architecture. The AppMap program was used to map code into a form
suitable for a specific ISA and a specific fabric. This was done by in effect placing and routing
the DAG onto the fabric, and then writing the application out in an order that the CTE could
sucessfully transform into an equivalent fabric configuration. The details of this process vary
greatly between ISAs and these details are covered in the individual ISA subsections of Section

10.2.

121



In a production HASTE system, all of the code, both kernel and sequential code, would
be transformed into ISA-specific format. However, for the purposes of this research, not all
sequential code for applications was converted into ISA-specific code. The ISA-specific HASTE
simulators could all run GHAL as well as their specific ISA, so for those experiments where the
sequential code was not important, often the sequential code was left in GHAL form. Various
simple tools written in Perl, and not shown in the tool flow, were used for creating ISA-specific
sequential code (the queue ISA also used part of the AppMap code for sequential code as well as
kernel code). Once converted, the kernel code and sequential code were recombined into a single

file.

7.1.6 Assembly

The final step in the application mapping process was the creation of the final executable. This
was done using a modified version of the SimpleScalar variant of the GNU assembler(gas). This
modified assembler, H/SSgas can handle all three of the HASTE ISAs, as well as GHAL and
PISA, by specifying different command-line switches. The executable format is basically the

same as the standard PISA, using the specific ISA formats discussed in Chapter 4.

7.2 Simulation and Validation Tool Flow

The second sub-flow is the simulation and validation flow, shown in Figure 7.9. In order to
show the feasibility of the HASTE concept, it is important to show that kernels implemented
in various HASTE ISAs and on different HASTE fabrics give identical results to the original
application kernels when provided with the same input data. If the implementations created by
the CTE produce different results on different fabrics, or if any of the fabric implementations
do not produce the results intended by the programmer, as represented by the original compiled
kernel code, than HASTE architectures will not be usable in any practical situations. Results
from using this flow are covered in Chapter 9.

The steps involved in the validation process include most of those covered in the application
mapping sub-flow; the steps of the validation process are listed in Figure 7.10. Each number

in the list of steps corresponds to a numbered box in Figure 7.9. The same simple example

122



PISA+ ASM
88 executable

PISA+
SimpleScalar
Simulatar

Kernel Cutputs 1

Convert

Kemel Inputs.

Partition &

Genaric Gneric
Kernel HASTE HASTE
g VHDL Kernel Sequential gasHSS HSS executatle
ASM ASM

| @
£

k)

|

%, 5

* * ) HASTE
4 SimpleScalar
Simulator

MadelSim

Kernel Cutputs 2

Kernel

Outputs 3

Karnel Cutputs 1 |
-«

AppMap

Generic

ISA-spacific

Fabric HASTE HASTE
Karnel + Sequential
ASM ASM

ALonwe

HASTE ALU Kernal
VHDL + VHDL

Testbanch
VHDL
ISA Spacific

HASTE
SimplaScalar

ISA-Specific
HASTE
@xecutable

ModelSim

Kernel Outputs 5

Karnel Outputs 4

Figure 7.9: Validation and Simulation Tool Flow

123



1. Original Code:

(a) Annotation of kernel.

(b) Simulation and trace generation.
2. GHAL:

(a) Conversion to GHAL.
(b) Simulation and trace generation.

(c) Comparison of traces to original.

3. Kernel DAG:
(a)
(b)
(c)
)

(d Comparison of output traces to original.

GHAL listing converted to DAG.
DAG converted to HDL.

HDL simulation using original inputs.

4. Mapped Version:
(a)
(b)
(c)

)

(d) Comparison of traces to original.

DAG mapped to specific ISA and fabric.
Mapped assembly generated.

Mapped assembly simulated and traces generated.

5. Implemented DAG
(a
(b

) Mapped assembly converted to fabric-specific DAG using CTE algorithm.
(C) HDL simulation using original inputs.

Fabric-specific DAG converted to HDL.

(d Comparison of output traces to original.

Figure 7.10: Steps in Validation Process

124



program used in the previous section will be used to demonstrate each step of the procedure.
The baseline for comparison is the input and output traces generated by the original code. The
traces are then compared to those generated by the code at each phase of the HASTE mapping
process. While it is not absolutely necessary to check results at each step of the process, doing so
increases the likelihood that any discrepancies between implementations will be found. Note that
although no simulator for an entire HASTE system has been created, simulation was used at each
step to verify operation of all of the HASTE components. Specifically, SPU operation for each
ISA was simulated using modified SimpleScalar code in Step 4c; CTE operation was simulated
using C code in Step 5a, with specific CTE algorithms used to generate the fabric-specific DAGs
from the mapped, ISA-specific assembly; and fabric operation was simulated in Step 5c¢ using
the HDL generated from the fabric-specific DAGs. These simulations are architecture-level, not
microarchitecture-level. Since the goal of this portion of this thesis was to evaluate the overall
HASTE architecture and not a specific hardware implementation of it, this level of simulation
is appropriate and justified. Some hardware implementation details are covered in Chapter 11,
which evaluates the performance and area costs of HASTE architectures. The remainder of this
section will discuss each step of the validation process.

Step 1: The validation process starts with the original C source code. The same example
covered previously will be used; the C listing for this example is Figure 7.3 and the original
assembly listing is Figure 7.6. The executable produced from the original assembly code is
the baseline executable; the loop delimiters are not actually executed, and all of the executed
instructions are PISA instructions. This baseline executable is then run on a slightly modified
SimpleScalar simulator. Most of the modifications involve identifying kernels and recording
kernel statistics. A reproducible set of input data was provided by creating pseudo-random
data of a type and range of values appropriate for the kernel. The simulator collects statistics
about the number of instructions, number of kernel instructions and so on; the output for this
simple example is shown in Figure 7.11(a). Note that the loop delimiters are not counted in the
statistics. As can be seen, for 10,000 loop iterations, 136,170 cycles were spent in the kernel. This
is reasonable, given that there are 13 instructions in the loop body if the first branch is taken
and 14 instructions otherwise. Given the artificial nature of this application, the percentage of

instructions in the kernel (11%) is not particularly relevant; it could be made much higher by

125



sim:

Completed kernmel 1:

10000

** starting functional simulation **
iterations, 136170 instructions, 30000 loads, 10000 stores

5 0x00000024 0x00000045

2 0x00000071 0x00000045

sim: ** simulation statistics ** 0x00000056 0x00000041 0x00000007
sim_num_insn 1165726 # total number of instructions executed 0200000028 0x000000ad 0x00000071
sim_total kernel insn 136170 # total number of kernel instructions executed 0200000015 0x00000016 0x00000075
sim_num_kernels 1 # number of different kernels executed 0%00000059 0%00000067 0%000000£8
sim_total iterations 10000 # total number of kernel loop iterations executed 0%0000007¢ 0%00000084
sim_total kload insn 30000 # Total number of kernel load instructions executed 0%00000088 0%00000050
sim_total_kstore_insn 10000 # Total number of kernel store instructions executed 0%0000003D 0%00000018 0%000000£3
sim_kernel_percent 11.6811 4 percent of program insts in kernel(s) 0x0000004 0x0000002¢ 0%000000e9
sim _num_refs 497708 # 1 nur of loads and stores executed 0x0000008¢ 0x00000021 0x0000000d
sim_elapsed_time 14 1 simulation time in seconds 0500000042 0%0000005¢ 00000007
sim_inst_rate 1165726.0000 # simulation speed (in insts/sec) 000000017 0x000000£2 0x000000c0
1d_text_base 0x00400000 # text (code) segment base 000000016 0x0000001a 0x0000006d
1d_text_size 25792 % text (code) size in bytes 00000008 0x00000035 0x00000083
1d_data base 0x10000000 # p initialized data segment base 000000004 0%0000008F 0x000000eb
1d_data_size 4096 # init'ed ".data' and uninit'ed size in bytes 0x0000007d 0%00000067
1d_stack_base 0xTEE£CO00 # stack segment base (highest address in stack) 0x000000Fa 0%000000£0
1d_stack_size 16384 % tial stack size 0x00000035 0x00000009
1d_prog_entry 0x00400140 # point (initial BC) 000000085 0%00000035
1d_environ_base 0x7£££8000 # program environment base address address 0%00000011 0x00000057
1d_ta 0 # target executable endian-ness, non-zero if big endian 0x000000e3 0x000000£3
mem.p 27 # total number of pages allocated 0x0000004a 0x000000£a 0x000000e5
mem.page_ 108k # total size of memory pages allocated 0x0000000a 0x00000019 0x00000000
mem.ptab_misses 27 # total first level page table misses 0x00000078 0x000000a8 0x00000035
mem.ptab_accesses 5858882 # total page table accesses 0x000000£b 0x000000ad 0x000000cd
mem.ptab_miss_rate 0.0000 4 first level page table miss rate 0%000000a9 0x00000041
0x0000003a 0x0000003c

0x0000003e 0x0000001a 0x00000071

(a) Simulation Statistics (b) I/0 Trace

Figure 7.11: Results From Original Assembly

running the application for more iterations. In addition to gathering statistics, the simulator
records traces of all memory access to and from the kernel. A portion of the input trace is
shown in Figure 7.11(b). The values in the input trace are produced by the main portion of the
executable using a pseudo-random number generator. All versions of the code should provide
the same input values to the kernel; this original trace of input values will be used to verify this
fact. In addition, this input trace will be used to provide inputs to kernel implementations that
are simulated without the rest of the application being implemented, primarily in the case of the
VHDL implementations that will be discussed in steps 3 and 5.

Step 2: Next, a GHAL version of the application is created, as covered in Section 7.1.3.
Once the kernel has been expressed in GHAL it can be assembled and run on a GHAL version of
the SimpleScalar simulator. Run statistics, input traces, and output traces are gathered during
simulation. The input traces gathered from this run are compared to the input traces gathered
from the first run to make sure the same data was supplied to the kernel. The traces are compared
using the Linux utility ’diff’. If the order of memory accesses has changed between runs, due
perhaps to a different order of equivalent memory access instructions, a simple Perl script is
used to reorder the data in the trace files. Finally, the output traces gathered from this run are
compared to those from the first run. If all output values are identical in both versions then the

kernel implementation is considered to be correct.

126



Table 7.1: Comparison of Execution Statistics for Original (PISA) and GHAL Assembly Code

| simulator statistic | statistic description | Original Code ‘ GHAL Code |
sim_num_ insn Total # of instructions executed 1165762 1129564
sim_total _kernel _insn | Total # of kernel instructions executed 136170 100000
sim_total _iterations Total # of kernel loop iterations executed 10000 10000
sim_total_kload_insn | Total # of kernel load instructions executed 30000 30000
sim_total_kstore_insn | Total # of kernel store instructions executed 10000 10000
sim_kernel percent Percent of program insts in kernel(s) 11.6811% 8.8530%

In addition, the run statistics are compared to see how the sequential GHAL code compares to
the original assembly code. Table 7.1 shows the statistics gathered from both runs of the example,
the first being the original run as shown in Figure 7.11(a) and the second being the results from
the GHAL version of the code, as shown in Figure 7.7. Note that the number of instructions is
smaller for the GHAL version than for the original version, and that it is an exact multiple of the
number of loop iterations. The smaller number of instructions is due to the fact that the send and
receive instructions are self-incrementing, and thus the last two add instructions in the original
code are not needed. Using a select instruction rather a branch eliminates the need for a jump
instruction. The fact that the number of kernel instructions is an exact multiple of the number of
iterations is due to the fact that both parts of the if..then statement implemented with a branch
and jump in the original code are executed in every iteration when using a select instruction
instead. In the original version, only the part needed based on the input data is executed;
since the two paths have different numbers of instructions, the number of instructions executed
varies from iteration to iteration. Since all instructions are executed regardless of runtime data,
the same number of instructions are executed for each iteration of the GHAL version. Further
exploration of these differences in cost for GHAL code and other runtime statistics is discussed
in Chapter 8; the run statistics for a range of different benchmarks are covered in that chapter
as well.

Step 3: For all HASTE ISAs, the next step is to convert the GHAL code into a generic DAG.
The asm2dag program is used to automatically perform this conversion. This DAG form can
be used to generate assembly for any of the three basic HASTE ISAs. In addition, this generic
DAG form is used to generate VHDL for the ASIC and FPGA versions of the applications. The
DAG generated for this example is shown in Figure 7.8. This figure is generated automatically

using GML format written directly by asm2dag. The Graphlet tool is used to create a Postscript

127



version of the graph as reproduced herein.

Since this DAG is an abstract, intermediate form, there is no simulator that can run the DAG
form directly. However, it is desirable to be able to ensure that this DAG form is constructed
correctly and that it produces the desired results. Therefore, this next step entails the production
of VHDL from the DAG and then simulation of this VHDL on a commercial HDL simulator,
ModelTech’s ModelSim. The dag2vhdl tool is used to perform the conversion. This tool was
written specifically for this project in C++. It is a fairly straightforward program that uses
structural VHDL to specify and connect pre-written, parameterized, VHDL modules that corre-
spond to each node type that could be found in the DAG (and thus to each possible kernel-legal
GHAL instruction). It also produces a testbench file for the application. The application VHDL
generated for this simple example is shown in Figure 7.12 . The testbench for the example is
rather large and is included as Appendix D.

A figure showing the structure of the VHDL simulation is shown in Figure 7.13. The testbench
reads in the original input trace data from a file and applies this data as stimuli for the kernel
inputs. The testbench applies inputs for a number of cycles equal to the depth of the pipelined
application (this depth is determined automatically by dag2vhdl) then starts reading the output
of the application. The application output is compared to the output trace data and an error
is generated if any discrepancy is found. A report file is generated showing the results of the
simulation. All parts of this step can be performed automatically; a Makefile calls asm2dag to
generate the DAG from the disassembled executable generated in Step 2, then calls dag2vhdl to
create the VHDL application and testbench, and finally calls ModelSim from the command line
to simulate the design.

Step 4: The next part of the validation process requires the choice of a specific ISA and
specific architectural parameters, and use of the AppMap tool to map the application to that
specific ISA and architecture. Given each specific ISA, certain fabric parameters must also be
chosen. For the queue ISA, the only relevant parameter is the read connectivity; the width is
determined by the DAG width. For the register ISA, the fabric width, read connectivity, and
register file size can all be changed. For the relative register ISA, the write connectivity can
be changed, as well as all of the parameters listed for the register ISA. Rather than validate all

possible mapping of applications to fabrics, a procedure was developed to find and implement

128



library IEEE,work;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_arith.all;
use work.hastecomps.all;
entity simple is
port ( var_recvbu_0 : in std_logic_vector(7 downto 0);
var_recvbu_1 : in std_logic_vector(7 downto 0);
var_recvbu_2 : in std_logic_vector(7 downto 0);
clk : in std_logic;
sendh_0 : out std_logic_vector(7 downto 0) );
end simple;
architecture STRUCT of simple is
signal var_addiu_0 : std_logic_vector(8 downto 0);
signal var_addu_0 : std_logic_vector(8 downto 0);
signal var_sel_0 : std_logic_vector(7 dowmto 0);
signal var_sltu_0 : std_logic_vector(0 downto 0);
signal var_srli_0 : std_logic_vector(7 downto 0);
signal pass_var_recvbu_2 : std_logic_vector(7 downto 0);
signal pass_var_recvbu_l : std_logic_vector(7 downto 0);
signal pass_var_recvbu_2_0 : std_logic_vector(7 downto 0);
signal pass_var_recvbu_2_1 : std_logic_vector(7 downto 0);
begin -- STRUCT
node_srli_O : srli_op
generic map ( width_inA => 8, width_outd => 8, imm => 16#2#)
port map (var_recvbu_0, clk, var_srli_0);
node_addu_O : addu_op
generic map ( width_inA => 8, width_inB => 8, width_outd => 9)
port map (pass_var_recvbu_1, var_srli_0, clk, var_addu_0);
node_addiu_0 : addiu_op
generic map ( width_inA => 9, width_outd => 9, imm => 4)
port map (var_addu_0, clk, var_addiu_0);
node_sltu_O : sltu_op
generic map ( width_inA => 8, width_inB => 9, width_outd => 1)
port map (pass_var_recvbu_2_1, var_addu_0, clk, var_sltu_0);
node_sel_0 : sel_op
generic map ( width_inA => 1, width_inB => 8, width_inC => 9, width_outd => 8)
port map (var_sltu_0, pass_var_recvbu_2, var_addiu_0, clk, sendh_0);
node_pass_var_recvbu_2 : pass_op
generic map ( width_inA => 8, width_outd => 8)
port map (pass_var_recvbu_2_1, clk , pass_var_recvbu_2);
node_pass_var_recvbu_1 : pass_op
generic map ( width_inA => 8, width_outd => 8)
port map (var_recvbu_1, clk , pass_var_recvbu_i);
node_pass_var_recvbu_2_0 : pass_op
generic map ( width_inA => 8, width_outd => 8)
port map (var_recvbu_2, clk , pass_var_recvbu_2_0);
node_pass_var_recvbu_2_1 : pass_op
generic map ( width_inA => 8, width_outd => 8)
port map (pass_var_recvbu_2_0, clk , pass_var_recvbu_2_1);
end STRUCT;

Figure 7.12: Application VHDL Generated from DAG

129



Original
Input
Trace File

\ Stimuli sent to

kemel

Testbench Kernel
VHDL VHDL

Outputs

———— produced by
' kemel .
i Original
Report any Output
errors. Trace File
T

v

Results

Figure 7.13: Testbench Structure

the most efficient architectures for a given architecture. This procedure will be discussed in more
detail in Chapter &; it will suffice here to say that a subset of possible architectures are picked
for each ISA type and each application is mapped to each architecture in the relevant set, using
the mapping algorithms covered in that same chapter. The assembly code generated for each
mapping of each kernel is assembled into an ISA- and fabric-specific executable and simulated as
before, with the output traces compared to the original traces. As with all steps of the validation
flow, scripts were developed to automate this process.

Step 5: The previous step validated operation of the ISA-specific HASTE code as it would
be run on the SPU. This was enabled by the use of a heavily modified version of the SimpleScalar
simulator. However, no such cycle-accurate simulator exists for the CTE. This could have been
done using an HDL, but since the specifics of each CTE vary widely depending on the ISA,
fabric width, machine language encodings, the decision was made to use a higher level emulation
of CTE operation. Using existing C++ code from asm2dag and AppMap, as well as new code
representing various CTE algorithms, a new tool was created to generate application mappings
from the ISA- and fabric-specific assembly code discussed in Step 4. This program, emuCTE,
takes a sequence of HASTE assembly instructions and a set of architectural parameters as inputs,

and generates an application mapping and a mapped application DAG. The application mapping

130



is represented internally as a mapping of application graph operations to hardware graph nodes
representing specific functional units, and a mapping of register reads and writes to specific
edges in the hardware graph. This mapping is then automatically compared to the input fabric
parameters to verify that it is a valid mapping for the specific fabric. If not, then the CTE
algorithm did not work properly. If it is a valid mapping, then a graphical representation of the
mapping is generated and a new DAG representing the mapped application is generated. This
new DAG is then converted to VHDL form, using a VHDL model of the RCF fabric instead of
the operator models used in Step 3. The same test bench and vectors that were used in Step 3

are used and the VHDL is verified as before.

7.3 Hardware Implementation Tool Flow

The third and final sub-flow is the Hardware Implementation flow. This flow is used to gener-
ate information concerning the performance and area requirements of kernels implemented on
various HASTE fabrics, as well as standard cell ASIC implementations, and implementations
using a commercial FPGA. Since only kernels are compared, the DAG form, as generated in the
application mapping sub-flow, is used as the entry point to this sub-slow. This sub-flow is shown

in Figure 7.14. The results obtained with this sub-flow are covered in Chapter 11.

7.3.1 ASIC and FPGA Implementations

For both the ASIC and the FPGA implementations, the dag2vhdl tool described previously, was
used to convert generic HASTE DAGs into a structural VHDL netlist. The netlist describes the
kernel design as a series of multi-bit components and interconnection between components. This
netlist references a set of synthesizable, RTL-level components designed specifically for HASTE
in VHDL. Each of these components corresponds to a single GHAL instruction. Two component
libraries were created, one with a pipeline register after each operation and one without pipeline
registers.

The use of the component libraries ensured that all computational logic in the design is imple-
mented as parameterized components, each of which corresponds to a specific GHAL instruction.

All of the instructions in Appendix B designated as kernel-legal have a VHDL implementation.

131



ASIC
Area/Performance

FPGA
Area/Performance

Design
Compiler

@
4]
<]

|_
x

£
=

HASTE Kernel
Component + VHDL
VHDL

Fabric
Parameters

RCF VHDL
Models

Kemel
Mapping

Design
Compiler

Fabric
Area/Performance 4

HASTE Kernel
Area/Performance

- Spreadsheet

Figure 7.14: Hardware Implementation Tool Flow

132



All of these components are parameterized by input and output data widths, and by an imme-
diate value parameter for those instructions needing them. The data widths for each input and
output were determined by examining the range of data observed during profiling. Thus the
ASIC implementation (and the FPGA implementation) can potentially be much more efficient
than the HASTE implementation, since all of the operations in the HASTE implementation are
fixed at 32 bits in width.

Figure 7.15 shows a schematic of the structural VHDL for the example used in this chapter.
It uses 6 different components, corresponding to the five different operations in the kernel, not
including the send and receive operations, and a pass component. The pass component is simply
a pipeline register. For pipelined implementations, the dag2vhdl tool must make the design level
by inserting pass operations, just as is done for queue ISA applications. This is necessary to
ensure that all data passes through the same number of pipeline registers and thus all data in
the pipeline is synchronized. In pass register fabrics, this insertion of registers is done inherently
by the use of the pass registers themselves, but it must be done explicitly here. In addition,
registers must be inserted for those receive operations that are not on the first level. In a
HASTE fabric, this is handled by the structure of the memory interface for send and receive
instructions. For the ASIC and FPGA implementations an external MAU is assumed, so it is not
necessary to implement send and receive components. The inputs to the kernel are pipelined,
however, to ensure that they are synchronized. The outputs of multiple output kernels are not
similarly pipelined. Both the decision to pipeline the inputs and not pipeline the outputs are
somewhat arbitrary and were done primarily to simplify testbench construction. The impact of
these decisions on area and performance are negligible; the addition of few registers to a fully
pipelined design is not a significant change.

For the ASIC implementation, the kernel VHDL and the components libraries were all synthe-
sized using Synopsys Design Compiler, with DC-Ultra optimization enabled. The synthesis tool
targeted a proprietary commercial standard cell library for a production 90 nanometer process.
Given that the designs are relatively small and simple by contemporary standards, placement
and routing was not performed, as the estimated area and timing from the synthesis tool were
accurate enough for purposes of this research.

For the FPGA implementation, the Xilinx XC3S5200-5FT256 FPGA was used as a target

133



Vel

ordurexy o[dwig Jo [OPOIA [eINIONIYG G/ 9In31g

var_recvbu 2(7:0

clk

var_recvbu 1(7:0)

inA<0:0>

inB<7:0>

inC<8:0>

clk

OUtA<T:0>

sel

sendh 0(7:0

[ var _recvbu_0(7:0)

iNA<7:0> OUtA<7:0> INA<7:0> OUtA<7:0> inA<7:0> OutA<0:0>
ok pass ck paSS inB<8:0>

olk sltu
iNA<T:0>  outA<7:0> inA<T:0>  outA<8:0> iNAST:0>  outA<7:0>
«  Pass o« addiu

a« addu

inA<7:0> OUtA<7:0> inA<8:0> OutA<8:0>
ok srli \— @«  pass




device (reasons for this are covered in Chapter 11). The Xilinx ISE Alliance design tools were
used, in particular the Xilinx XST synthesis tool. XST was used to synthesize the application
kernel design and the Xilinx supplied tools were used to place and route the design for the target

device and produce information on area and performance.

7.3.2 HASTE Hardware Implementation

Determining the characteristics of HASTE hardware implementations is straightforward, given
the synthesis results for the fabric that will described in Chapterl0 and the mapping results for
kernels obtained from the application mapping sub-flow. For each mapping, a spread sheet model
containing data gathered from the synthesis of various RCF tile models was used to determine
the tile needed, based on the fabric parameters used in the mapping. Next the fabric size was
computed from the width and depth required from the mapping; the number of tiles is simply
the product of the width and depth, since a rectangular fabric is requires. From the synthesis
results the tile area is known and thus the total fabric area is the product of the tile area and the
number of tiles. The fabric performance is determined by the tile performance, since the entire
fabric is pipelined and all interconnect is local to a small region of the fabric. This process will

be covered in more detail in Chapter 11.

7.4 Summary

The overall tool flow and three different sub-flows were discussed in this chapter. Each tool sub-
flow contained some existing tools and some tools that were designed specifically for this project.
Some of the existing tools had to be modified for use with HASTE, some quite substantially. The
first sub-flow, the application mapping sub-flow, permits mapping from C code to executables for
the various HASTE ISAs. The second sub-flow, the simulation and validation sub-flow, allows
for the simulation of applications at different phases of the application mapping process, and the
validation of the results produced. This sub-flow allows for extensive testing of the tool flows and
different application implementations. The final sub-flow is the hardware implementation sub-
flow. This allows for implementing the applications kernels as FPGA designs or as ASICs and

comparison of the physical characteristics of these implementations with various HASTE fabrics.

135



Use of the various tool flows will allow for verification that HASTE and the HASTE tools work
correctly, comparison of the different ISAs and different fabric parameters, and comparison of

HASTE to competing technologies.

136



Chapter 8

Comparison of HASTE ISAs

As has been shown, there are three basic ISA types that can be used with HASTE architectures.
This chapter will examine how effective and efficient these different ISAs are at representing
applications. A set of common benchmark kernels will be implemented for a range of different
fabric types and the results compared in terms of how efficient the ISA is in representing the
spatial implementation of the kernel and what penalties, if any, are incurred for the sequential

implementation by the use of each ISA.

8.1 ISA Metrics

There are four metrics that will be used to evaluate the different ISAs. The first is code length,
the total number of sequential instructions in the executable. Since none of the HASTE ISAs
have control flow in the kernels, the number of instructions executed is always the same for
every iteration of the kernel, unlike the original assembly code which may have differing numbers
of executed instructions depending on control flow. Code length is important since it controls
the time required to execute the kernel on the sequential processor and also the time required to
convert the application from the sequential form into a configuration for the RCF. The number of
instructions for each kernel is initially the same, but as was shown in Chapter 4, the different ISAs
usually require the addition of new instructions, not in the original kernel, that will increase the
number of instructions. These added instructions include the MOVE operation for the register
and relative-register ISAs and the PASS and SWAP operations for the queue ISA. The code

length is the number of instructions in the original GHAL kernels plus the number of added

137



instructions of all types.

The second metric is the code size, which refers to the number of bytes needed to represent
the application. This depends on two factors; the size of each instruction and the number of
instructions (code length). Since the same basic instructions are used, the instruction size is
mostly dependent on the bits needed to encode operand sources and result destinations.

The third metric, hardware utilization, measures the percentage of the fabric doing actual
computation. The width of the fabric times the number of stripes determines the total number
of tiles needed for the application. Only those tiles holding operations that are part of the
original kernel are considered to be doing useful work, so the hardware utilization is defined as
the number of instructions in the original kernel divided by the number of tiles needed. The
physical characteristics of the hardware required will be discussed in detail in Chapter 11; this
chapter will only consider the number of tiles required.

The fourth metric is the number of pipeline stages needed for the application, which deter-
mines the latency of the fabric. It is dependent on how close to the optimal latency the ISA
characteristics allow applications to be mapped. The remainder of this section will explore each

of these metrics in detail.

8.1.1 Code Length

Code length is affected by several factors. The first is of course the length of the original GHAL
code. As was shown by example in the previous chapter, the GHAL code may be shorter or longer
than the original assembly code. For instance, if the original code had many address calculations
that are handled automatically by the stream accessors in HASTE, then the resulting GHAL code
will be shorter. If the original code had significant control flow, then the GHAL code may be
longer, since all of the branching is replaced by predicate calculations and select statements. All
ISAs start with the same GHAL code, however, so when comparing HASTE ISAs, the length of
the GHAL version of the kernel is not a factor that effects the comparison. Code length is affected
by the instructions needed to control the routing of data and the placement of instructions, and
the number and types of these instructions varies from ISA to ISA.

The Queue ISA generally requires many more additional instructions to implement placing

and especially routing than either of the other ISAs. First, the Queue ISA instructions have

138



limited fanout in DAG form; each instructions can place at most two copies of its result on
the queue, meaning that if that result is needed by more than two other instructions, PASS2
instructions are needed to duplicate the results. Second, additional PASS and SWAP operators
are usually needed to make the DAG level-planar. Finally, many NOOP instructions may be
needed to properly space the instructions in the fabric to meet the interconnect constraints.
Unlike the Queue ISA, register ISAs (RISA and RRISA) do not have any fanout limitations,
since a result can be read as many times as needed until it is killed (RISA) or overwritten
(RRISA). Furthermore, they do not have to have level-planar DAGs, so PASS and SWAP opera-
tors are not needed. The only additional instructions that may be needed are MOVE operators,
for those cases when a result is needed in a column that is not within the read connection width
of the result value’s location, and rarely some NOOPs are needed to locate other operators in
the fabric. This never occurs for a completely connected fabric and occurs more frequently as
the connection width is reduced. The only difference between RISA and RRISA that affects code
length is the fact that in general, fewer MOVE instructions are needed for RRISA implementa-
tions on fabrics with limited read interconnect, since RRISA can displace the column location
of results on writes to place the values closer to where they will be consumed, whereas RISA

implementations always write results to the same column that they are produced in.

8.1.2 Code Size

For code size, it is assumed that all instructions must have widths that are multiples of one byte.
QISA has variable instruction width, depending on the instruction type, while RISA and RRISA
have fixed instructions widths for a given fabric target, but may have different instructions widths
for versions targeted for different fabrics. Fetching instructions of variable width, or of widths
different than that of the memory width, present a few problems not seen with fixed instructions
widths, but solutions to these problems have been found and successfully implemented in various
CISC architectures such as the Intel x86 CPUs [41]. Note that the instruction formats for each
ISA were implemented by mapping the fields onto the 64-bit instruction format used in the
SimpleScalar simulator. This is an implementation detail and doesn’t affect the code sizes as
they would be found in an actual HASTE implementation. The total code size depends on

both the size of each instruction, which depends on the instruction formats, and the number

139



of instructions, which is the same as the code length discussed above. Note that the J-type
instruction format is not actually a factor in these ISA comparisons, since jumps are not kernel

legal and only kernel code is compared in these calculations.

8.1.3 Hardware Utilization

Hardware utilization is a more abstract metric than the ones discussed previously, since it is not an
inherent property of a particular executable, at least for the register ISAs. Hardware utilization
requires that an application be mapped to a specific fabric, and the results are dependent on
not only the executable, but the properties of the fabric and the mapping algorithm as well.
However, using a reasonably efficient mapping procedure and mapping to all fabrics that are
reasonable for a given kernel should provide a fair comparison. Higher hardware utilization is
beneficial, because then less hardware is needed to implement a given kernel; equivalently, it
means that for a fixed hardware size, larger kernels can be implemented. The Queue ISA is at
a large disadvantage in terms of hardware utilization because operations cannot move between
levels, at least not without adding additional operations. Thus a queue kernel with one wide level
will have a very low hardware utilization. Register and relative register ISAs allow operations
to be moved from level to level, so they can be mapped to fabrics narrower than their widest
level and thus get better hardware efficiency. Figure 8.1(a) shows a simple queue DAG with 10
operations. Since one level has a width of four, it must be mapped to a four-wide fabric. The
depth is fixed as well, at 5 levels, so a 4 x 5 five fabric must be used, with only ten tiles occupied,
for a hardware utilization of 50%. Figure 8.1(b) shows the same kernel as a relative register kernel
mapped to a fabric with the same dimensions. Since the queue version has the same number of
operations, the hardware utilization is the same. However, with a relative register ISA as shown
in this example, as well as a register ISA| it is possible to map to fabrics of different widths. In
Figure 8.1(c), the kernel is mapped to a two-wide fabric. A six-deep fabric is needed, but this is
offset by the fact that 10 tiles out of 12 are occupied, for a hardware utilization of 83%, much

better than the queue ISA version.

140



|

o

(-] I I . ’

[ |
! . w . z
2 2 | noer ] 3
3 - - 3 - 4 XOR SuUB
. Il . : . : .
(a) Queue ISA Kernel (b) Register ISA (c) Register ISA
Mapped to 4-wide Mapped to 2-
Fabric wide Fabric

Figure 8.1: Hardware Utilization

8.1.4 Hardware Latency

As with hardware utilization, hardware latency is affected by the mapping process for RISA
and RRISA, and is fixed by the kernel for the queue ISA. For all ISAs, the minimum latency is
determined by the kernel; there must be at least as many stripes as there are levels in the DAG.
Since the applications are pipelined by the fact that there is at least one register in each tile in
which results are stored, there must be at least as many pipeline stages (or equivalently, stripes)
as there are operations in the longest path from any input to any output. This minimum latency
may not be the best from a practical standpoint, however, as the example in Figure 8.1 shows.
A minimum latency mapping may have a very low hardware utilization. However, mapping to
narrower widths not only increases latency, which may be a consideration in some cases, but may
also increase the storage requirements in each stripe, requiring larger register files or perhaps

more MOVE operations to locate values in open registers.

8.2 ISA-Specific Mapping Procedures

The application mapping process was described in detail in Chapter 7, with the exception of the
mapping of DAGs to specific fabrics and ISAs. Because that mapping process is different for the

different ISAs, and because those differences are pertinent to any comparison of the ISAs, the

141



(a) Original Graph (b) Level Graph

E PASS Node
PASS2 Node

SWAP Node . (d) Compressed
@ () Level-planar Graph Level-planar Graph

Figure 8.2: Examples showing the level and planar properties of graphs

details of that portion of the mapping process were postponed until this section. The mapping
process and its effect on the ISA metrics previously discussed will be covered first for the Queue
ISA and then for the Register and Relative Register ISAs. Since the process is similar for RISA
and RRISA, they will be covered in a single section; differences between the two ISAs will be

highlighted where necessary.

8.2.1 Queue ISA

The Queue ISA mapping procedure has three steps; in the first step a level, planar, and com-
pressed DAG is created from the original kernel DAG, in the second step operations are assigned
to specific locations in the fabric, and in the final step the ISA-specific assembly language is
written out. AppMap is used to perform all three steps. The width, depth, and read connec-
tivity of the fabric can be given to AppMap on the command line, or AppMap can determine
the smallest size fabric and read connectivity that it can map a given kernel to. If the fabric
size is too small or the read connectivity too limited, AppMap may not be able to find a valid
mapping and another mapping will have to be attempted with a larger fabric and/or greater read

connectivity.

142



8.2.1.1 Levelization, Planarization, and Compression

The first step in mapping a DAG to the Queue ISA is to make the DAG level-planar; this
is a prerequisite for running on a queue SPU, as was discussed in Chapter 4. The AppMap
program performs this process as part of the application mapping sub-flow discussed in the
previous chapter. The conversion of any DAG to a level-planar DAG is broken into three phases:
a levelization phase, a planarization phase, and finally a compression phase. This conversion
process will be illustrated using the example shown in Figure 8.2. In order to make the graph
level-planar, three operators are needed: the PASS and PASS2 operators for levelization, and
the SWAP operator for planarization.

Levelization is straightforward. A topological sort of the original DAG is performed, as shown
in Figure 8.2(a), so that all nodes that have a maximum path of length n from the source node or
nodes in the graph that are on the nth level. In the figure, the numbered circles are graph nodes
that represent GHAL operations. In a topologically sorted graph, there can be arcs that span one
or more levels. For example, there are arcs from operation 0, 3, and 4 span more than one level.
The PASS and PASS2 operations, shown as squares in Figure 8.2, are used to make the graph
level by breaking those long arcs. Figure 8.2(b) shows the original graph after it has been made
level by the addition of three PASS operations and one PASS2 operation. Note that operation 0
has two out edges. In the original graph this would be supported by having the operation be one
with a '2’ suflix, that places two copies of its result on the queue. If this was not changed, two
PASS operations would have to be added on the second level of the graph, one for each copy of
the result. Instead, AppMap changes operation 0 to a version that only places one copy on the
queue and uses a single PASS2 to duplicate the result. During the levelization phase, AppMap
will always make sure that result duplication is done as low in the DAG as possible in order to
minimize the number of nodes added.

This level graph in Figure 8.2(b) is not planar; there are two places where edges cross. The
next step in the process is thus planarization. AppMap first tries to find an ordering of nodes
on each level that produces a graph that is planar, using the algorithm described in [42]. If such
an ordering can not be found, AppMap uses some simple heuristics to find an ordering of the
nodes on each level that minimizes the number of crossings. Then each crossings is replaced

by a SWAP operator, shown as a diamond with an S in the figure. The SWAP operator can

143



make the graph planar, but in doing so it destroys the level property. Therefore, the process of
creating a level-planar graph requires another levelization phase after SWAP operations are used
to create planarity. Figure 8.2(c) shows a level-planar graph generated from Figure 8.2(b) using
two SWAP operations, four PASS operations, and a single PASS2 operation. After planarizing
the level graph, the final phase is compression. The levelization and planarization processes can
result in the addition of unnecessary PASS nodes. AppMap fixes this problem in the compression
phase by looking for cut sets of the graph composed entirely of PASS nodes and removing any
such sets it finds. The removal of these nodes results in a compressed level-planar graph shown

in Figure 8.2(d).

8.2.1.2 Finding Node Locations

The queue ISA does not allow much flexibility in the mapping process. Once a level planar DAG
has been obtained, AppMap can make few changes to the graph. The level planar DAG form
fixes the width of the fabric; it must be as wide as the widest level in the DAG. Operations on
one level can not be moved to another level to reduce the width of the level, since this movement
will require the addition of at least one new PASS operation on that level, keeping the width
of the level the same as before in the best case, and wider than before in many cases. This
is demonstrated in Figures 8.3(a,b,c). Figure 8.3(a) shows a section of a queue DAG with one
wide level; in this figure, P indicates a PASS operation and P2 indicates a PASS2 operation. One
might think that moving the XOR operation up or down could reduce the width of the wide level,
but this is not the case. Figure 8.3(b) shows the result obtained by moving the XOR, operation
up one level and Figure 8.3(c) shows the result of moving the XOR operation down one level.
In all cases, the width of the level for which improvement was attempted stays the same or gets
worse, and other levels may be made wider as well. The depth of the fabric is also determined
by the DAG structure for the queue ISA; i.e., there need to be as many fabric rows as there are
levels. This depth can not be varied, since no operations will be moved from one level to another,
as it has just been shown there is no benefit to doing so. If the size of the level-planar DAG is
larger than that of the fabric specified for AppMap, it will return an error message stating it was
unable to map the kernel to the fabric requested. If no fabric size was specified, AppMap will

assume a fabric of exactly the same size as the level-planar DAG.

144



(a) Original DFG (b) After XOR moved (c) After XOR moved down
up one level one level

Figure 8.3: Effect of level changes on Queue DAGs

Given a level planar DAG, the only other mapping procedure that needs to be undertaken is
to determine the column location for each operation. The level for each node can not be changed,
and the order of the nodes on each level cannot be changed, but their location in specific columns
is somewhat flexible. Given a certain read connectivity, it is necessary to position the nodes on
each level such that the maximum column offset for each read is less than or equal to the read
connectivity value. Note that write connectivity is not a consideration, since ALUs in static
register fabrics always write to the static register in the same column as the ALU. In some cases
it may not be possible to map a DAG to fabric with limited connectivity. Figure 8.4(a) shows a
simple DAG. In Figure 8.4(b), a mapping is attempted for a read connectivity of 3. The darker
lines going into the ADD operation show the reads possible for RC = 3, and the lighter arrows
show the reads required by the application. It is clear that mapping is not possible for this
example, regardless of the position of the ADD operation, since it is not possible to cover all
of the required read arrows with the possible reads. A read connectivity of at least 5 would be
needed to map this kernel (without reordering the nodes). A minimal required connectivity can
be found for each kernel can be determined using a simple greedy algorithm, which moves the
operations on each level as close to the center of the DAG as possible and then finds the largest

offset. This does not provide a provable minimum read connectivity, but it has determined

145



the minimum read connectivity for all examples found to date. If this minimal required read
connectivity is greater than the desired read connectivity supplied to AppMap, AppMap will
produce an error message stating that it was unable to map the kernel to the requested fabric.
If no read connectivity was supplied, AppMap will assume a fabric with read connectivity equal
to the minimal connectivity found.

Achieving a mapping for some kernels can be done without increasing the connectivity, by
adding NOOP operations in order to place nodes in columns that allow all the required reads.
AppMap places the nodes on each level, using another simple greedy algorithm to insert as
few NOOPs as possible to locate nodes such that all reads are possible with the given read
connectivity. Figure 8.5(a) shows a DAG mapped to a fabric with RC = 3 and Figure 8.5(b)
shows the same DAG mapped to a fabric with RC = 5. The first mapping requires several
NOOP operations, while the second does not. Thus the code for the implementation for the
fabric with RC = 3 will be longer than that for the fabric with RC = 5. However, the wider
read connectivity requires a more complicated fabric interconnect, and thus larger and slower
hardware. These costs will be examined in Chapter 11, however; in this chapter only the ISA
efficiency metrics discussed in Section 8.1 are being considered, so one would say that the mapping
for the fabric with RC = 5 is the best of the two. Mapping to a fabric with a higher value of RC

would provide no benefit for this kernel.

8.2.1.3 Writing Out Assembly Code

In the final step, the mapped DAG is scanned by AppMap to find the kernel assembly code
sequence. This is done by simply traversing the graph level by level and recording the operations
found for each node in order. Assuming operations are issued into the fabric in order from the left,
as shown in Chapter 6, the levels must be scanned from right to left in order to produce a valid
instruction sequence. As long as the graph is level-planar, and the required read connectivity is
less than or equal to that of the fabric, an instruction sequence produced in this manner will be
transformable by the CTE into a valid fabric configuration matching the level-planar DAG. An
example showing a corresponding assembly language sequence and DAG was shown in Figures

6.2(b) and 6.3(b) and will not be repeated here.

146



(o] [on]

[ ] [[senor_|[senoR_ ]

(a) Orginal DAG

sl sl N » F] 5 v ] B B .
el W il W Nl W el W

2 [(Passz | [(sus2 | [Cshaz | - 2 [Crass2 | [Csos2 | [Csman | - 2 [Crass2 | [Csus2 | [Csean | - 2 [(Pass2 | [Csus2 | [Cshaz | -

© =] N Neal N ;

(b) Mapping with RC=3; no legal position.

Figure 8.4: Effect of limited read connectivity

RECV2

o

=] Il - ] I

Y

[

1 NOOP PASS2 SUBI2 1 pass2_| [ susiz ] -
A\ | <|
| XORI | | ADDI | | SLLI | | PASS | rl
/ “// 2 ADDI SLLI PASS 2 | XORI ADDI | SLLI | PASS |
\

B s- ;
Y

SENDR 4 - - 4 SENDR

(a) Original DFG (b) Mapping with RC = 3 (c¢) Mapping with RC = 3

Figure 8.5: Use of NOOPs to Space Instructions

147



8.2.2 Register and Relative-Register ISAs

The mapping process for the register and relative register ISA are very similar and will thus be
discussed in one section. Mapping to the register ISAs is more complicated than mapping to
the queue ISA because there are more variables to be considered, and all of these variables are
inter-related in complicated ways. The primary reason for this is that there are fewer limitations
on the structure of DAGs for these ISAs. Unlike queue ISA DAGs, DAGs for register ISAs do
not need to be either level or planar. This fact has numerous repercussions. The first comes
from the ability to move nodes from one level to another without requiring the addition of new
nodes. This means that there are many more possible graph levellings to consider when mapping.
This movement of modes does have an effect on hardware implementation, in that moving nodes
from level to level can change the number of pass registers required. The second comes from the
ability to easily reorder nodes on any given level, since planarity does not need to be maintained.
So for any given DAG, one can consider many different rows in which to place each node, as
well as many locations for each node within each row. The mapping problem, in fact becomes
the general resource-constrained scheduling problem, which is known to be intractable [43]. In
addition to allowing many different mappings for a given kernel on a given fabric, there are many
different fabrics to which any given application can be mapped. In addition to variations in
width, depth, and read connectivity, pass register fabrics can vary in terms of their register file
size. Note that write connectivity is not a parameter that needs to be considered, because it is
either 1 for the asymmetric fabrics used with the registers ISA, or equal to the read connectivity
for the symmetric fabrics used with the relative register ISAs. The actual mapping process is is
fairly complicated. In brief, AppMap performs a greedy mapping to a minimally sized fabric. If

unsuccessful, it repeats the process until successful, or until a user specified value is exceeded.

8.2.2.1 Parameter Checking

Users can specify the fabric width, depth, read connectivity, and/or register file size as parameters
on the command line for AppMap, or it can map to a range of different fabrics. If a desired width
is given, AppMap will find a minimum latency(depth) for the given kernel and supplied width.
If a depth was also supplied, and it is less than the minimum depth found, AppMap will return

an error. Similarly, if a desired depth is given, AppMap will find a minimum width for the given

148



kernel and supplied depth. If a width was also supplied, and it is less than the minimum width
found, AppMap will again return an error. If both width and depth were supplied, AppMap
performs both checks. If neither is supplied, but a desired read connectivity is, AppMap sets the
width to the largest value that will guarantee full read connectivity. For RC = 3, that is a width
of two, for RC = 5 that is a width of three and so on. The depth is then set to the minimum
depth for that width. If neither width or depth is given, but a desired register size is, then the
width is set to maximum needed width for that DAG. This is found by finding the minimum
latency for the kernel and finding the width of the widest level for that latency. If both a desired
read connectivity and register file size are given, then the width and depth are set as if only the
read connectivity had been given. If no parameters are given, then the minimum latency and

corresponding width are used.

8.2.2.2 Finding Minimum Latency

Finding the minimum latency for a kernel, as required above, is very simple. It is only necessary
to assign each operation node to a level such that all of its parents are on the immediately
previous level. First, nodes with no parents, or source nodes, are assigned to the first level,
level 0. Next all of the child nodes of the source nodes that have no parents on other levels are
assigned to the next level, level 1. This process, ASAP Scheduling [43], is repeated until all nodes
have been assigned to a level. The name ASAP Scheduling is derived from the fact that each
operations is scheduled as soon as possible. The highest-numbered level (plus one, since level
numbers start at 0) gives the minimum latency. For example, the DAG in Figure 8.5(a) happens
to be ASAP-scheduled. If the RECV node is on level 0, than the SEND node is on level 4 and 4

is the highest level number, so the latency is 4 + 1 = 5 clock cycles.

8.2.2.3 Finding Lower Bounds on Width for Given Latency

A classic method from multiprocessor scheduling is useful here. Hu’s algorithm [44] applies to
scheduling identical processors with unit delay and this method, which will not be reviewed
here, can find the minimum latency for a task graph given a fixed number of processors, or the
minimum number of processors to execute a task graph in a given latency. For this application,

the number of processors is equivalent to the width of the fabric and the latency is the same as

149



the depth of the fabric. Hu’s methods give exact solutions for task graphs that are trees, but the
DAGs in this work are not necessarily trees., However, the solutions do provide lower bounds on
minimum latency and/or resource requirements. (See [43] for proof). So given a latency from the
ASAP schedule or elsewhere, it is possible to find a lower bound on the fabric width using Hu’s
methods. This gives some idea of the fabric width necessary to achieve this latency; certainly
is is not possible achieve the minimum latency with a narrower fabric. Similarly, given a fabric
width, a lower bound on latency can be found. Although the DAGs are not perfect trees, and

thus the computed minimums may not be exactly the lower bound, they are usually very close.

8.2.2.4 Check Connectivity

At this point a width and depth for the fabric has been found. All of the nodes in the DAG
are next assigned to levels to produce a mapping that fits the desired width and depth. This
is done in a greedy manner that simply places nodes on a level until it is full or until there are
no more nodes to place on that level. Next the maximum read and write offsets are found. If
the largest offset is larger than 3, or larger than the requested connectivity, than a heuristic
method is used to rearrange the nodes on each level involved in the large read and/or write. This
usually succeeds, but if not AppMap then tries moving first the source, and then the destination
of the offending read and/or write up or down one level. If this fails and a read connectivity
was specified then AppMap will return an error. If a read connectivity was not specified, than
AppMap will relax the offset check to 5, and repeat the process, relaxing the connectivity as
many times as needed until a valid mapping is found. While doing mappings during this phase,

AppMap assumes unlimited register file size.

8.2.2.5 Register File Size Checking

At this point, a kernel mapping that meets the desired width, depth, and read connectivity has
been found. The final parameter to be checked is register file size. AppMap first checks the
mapping to see what the highest register usage is anywhere in the mapping. If a register size
was specified and the highest register usage is no larger, AppMap does nothing. If the highest
register usage is larger than that specified, or if no register size was specified, AppMap will try

to optimize the register usage. AppMap first totals all register storage in each row and finds the

150



highest total of all rows. This value is then divided by the fabric width, with the result rounded
up to the next integer value to determine the minimum possible register size. If this value is
greater than the specified register file size, AppMap will repeat the mapping process with a wider
fabric, until it succeeds in mapping or until a specified fabric width is reached, at which point
it quits with an error. If the minimum register size is less than the specified value, or if none
was specified, AppMap will still try to reorder reads and/or writes (for RRISA only) so that no
register size is larger than the minimum, or larger than the specified value if one was given. If it
is unable to meet a register size specification, it will repeat the process with a wider fabric, until

it succeeds or until it exceeds the specified width.

8.2.2.6 Writing Out Assembly Code

The process of writing out assembly code is very similar to that described for the queue ISA.
The main difference is that AppMap must also assign register numbers and include them in the
assembly language. This is very different for RISA and RRISA. Register assignment for RRISA
is quite straightforward, in that the register assignments are all relative, and thus the same for
both the RCF fabric and the SPU. AppMap simply scans the mapped kernel, row by row, records
the relative location of all register reads and writes, and then writes out the instructions and
register locations in order. Any valid RRISA mapping written out correctly in this manner can be
converted by a RRISA CTE to create a configuration for a compatible RCF. An example showing
a corresponding RRISA assembly language sequence and DAG was shown in Figures 6.2(d) and
6.3(c). Register assignment for RISA is more complicated because the register assignments in the
fabric have nothing to do with register assignments in the SPU. AppMap begins by performing
conventional register allocation using graph coloring [45]. If it cannot perform a valid allocation
of registers it will return an error. With the addition of the extra registers in the SPU model, this
has not occurred for any of the benchmarks tested. AppMap then traverses the mapped kernel
to find the last usage of each assigned register value. Finally it scans the mapped kernel, and
writes out the instructions and allocated register locations in order. As with RRISA, any valid
RISA mapping written out correctly in this manner can be converted by a RISA CTE to create
a configuration for a compatible RCF. An example showing a corresponding RISA assembly

language sequence and DAG was shown in Figures 6.2(c) and 6.3(c).

151



8.3 Mapping Experiments and Results

8.3.1 Queue ISA

A mapping was performed for each of 12 benchmark kernel DAGs for each read connectivity
equal to or above the minimum connectivity (more information about these benchmarks can be
found in Chapter 9). For each read connectivity a mapping was produced and statistics gathered
by the AppMap tool. Fabric sizes were not specified; instead the minimal sizes found by AppMap
were used. The results for the Queue ISA mappings produced from AppMap are shown in Table
8.1. The table shows latency and hardware utilization, as well the types of nodes added at each
stage of the mapping process. Table 8.2 summarizes all of the level-planar mappings, showing
all four metrics. Some benchmarks, such as fir8cpx, show a large penalty to code size and length
if mapped to a fabric with low connectivity, while others, such as idea, can be mapped to any
fabric, regardless of the connectivity, with no change in code size or length. In these cases only
the numbers for the level-planar case are shown, since there will be no change regardless of
the connectivity of the fabric they are mapped to. Changing the connectivity does not effect
the latency, because as has been shown, more limited connectivity requires only the addition
of NOOPs. Most of the queue implementations show a significant reduction in the hardware
utilization due to process of making the application level and planar, and the additional PASS,
SWAP, and NOOP operations add significantly to the code size. Four of the benchmarks, img-
hp, img-erode, img-thresh, and img-out were inherently planar or level-planar and thus did not
require the addition of SWAP nodes and few if any PASS nodes. These were all small benchmarks,

however; in general larger kernels need many additional nodes to be made level-planar.

152



Table 8.1: Queue ISA Mappings

Benchmark Version Op & Pass Swap | NOOP | Total | Depth HW
IO Nodes | Nodes | Nodes | Nodes Util %
Nodes
12alaw Original 49 0 0 0 49 23 71%
12alaw Level 49 87 0 0 136 23 30%
12alaw Lvl.-Planar 49 104 6 0 159 34 16%
12alaw RC3 49 104 6 42 201 34 16%
detl Original 180 0 0 0 180 20 90%
detl Level 180 163 0 0 343 20 21%
detl Lvl.-Planar 180 356 94 0 630 39 13%
dctl RC3 180 356 94 182 812 39 13%
dctl RC5 180 356 94 78 708 39 13%
dctl RC7 180 356 94 38 668 39 13%
dctl RC9 180 356 94 1 631 39 13%
fir8cpx Original 270 0 0 0 270 26 87%
fir8cpx Level 270 284 0 0 554 26 2%
fir8cpx Lvl.-Planar 270 2141 319 0 2730 118 5%
fir8cpx RC3 270 2141 319 591 3321 118 5%
fir8cpx RC5 270 2141 319 280 3010 118 5%
fir8cpx RCTY 270 2141 319 121 2851 118 5%
fir8cpx RC9 270 2141 319 47 2777 118 5%
fir8cpx RC11 270 2141 319 9 2739 118 5%
rgb2ycc Original 81 0 0 0 81 16 42%
rgb2ycc Level 81 52 0 0 133 16 36%
rgb2ycc Lvl.-Planar 81 211 43 0 335 27 13%
rgb2ycc RC3 81 211 43 82 417 27 13%
rgb2ycc RC5 81 211 43 36 371 27 13%

153




Benchmark Version Op & Pass Swap | NOOP | Total | Depth HW
IO Nodes | Nodes | Nodes | Nodes Util %
Nodes
rgh2ycc RC7 81 211 43 12 347 27 13%
rgh2ycc RC9 81 211 43 2 337 27 13%
dec_cor Original 33 0 0 0 33 14 29%
dec_cor Level 33 12 0 0 45 14 29%
dec_cor Lvl.-Planar 33 12 0 0 45 16 26%
dec_cor RC3 33 12 0 20 65 16 26%
dec_cor RC5 33 12 0 4 49 16 26%
dec_cor RC7 33 12 0 1 46 16 26%
img_prew Original 30 0 0 0 30 11 37%
img_prew Level 30 11 0 0 41 11 37%
img_prew | Lvl-Planar 30 31 11 0 72 17 25%
img_prew RC3 30 31 11 7 79 17 25%
img_prew RC5 30 31 11 3 75 17 25%
img_med Original 106 0 0 0 106 29 73%
img_med Level 106 189 0 0 295 29 14%
img_med Lvl.-Planar | 106 719 145 0 970 64 %
img_med RC3 106 719 145 102 1072 64 ™%
img_med RC5 106 719 145 53 1023 64 %
img_med RC7 106 719 145 12 982 64 ™%
img_med RC9 106 719 145 2 972 64 ™%
img_hp Original 33 0 0 0 33 20 55%
img_hp Level 33 7 0 0 40 21 52%
img_hp Lvl.-Planar 33 7 0 0 40 21 52%
img_thresh | Original 31 0 0 0 31 17 91%
img_thresh Level 31 0 0 0 31 17 91%
img_thresh | Lvl.-Planar 31 0 0 0 31 17 91%

154




Benchmark Version Op & Pass Swap | NOOP | Total | Depth HW
IO Nodes | Nodes | Nodes | Nodes Util %
Nodes

img_erode Original 16 0 0 0 16 9 89%
img_erode Level 16 0 0 0 16 9 89%
img_erode | Lvl.-Planar 16 0 0 0 16 9 89%
img_out Original 17 0 0 0 17 7 61%
img_out Level 17 0 0 0 17 7 61%
img_out Lvl.-Planar 17 0 0 0 17 7 61%
img_out RC3 17 0 0 1 18 8 53%
idea Original 530 0 0 0 530 241 73%
idea Level 530 205 0 0 735 241 73%
idea Lvl.-Planar 530 561 74 0 1165 498 21%

8.3.2 Register ISA and Relative Register ISA

Since there are many different fabrics that any RISA or RRISA kernel can be mapped to, decid-
ing what fabric to map to for comparison to QISA is difficult. In order to solve this problem a
methodology was developed to explore a wide range of register ISA mappings in order to system-
atically find mappings that give near optimal results. This methodology is implemented using

the AppMap tool and a set of Perl scripts. This methodology is outlined below:
1. Find minimum latency, l,,in, of DAG from ASAP schedule.
2. For that latency, find lower bound on width wiaz = Wiy (Lnin), using Hu’s algorithm.
3. Increment latency and compute new lower bound on width as above.
4. Repeat step 3 until latency, lo, is found such that wg,(l2) = 2.

5. There is now a range of widths from w,q., to 2 that can be mapped to, and an associated

lower bound on latency for each.

155



Table 8.2: Queue ISA Mapping Results

Benchmark RC Width Code Code HW Latency|
Length | Size | Util %
(Bytes)

12alaw RC3 9 201 265 16% 34
12alaw RC5+ 9 159 223 16% 34
dctl RC3 37 812 900 13% 39
dctl RC5 37 708 798 13% 39
detl RC7 37 668 756 13% 39
dctl RC9 37 631 719 13% 39
detl RC11+ 37 630 718 13% 39
fir8cpx RC3 20 3321 3561 5% 118
fir8cpx RC5 20 3010 3250 5% 118
fir8cpx RC7 20 2851 3091 5% 118
fir8cpx RC9 20 2777 3017 5% 118
fir8cpx RC11 20 2739 2979 5% 118
fir8epx RC13+ 20 2730 2970 5% 118
rgb2ycc RC3 16 417 501 13% 27
rgb2ycc RC5 16 371 455 13% 27
rgb2ycc RC7 16 347 431 13% 27
rgb2ycc RC9 16 337 421 13% 27
rgb2ycc RC11+ 16 335 419 13% 27
dec_cor RC3 8 45 67 26% 16
dec_cor RC5 8 46 68 26% 16
dec_cor RC7 8 49 71 26% 16
dec_cor RCO+ 8 65 87 26% 16
img_prew RC3 7 72 98 25% 17
img_prew RC5 7 75 101 25% 17
img_prew RC7+ 7 79 105 25% 17
img_med RC3 24 1072 1186 % 64
img_med RC5 24 1023 1137 7% 64
img_med RC7 24 982 1096 % 64
img_med RC9 24 972 1086 % 64
img_med RC11 24 970 1084 % 64

| imghp | RC3+ 3 40 | 66 52% 21 |

| img_thresh | RC3+ 2 31 | 52 91% 17 |

| img_erode | RC3+ 2 6 | 25 89% 9 ]
img_out RC3 4 17 35 53% 8
img_out RC5+ 4 18 35 53% 8

| idea [ RC3+ 5 1165 | 1678 21% 498 |

156



6. For each width, perform minimal latency and minimal storage mapping, as previously

described, to a completely connected fabric with unlimited storage.

7. For each width there can now be found a minimal required storage sr,,;, and an achieved
latency >= l,in - STmin can only be reduced at the expense of increasing the latency. A

minimum register file size Ryin = ceil(srmin/W) can now be computed.

8. Map to each width and every connectivity with register file size R,,;,. If any given mapping

fails, increment register file size until successful.

This methodology was used for all of the benchmarks that were used in the QISA mapping
experiments for RISA and RRISA. Since comparing the ISAs is the primary goal, only the data
that is directly comparable to the queue results in Table 8.2 are shown in Table 8.3 for RISA
and in Table 8.4 for RRISA.

8.4 ISA Performance

Composite results for each ISA type are shown in Table 8.5. For each connectivity value, the best
results for each ISA were chosen and the metrics were totaled for each ISA type. The results for
each metric are shown graphically in Figures 8.6, 8.7, 8.8, and 8.9. Each metric will be discussed

and the ISAs compared in the remainder of this chapter.

8.4.1 Code Length

In Figure 8.6 the effect of connectivity on the code length is shown for each ISA. The value shown
is the sum of the code length for each of the 12 kernels in the benchmarks set. First, it can be
seen that connectivity has little effect on the code length for register ISAs. There is somewhat
more of an effect for the queue ISA, as it has been shown that many NOOPs may have to be
added to allow for mapping to the fabrics with more limited connectivity. There is an additional
15% more instructions needed for QISA mappings to the least connected fabrics as compared to
the most connected fabrics. Perhaps most noticeable, however, is that QISA mappings create

code that is on average around four times as long as the register ISAs. This has a direct effect

157



Table 8.3: Register ISA Mapping Results

Benchmark RC Width Code Code HW Latency|
Length Size | Util %
(Bytes)

[ 12alaw | RC3+ 2 | 49 | 245 | 91% [ 27 |
dctl RC3 3 180 900 100% 60
dctl RC5 4 180 900 100% 45
dctl RC7 5 180 900 100% 36
dctl RC9 6 180 900 100% 30
detl RC11+ 7 180 900 95% 27

fir8cpx RC3 3 274 1370 95% 95
fir8cpx RC5 4 270 1350 96% 70
fir8cpx RC7 5 270 1350 95% 57
fir8cpx RC9 6 270 1350 94% 48
fir8cpx RC11 6 270 1350 94% 48
fir8cpx RC13+ 7 270 1350 89% 43
rgb2ycc RC3 2 81 405 99% 41
rgb2ycc RC5 3 81 405 96% 28
rgb2ycc RC7 4 81 405 92% 22
rgb2ycc RC9 5 81 405 85% 19
rgb2ycc RC11+ 6 81 405 79% 17
dec_cor RC3 2 33 165 61% 27
dec_cor RC5 3 22 165 48% 23
img_prew RC3 2 30 150 88% 17
img_prew RC5 3 30 150 71% 14
img_prew RC7+ 4 30 150 63% 12
img_med RC3 2 106 530 96% 55
img_med RC5 3 106 530 88% 40
img_med RC7 4 106 530 83% 33
img_med RC9 5 106 530 71% 30

[ imghp | RC3+ 2 | 33 | 165 | 79% | 21 |

[ img_thresh | RC3+ 2 | 31 | 155 | 91% | 17 |

[ img_erode | RC3+ 2 | 16 | 80 | 8% | 9 |

img_out RC3 2 17 85 85% 10
img_out RC5+ 3 17 85 1% 8
| idea | RC3+ 2 | 530 | 2650 | 100% | 265 |

158



Table 8.4: Relative Register ISA Mapping Results
Benchmark RC Width Code Code HW Latency|
Length Size | Util %
(Bytes)

[ 12alaw | RC3+ | 2 | 49 | 245 [ 91% [ 27 |
dcti RC3 3 180 900 100% 60
dcti RC5 6 180 900 100% 30
dcti RC7 7 180 900 95% 27
dctl RC9+ 9 180 900 91% 22

fir8cpx RC3 3 270 1350 100% 91
fir8cpx RC5 5 270 1350 95% 57
fir8cpx RC7 7 270 1350 90% 43
fir8cpx RC9+ 9 270 1350 86% 35
rgb2ycc RC3 3 81 405 96% 28
rgb2ycc RC5 5 81 405 85% 28
dec_ccor | RC3 | 3 | 33 132 [ 8% | 23
img_prew RC3 3 30 150 1% 14
img_prew RC5 5 30 150 63% 12
img_prew RC7+ 7 30 150 39% 11
img_med RC3 3 106 530 88% 55
img_med RC5 5 106 530 71% 30

[ imghp | RC3+ | 3 | 33 | 165 | 9% [ 21 |

[ img_thresh | RC3+ | 2 | 31 | 155 | 91% | 17 |

[ img_erode | RC3+ | 2 | 16 | 80 | 8% | 9 |

[ imgout | RC3 ] 3 [ 17 | 8 | 1% | 8 |

[ idea | RC3+ | 2 | 530 | 2650 | 100% | 265 |

159



Table 8.5: Composite Results for HASTE ISAs

| RC | ISA | Code Length | Code Size | HW Util% | Latency ]

3 | QISA 7209 8434 7.3 868
3 | RISA 1380 6900 95.4 644
3 | RRISA 1376 6847 93.8 618
5 | QISA 6662 7888 7.4 868
5 | RISA 1365 6880 93.8 567
5 | RRISA 1376 6847 90.1 527
7 | QISA 6405 7629 7.4 868
7 | RISA 1365 6880 92.5 530
7 | RRISA 1376 6847 87.0 509
9 | QISA 6290 7514 7.5 868
9 | RISA 1365 6880 90.6 509
9 | RRISA 1376 6847 85.8 496
11 | QISA 6247 7471 7.5 868
11 | RISA 1365 6880 89.6 504
11 | RRISA 1376 6847 85.8 496
13 | QISA 6238 7462 7.5 868
13 | RISA 1365 6880 88.7 499
13 | RRISA 1376 6847 85.8 496

on SPU performance and the amount of time taken for the CTE to produce a configuration for

the RCF.

8.4.2 Code Size

Figure 8.7 shows the effect of connectivity on code size. Although it has been shown that the
code length is much higher for QISA, QISA also has potentially much smaller instructions, as
small as 1 byte, as compared to the 4 to 6 byte instructions sizes for the register ISAs. Despite
that advantage, it is clear that the QISA code is larger, as well as longer, than the register ISA
code. The average instruction size for the Queue ISA is over 1.2 bytes per instruction and in
combination with the much higher code length results in larger overall code size. As was shown
for code length, the code size varies little for the register ISAs. Because the hardware utilization
is high for the register ISAs, there is little call for NOOPs to space nodes on each level and thus
the variation in code size and length is due to the addition of a very few MOVE instructions
found in the best mappings. The instruction size varied little for the range of values found in the

best register mappings; it was 5 bytes in all but one benchmark.

160



8000

7000

6000

5000

4000

Instructions

3000

2000

1000

9000

8000

7000

6000

5000

Bytes

4000

3000

2000

1000

—#—QISA
—A—RISA
—%—RRISA
3 5 7 9 11 13
RC
Figure 8.6: Code Length
—&—QISA
—4—RISA
—%—RRISA
3 5 7 9 1 13
RC

Figure 8.7: Code Size

161




120

100

80

—®—QISA
60 —4—RISA
—%—RRISA

Hardware Utilization %

40

20

RC

Figure 8.8: Hardware Utilization

8.4.3 Hardware Utilization

Hardware utilization is shown in Figure 8.8. As one would expect, connectivity has no effect on
the QISA hardware utilization, since connectivity doesn’t change the fabric size or the number
of useful instructions. Connectivity has a small effect on the register ISAs, with narrower con-
nectivity generally giving somewhat better hardware utilization. The fabric widths for the best
mappings for narrower connectivities tended to be narrower, so this effect on hardware utilization
is not unexpected. The best RRISA mappings had somewhat better hardware utilization than
the RISA mappings. The more flexible interconnect of the RRISA fabric makes this an expected

result.

8.4.4 Latency

Hardware latency is shown in Figure 8.9. As was the case for hardware utilization, connectivity
has no effect for this metric for the queue ISA. Connectivity does not effect the number of levels in
the queue DAG, and the latency is not changed during mapping for the QISA. Connectivity does
effect latency for the register ISAs, however. Since the best mappings for narrower connectivities

tended to result in narrower fabrics, this means that fabrics must be deeper for the narrower

162



1000

900

800

700
600 N

M o

500 * —4*—RISA
—%—RRISA

Latency

400

300

200

100

RC

Figure 8.9: Hardware Latency

connectivities, given an essentially fixed number of nodes and high degree of hardware utilization.
Therefore, there is clearly a trade off between hardware utilization and latency for register ISAs.
Increasing connectivity reduces the latency but also reduces the hardware utilization as seen in
Figure 8.8. Reducing connectivity has the opposite effect for both. Finally, one can see that the
relative register ISA gives slightly better results than the register ISA in terms of latency. Again,

this can be attributed to the more flexible interconnect of the relative register ISA.

8.5 Summary

The composite results for the three ISAs, as well as the individual benchmark results show clearly
that the queue ISA is substantially worse than either of the register ISAs for all of the metrics
examined. Coupled with the unconventional nature of the queue SPU and the necessity to convert
all code in an application to queue form, not just the kernels, this seems to cast doubt on the
queue ISA as a good choice for HASTE. However, the queue ISA requires simpler hardware for
the CTE and RCF and this may give it a performance advantage compared to the other ISAs.

The RRISA and RISA implementations are very close in all of the metrics, with a slight edge

163



going to RRISA due to the slightly better hardware utilization and latency results. The area
and performance required for kernels implemented on HASTE fabrics is investigated in Chapter

11 and should further define the differences between the ISAs.

164



Chapter 9

HASTE Kernel, Application, and
Architecture Functionality

An important goal of this project was to show that the HASTE concept was feasible and that
it could be used to implement useful application kernels. To this end, 12 benchmark kernels
were simulated and validated using the basic methodology outlined in Figure 7.10 and their
results verified, as will be discussed in this chapter. In addition, a complete test application was
implemented to show the utility of HASTE for a realistic application with multiple kernels that
would be difficult to implement with other hybrid architectures. This application is an automatic
target recognition (ATR) application that examines infrared images to find areas of interest that
may contain vehicles. This application requires the use of a variety of different image processing
techniques and the exact use of these depend on the characteristics of each individual image.
This chapter will show experimentally that HASTE kernel implementations produce identical
results when mapped to the three primary HASTE ISAs and when mapped to different HASTE
fabrics. While a true formal verification of HASTE implementations is likely not possible and is in
any case outside the scope of this thesis, extensive experimental results should provide sufficient
validation of the architecture. This section will refer to the validation of kernels as meaning
that different implementations of the kernel have been shown to produce the same identical and

correct results as all other implementations of the kernel.

165



9.1 Benchmark Kernels

A set of 12 kernels from various signal processing and image processing applications were used
as benchmarks. The kernels and some of their characteristics are listed in Table 9.1. Each kernel
was part of an application written in C. The C source code for all of the kernels, as well as GHAL

and DFG versions, are provided in Appendix C. The kernels are briefly described below:

12alaw: Converts linear PCM audio samples to compressed samples. From the G.721 bench-
mark in the MediaBench benchmark suite [46].

dctl: One dimensional discrete cosine transform. From the JPEG benchmark in Media-
Bench [46].

fir8cpx: Eight-tap, complex valued finite impulse response filter. From Texas Instruments
DSP library [47].

rgb2ycc: RGB to YCC color space conversion. From the MPEG2 benchmark in MediaBench
[46].

dec_cor: Image decimation and correlation filtering. By author.
img_prew: Prewitt edge detection. By author.

img_med: 3 x 3 image median filter. By author.

img_hp: 3 x 3 high-pass correlation filter. By author.
img_thresh: Multi-pixel image thresholding. By author.
img_erode: Morphological erosion of binary images. By author.
img_outline: Highlights portions of images. By author.

idea: IDEA encryption. From PipeRench benchmark suite [48].

9.1.1 Validation Results

All of the kernels in Figure 9.1 were simulated and validated as described previously in Section 7.2.
The steps in the validation procedure are reprinted below as Figure 9.1 for reference. Validation
was done throughout the development process and numerous bugs in the tool flow were identified
by this validation process. Once the development process was complete, each kernel was validated
at each step in the validation procedure, including validation of versions mapped to each ISA
type and to a range of fabrics as appropriate. The various validation runs are listed in Table

9.2. Note that the different mappings that were validated are not listed here; however, all of the

166



Table 9.1: Kernel Benchmarks
| Kernel Name | Application Domain | GHAL Instructions | Min Latency | Max Width |
12alaw DSP 49 23 3
dctl DSP 180 20 10
fir8cpx DSP 270 26 12
rgb2ycc Video Processing 81 16 6
dec_cor Image Processing 33 14 6
img_prew Image Processing 30 11 7
img_med Image Processing 106 29 5
img_hp Image Processing 33 20 3
img_thresh | Image Processing 31 17 2
img_erode Image Processing 16 9 2
img_out Image Processing 17 7 4
idea Cryptography 530 241 3

mappings that were used in the ISA experiments in Chapter 8 were validated. For all steps and
kernels, at least 10,000 iterations were simulated. In each case, for every kernel and mapping,
exact duplicate outputs were generated at every step of the validation process. This shows that
the compilation flow works correctly, that the CTE algorithms function properly for all ISAs and

a range of application fabrics, and that the ALU fabric models correctly implements the kernels.

9.2 Large Application Implementation

In addition to the application kernels, a large application with multiple kernels was implemented
and tested. Rather than compare kernel inputs and outputs, the inputs and outputs of each
version of the program were compared in steps 1, 2, and 4. The parameters for the kernels being
used and the order in which they are used varies according to the characteristics of the input
data. This would be difficult to implement with conventional hybrid architectures, due to the
overhead inherent in loading and switching configurations in most other types of reconfigurable

fabrics.

9.2.1 ATR Application Description

The ATR application is a simple target recognition algorithm that scans 8-bit FLIR (Forward-
Looking Infra Red) imagery for heat signatures that indicate the possible presence of a vehicular

target. FLIR imagery was taken from the Fort Carson RSTA data archive [49], a standard

167



1. Original Code:

(a) Annotation of kernel.

(b) Simulation and trace generation.
2. GHAL:

(a) Conversion to GHAL.
(b) Simulation and trace generation.

(c) Comparison of traces to original.

3. Kernel DAG:
(a)
(b)
(c)
)

(d Comparison of output traces to original.

GHAL listing converted to DAG.
DAG converted to HDL.

HDL simulation using original inputs.

4. Mapped Version:
(a)
(b)
(c)

)

(d) Comparison of traces to original.

DAG mapped to specific ISA and fabric.
Mapped assembly generated.

Mapped assembly simulated and traces generated.

5. Implemented DAG
(a
(b

) Mapped assembly converted to fabric-specific DAG using CTE algorithm.
(C) HDL simulation using original inputs.

Fabric-specific DAG converted to HDL.

(d Comparison of output traces to original.

Figure 9.1: Steps in Validation Process

168



Table 9.2: Validation Runs

Step 4 | Step 4 Step 4

Benchmarks | Step 1 | Step 2 | Step 3 | Queue | Register | Rel. Reg. | Step 5
12alaw v v v v v v v
detl v v v v v v v
fir8cpx v v v v v v v
rgh2ycc v v v v v v v
dec_cor v v v v v v v
idea v v v v v v v
img_prew v v v v v v v
img_med v v v v v v v
img_hp v v v v v v v
img_thresh v v v v v v v
img_erode v v v v v v v
img outline N4 N4 Vv Vv V4 Vv Vv

/= all correct

dataset often used in computer vision research. The algorithm used for this example are fairly
rudimentary, but the image processing kernels used are representative of those used in many
contemporary ATR and computer vision applications. The basic flow of the application is shown
in Figure 9.2. The source code for this program is in Appendix F. The gray rounded rectangles
correspond to kernels that can be implemented using the current HASTE infrastructure. The
other block correspond to code that is sequential only. The example image is used to show the
effect of the different kernels in the applications. For testing and verification a set of 20 256 x 256,
8-bit FLIR images in PGM format was used an input set. The program produced 20 8-bit images
of the same size with identified targets segmented out. Rather than use kernel output traces to
validate the operation of the overall program, the output images produced by the program in
validation steps 2 and 4 were compared to those produced in step 1. Since the entire program
cannot be simulated in steps 3 and 5, and each individual kernel was verified previously, those
steps were not implemented for this application.

The application begins with a median filter to remove noise from the image. The median
filter replaces the value in each pixel with the median value of the pixel and the eight pixels
surrounding it. The median filter acts similar to a low-pass filter, with the added advantage that
extremely high or low values for a pixel will not skew the filtered values for adjacent pixels. The

next kernel applies a sharpening, or high-pass filter, which accentuates areas with high contrast,

169



which occurs when a hot object such as a vehicle exhaust is in close proximity to a cooler region.
This filter is performed by convolving the image with a 3 x 3 filter mask. While these high
contrast regions may occur randomly, high contrast regions caused by target vehicles are usually
characterized by straight edges, so an edge detection algorithm is applied in the next kernel.
Prewitt edge detection convolves the image with two 3 x 3 masks and sums the absolute value
of the results for each mask to create the output pixel value.

The next step is to threshold the image to find all pixels with sufficiently high values to be
of interest. If a pixel value is above the threshold i is set to a value of 1; otherwise it is set
to a value of 0. Since it hard to determine a correct threshold value a priori, a relatively low
value is used initially. The thresholding is done in a kernel with a variable threshold. This is
implemented by simply storing the threshold value in a register or on the queue before calling
the kernel. It is recognized as a live-in value by the CTE and implemented as a constant in RCF
configuration. After thresholding, sequential code analyzes the image to find the number of ’on’
(equal to one) pixels and the number of isolated ’on’ pixels. After this step, the algorithm either
goes to the next step or calculates a new threshold and repeats the thresholding operation. An
image thresholded with a good value should have some ’on’ pixels, but few isolated ’on’ pixels,
as shown in the example. An erosion operation is then applied to the binary image. Erosion is
a morphological operation that in effect ’thins’ regions of on pixels, so that only large clusters of
‘on’ pixels survive. The locations of these clusters are assumed to be the locations of targets. In
order to show these regions, the final kernel “outlines” them by setting all pixels in the original
image not near a target location to black, leaving those pixels near the target region the same as
in the original image. For efliciency, slightly different versions of this final kernel are present for
images having different numbers of target regions. Since the cost of including multiple versions
of simple kernels is relatively low, as each is represented as at most a few dozen lines of assembly
code, it is feasible to do so. Including many different FPGA configurations would be much more
expensive.

The results of simulation and validation for the large application showed that that the exact
same results were obtained at Steps 1, 2, and 4 of the validation process. Both kernel code
and sequential code was simulated at each step, showing that large applications can run on

(simulated) HASTE hardware.

170



Median Highpass
Filter Filter

Input Image

Prewitt Edge
Detection

Y
Threshold

Figure 9.2: ATR Application Flow

171



9.3 Observations

The validation methodology covered here showed that it was possible to produce versions of
each kernel at each step of the HASTE tool flow that produced correct results. Perhaps most
importantly, this validates the ability of the CTE algorithms to produce configurations that
perform the desired functions correctly. In addition, the correct operation of the entire HASTE
tool flow has been demonstrated. Finally, the ability to implement an application with multiple
kernels shows the ability of HASTE to be used for more realistic applications than the single kernel
benchmarks first presented. Now that the correct operation of HASTE has been demonstrated,
the next two chapters will compare HASTE implementations to other hardware implementations

of the kernels.

172



Chapter 10

Hardware Modeling and Synthesis

In order to assess the usefulness of the HASTE concept, investigation of the physical character-
istics of HASTE architectures was needed. Given that the HASTE concept describes a family of
architectures, not a single architecture, it was clear that in order to properly investigate HASTE,
the implementation characteristics of a wide range of these architectures would need to be con-
sidered, rather than focusing on a single architectural instance. While in practice a HASTE
architecture would be likely implemented as a full-custom design, the experiments in this thesis
use standard-cell implementations. This allowed for the exploration of a large design space and
enabled the gathering of information concerning the effect of various parameters of the archi-
tecture on die area and performance. An actual HASTE architecture could have much better
performance and much smaller die area; one study shows that carefully designed custom hard-
ware implementations can be twice as fast and half as large as standard-cell implementations [50].
However, the relative performance of different implementations should be similar, regardless of
the implementation methodology.

All of the HASTE RCF implementations studied follow the fabric model introduced in Chapter
5. In particular, this chapter will investigate the three primary fabric styles in that chapter, and
will investigate a range of values for the parameters relevant to each. Physical implementations of
the CTE or SPU will not be investigated in any great detail, however. Creating a synthesizable
SPU model would be quite time-consuming, particularly in the case of the queue ISA SPU,

and little would be learned. In general, it is unlikely that any useful comparisons could be

173



obtained between different versions of SPUs or between SPUs and competing implementations.
As to comparing different SPU models, there are only a few different parameters to explore, and
these are not particularly significant. The most basic assumptions about the SPU in terms of
the specifics of the ISA, word-size, and so on, would be static, so there would be little to be
gained from a comparative study. As to the second point, a useful comparison to other CPU
implementations would be difficult to obtain, since real CPUs are implemented with extensive
custom design, and any advantages or disadvantages of the SPU design compared to conventional
CPUs would be overshadowed by difference in implementation. For context, however, a MIPS
core was synthesized for the same standard-cell library used elsewhere in this thesis and those
results will be presented here. As for the CTE, the CTE functionality must match all of the
fabric parameters, and design of a synthesizable, completely parameterizable model of it has
proven difficult. Given that the CTE algorithms are relatively simple, and that the CTE is
relatively small, the physical characteristics of the CTE were not explored in any depth. A few
representative CTE instances were synthesized, but no large-scale investigation was done of the
design space. In the future, a research project investigating HASTE architectures might well
focus on specific microarchitectural details and optimizations of the CTE and SPU, but that
is beyond the scope of the present research. Finally, the data available shows the the size of
the CTE and SPU are relatively small and fast compared to all but the very smallest RCF, so
focusing primarily on the characteristics of the RCF seems justified.

This chapter will investigate the area and delay of a wide range of fabrics, by synthesizing
parameterizable models to a commercial 90-nanometer standard cell library. All three styles
of RCF fabric will be investigated, as well as three multiplier options for each. The results of
mapping applications to the different RCF fabrics will not be covered here, but the results in

this chapter will be used for such evaluations in Chapter 11.

10.1 ALU Design

All of the HASTE ISAs use the same basic RCF ALU design, one which can implement all of
the kernel-legal HASTE operations. A parameterizable VHDL model of the HASTE ALU was
designed, with three variations: no multiplier, 16-bit multiplier, and 32-bit multiplier. Where

possible, the Synopsys Designware IP blocks were used for arithmetic functions; these are specially

174



optimized designs that work with Synopsys Design Compiler to produce particularly small and/or
fast designs, depending on the constraints imposed by the user. Synopsys Design compiler can
pick from many different logical structures for specific arithmetic functions in order to meet
user constraints. For instance, Designware adders can be implemented with any of the following
structures: ripple-carry, carry-look-ahead, fast carry-look-ahead, Brent-Jung, conditional-sum,
ripple-carry-select, or parallel-prefix.

While multipliers are expensive in terms of area and delay, they are needed by many appli-
cations relevant to HASTE. The PISA ISA specifies a 32-bit multiply with a 64-bit result. This
64-bit result is written to special registers, HI and LO. These special registers can cause problems
for HASTE implementations since it may be difficult for the CTE to locate results in the fabric
when these special registers are used. GHAL solves this problem by allowing 4-operand instruc-
tions, which allow the designation of specific general-purpose registers for both portions of the
64-bit result. The 32-bit multiplier is expensive in terms of both area and delay, and including
one in each tile could make HASTE fabrics impractical. One option would be include a multiplier
in only some tiles in each stripe. This presents some significant problems in that it makes CTE
design more complex and complicates the mapping process. It is still a viable option, but this
kind of heterogeneous fabric will not be discussed here. Another solution is to use a smaller
multiplier. A 16-bit multiplier, producing a 32-bit result, is roughly a fourth the size of a 32-bit
multiplier. 32-bit multiplies can be composed from these smaller multiplies if needed. PISA does
have a pseudo-instruction, MUL, which produces a single 32-bit result that can be stored in any
register. It is not actually a 16-bit multiply, however; it assumes a full 32-bit multiply and then
takes the low 32 bits and moves them from the LO register to the designated register. The GHAL
ISA eliminates the HI and LO registers and promotes MUL from a pseudo-instruction to a full
instruction performing a true 16-bit multiply. The 32-bit MULT instruction was kept as part of
the GHAL ISA. Three versions of the ALU were evaluated, one with no multiplier, one with a
16-bit multiplier, and one with a 32-bit multiplier. Regardless of which ALU design was used,
GHAL itself was unchanged; only which instructions were kernel-legal changed.

To investigate the cost of including the different multipliers in the fabric, VHDL versions of
the three different ALU variations were synthesized to the same standard cell library used for

the entire fabric. A minimum delay version, a minimum area version, and three intermediate

175



Table 10.1: ALU Synthesis Results

ALU Type Clock Frequency Total
Period (MHz) Area (p?)

no_mul 0.60 ns 1667 14,235

" 1.99 ns 503 5,695

" 3.00 ns 333 5,054

" 3.89 ns 257 4,826

" 4.12 ns 243 4,718

mul 1.30 ns 769 33,801

" 1.93 ns 518 14,218

" 2.97 ns 337 13,664

" 3.54 ns 282 11,503

" 3.65 ns 274 11,367

mul6d 1.40 ns 714 58,147

" 1.92 ns 521 36,100

" 2.97 ns 337 30,431

" 3.57 ns 280 29,787

" 3.76 ns 266 27,001

versions were synthesized for each type of ALU, which are heretofore referred to as no__mul, mul,
and mul64 (for the ALU with no multiplier, ALU with multiplier with 32 bit result, and ALU
with multiplier with 64 bit result). The results are include in Table 10.1. As expected, including
a multiplier is expensive, particularly the full width multiplier. The extra area costs are worst
for the fastest ALUs, with the mul version being twice as large as the no mul version, and the

mul64 version being twice again as large as the mul version.

10.2 Static Register Fabric

The queue ISA requires that all operands that are produced on a level ¢ and consumed on a level
j, with j > i+ 1, must be passed from level to level using explicit PASS operations. Therefore,
pass registers are not needed to map a queue ISA if those pass operations are implemented in
functional units. Without having some way to direct the result produced by a PE to a specific
column other than the one that the PE is located in, the result must be stored in a register
located in the same column. Allowing results to be stored in a different column could allow
for more efficient use of the fabric, but it is not clear how this could be accomplished with a

queue ISA. The relative register ISA does allow for this, but it requires an explicit operand

176



Synthesis for Max Frequency

800

WAL
[ Register

A Freq
Intercon.

9 11 13 15 17 19 21

7
Read Interconnect Width

5|

3

35

o 0 o n o n
)

,SUOIDIW QT - B3Iy

(a)

Synthesis for 333MHz

Synthesis for 500 MHz

Intercon.
WAL
[] Register

AN\
A\

" 3~mcmb_cumo._”1, mm:l<
Al

ZSUOIDIW (0T - BAIY

1 13 15 17 19 21

9
Read Interconnect Width

1 13 15 17 19 21

9
Read Interconnect Width

(c)

(b)

Synthesis for 200MHz

Synthesis for 250MHz

Intercon.
[
[] Register

DI ~
o
)
~
- c
=
iz
=
m L
—- o
c
- C
- O
Y
o Q
£
~ T
©
9]
n €
m
n o n o n m K,J
AR e
ZSUOJIDIW QT - B3y
£2%
£ x
NEO
-
&
=
o
~
s
kel
"z
m B
- o
c
=l
o
o8
=
~ T
©
[}
n X
.
n o n o
m m o~ o~

ZSUOIDIW QT - By

(e)

(d)

Figure 10.1: Static Register Fabric Synthesis: No Multiplier

177



800

Synthesis for Max Frequency

70

§ I 5 2
£33 £33
Eqcx £
SEO I [m
W A\ b N AN\
I
= 2 s
= X 5
1m o
m g ~
: "= °
y Um o —
%) —
2 N g
s 3 = g 5
MWWW > ~D > \
[ 'ls o 8 & m
n X
[ ™
R 8 8 8 R 8 B 8
,SUOIDIW ¢QT - ealy ,SUOIDIW QT - ealy
K-
z
g . =
N\ 5 =
o ~
=
o
g
2 :
IS 5§ B § &
° 3% £33
] £2& £2 ¢
@ SED I m
F A\ < N DN
S B =
,SUOIDIW (0T - ealy o o
o == LN
0 = ~
0 Z
— -2 —
—_ o
S A -
) g )
) =5 0
1) S o
S [ & e
c < c
> [~ T
V) S n
-4
| ™
R 8 8 ¢ & 8 8 S

,SUOIDIW 0T - B2IY 2SUOIDIW (0T - B3V

11 13 15 17 19 21
(e)

9

7
Read Interconnect Width

5

178

(d)

Figure 10.2: Static Register Fabric Synthesis: 32-Bit Multiplier

1 13 15 17 19 21

7
Read Interconnect Width

5



Synthesis for Max Frequency

§ & I
o a I @
£37% FEE)
=3¢ £33 &
yEO NEO

(e)

(d)

Figure 10.3: Static Register Fabric Synthesis: 64-Bit Multiplier

179

N DN IS N AN\ ]
= 2 < Bl
= =
~ o ~
m S g S g
@ n 8 N n S
—_ — —
o H nru s
b Bm S Y= Bm
7 =
0 o £ e o E
-5 [7) =5
! : g :
T = ] o @ < oo
s g c € ..m €
sS_= IS £
7 i~ > "E
<SE0 3 wn 5
| n @
[ | ~
~ ° o o o < S o o
~ S ® K © S © K ©
2 B
o ZSUOIDIW (QT - ealy (SUOIDIW (0T - eAIY
~ 5
Ll
w3
o —~
o <
o c ~
C
438
] - s 5
o € § & g 3
= o @ g _ =
-3 EH 3§
_sm SEO EIME
| U7H_ ~ N IS
o I o
= 3 s 2
ZSUOIDIW QT - ealy o ~ o ~
o - g n g
Te} ° o~ il
= UW - HW
O @)
W s = (= Ge] o]
w0 m = 7 M
) A5 ) =
] o (] o
S |- 5 g
c .= c £
> | 3 > ~ o
wn o (0] ]
| 0
[ » [ o
88 8RB833% AR A g &8RS

,SUOIDIW (T - 3y ,SUOIDIW QT - BIY



designation, which specifies the column offset. It is possible that a multiple-pass CTE algorithm
could allow for the automatic determination of column offset for PE results in a queue ISA,
but given the relatively limited offsets found in queue ISAs implementations, due to the leveled-
planarity requirement for the DAG, it is not clear that the advantage gained would be worth
the large increase in complexity required in the CTE. So the static register fabric described
previously, with the number of registers equal to one and the write connectivity equal to one, is
the fabric type best suited to the Queue ISA.

The only tile architectural parameter one needs to be concerned with for static register fabric
implementations for the queue ISA is thus the read connectivity, RC, which must be > 3. Of
course, the global parameters, width, depth, and word width can vary, but this is true of all
HASTE architectures and need not be considered here (A 32-bit fabric was assumed throughout
this chapter). The other factors that need to be considered when synthesizing tiles for queue
ISAs are the target clock period and the ALU type. As discussed previously, there are three
different ALU types, one with no multiplier, one with a 32 bit multiplier and one with a 64-bit
multiplier. Using a parameterizable VHDL tile model for this static register fabric, synthesis
runs for RC values from 3 to 21 for all three ALU multiplier options, and for a range of clock
frequencies, were performed. Using a detailed floorplan model, these results were adjusted as
needed to account for wiring delays and for wiring-density induced area requirements.

The static register tile synthesis results are summarized graphically in Figures 10.1, 10.2,
and10.3, which show the synthesis results for static register fabric tiles with no multiplier, a
32-bit multiplier, and a 64-bit multiplier, respectively. Each subfigure shows the area of the
synthesized tile area on the y-axis, broken down into area consumed by registers, ALU, and
interconnect. These areas are shown for different read connections and the different subfigures
show the results for various clock frequencies. The area scale is the same for all subfigures of
each figure. The first subfigure, (a), in each case shows the results obtained when synthesized
for maximum speed; the clock frequency reached is shown as a separate data series on the chart.
The speed is fixed for the remaining subfigures at 500 MHz, 333 MHz, 250 MHz, and 200 MHz,
corresponding to clock periods of 2 ns, 3 ns, 4 ns, and 5 ns. The most obvious result is that the
tiles with the 64-bit multiplier are larger than the tiles with 32-bit multipliers, which are in turn

larger than the tiles with no multipliers. Another obvious results is that the tiles with higher RC

180



values require more interconnect area, with interconnect area for the RC = 21 case ranging from
200% to 1400% of the RC — 3 case. Total tile areas range from just over 7,000 2 for the slowest,
least-connected tiles with no multipliers, to over 90,000 u? for fast, highly connected tiles with

64-bit multipliers.

10.3 Asymmetric Pass Register Fabric

For both of the pass register fabrics, both the number of registers, NR, and the read connectivity,
RC, need to be considered. From these two values, all of the parameters can be derived for
these fabrics, as was discussed in 5.5. The variation in the number of registers in the pass
register file is the most important difference as compared to the static register fabric. Read
connectivity varies as it did with the static register case. Since there is a very large design space,
the pass register architectures were divided into two separate components. A parameterized
VHDL model was created for each of these components,; one containing the pass register file and
related interconnect, and the other containing the ALU and remaining interconnect.

Using these two components, asymmetric pass register tiles were synthesized for all possible
combinations of values with 3<NR<10 and 3<RC<21. These were synthesized for minimum
delay, minimum area, and for delay combinations targeting overall tile delays of 2 ns, 3 ns,
4 ns, and 5 ns, using all three ALU possibilities. Nearly three thousand different parameter
combinations were synthesized. Figures 10.4 (a) and (b) show an overview of the important
aspects of this data. Shown are the areas for the minimum area and minimum delay runs for
each value of NR and RC. The values shown are for tiles with no multipliers; there is little
difference in the data for the other multiplier cases, except that the areas are shifted a fairly
constant amount, which is explained by the area consumed by the multiplier. The magnitude of

these areas are consistent with those shown in Table 10.1.

10.4 Symmetric Pass Register Fabric

The synthesis runs for the symmetric pass register fabrics were very similar to those done for
the asymmetric pass register fabrics. Again, tiles were synthesized for all possible combinations

of values with 3<NR<10 and 3<RC<21, for all three multiplier options, and for minimum area,

181



SU0UIM b Jo spuesnOy) - ealy

(a) Minimum Area

(b) Minimum Delay

Figure 10.4: Asymmetric Pass Register Fabric Synthesis

182



suos bs jo spuesnod) - eaty

(a) Minimum Area

suns bs Jo Spuesnoy) - Baky

(b) Minimum Delay

Figure 10.5: Symmetric Pass Register Fabric Synthesis

183



minimum delay, and four intermediate delay values. Figures 10.5 (a) and (b) show an overview of
this data. As for the asymmetric case, the minimum area and minimum delay runs for each value
of NR and RC are shown. The values shown are for tiles with no multipliers; the same effect of
the other multiplier options was observed for these fabrics as was observed for the asymmetric

pass register fabrics.

10.5 HASTE Components

Table 10.2 shows areas and delays for a range of HASTE components, all optimized for best
performance. The SPU shown is not a true HASTE SPU, but rather a simple MIPS compatible
design found on an open source hardware website [51] and synthesized for the same standard cell
library used for the fabrics. It is very similar to a RISA SPU, however. The CTE values are
simple implementations written in VHDL and are representative of a “typical” CTE. One can
see that the static register tiles can be smaller and faster than the pass register tiles, but the
differences are not great if the tiles being compared have the same values for RC and NR is not
large. Since the tile area and performance does vary so much depending on the parameters, it
is hard to draw conclusions without seeing the results obtained when mapping kernels to fabrics
with specific parameters. This will be done in Chapter 11. It is interesting to note that the CTE
and SPU are quite small compared to the areas for fabrics of any but the most trivial sizes. Even
a 4 by 5 fabric of the smallest tile shown is larger than the sum of the areas of the SPU and
either of the CTEs. This supports the decision to concentrate on the physical characteristics of
the fabrics and not the CTE and SPU.

Given the extra complications involved in using the full-width multipliers, since they require
two separate outputs, as well as the fact that few if any of the benchmarks considered for this
project required a full-width multiply, these synthesis results confirmed a decision to primarily
use fabrics with half-width multipliers or no multipliers. The gains from using full-width mul-
tipliers are small and the costs are high. While using a half-width multiplier is uncommon in
conventional CPU architectures, it is a trade-off that is used in many DSP architectures. 32-bit
DSP architectures such as the Texas Instruments TMS320C28x [52] and the Analog Devices
TigerSHARC [53] provide only 16-bit multiply-accumulate units. These can be used to perform

wider multipliers, which can also be done in HASTE using standard GHAL instructions. Many

184



| Component | Description | Area, i | Freq., MHz |

SPU Simple pipelined MIPS core with full-width multiplier 137,196 650

CTE 10-Column QISA CTE 67,012 742

CTE 10 Column Register ISA CTE 81,010 731
RCF Tile | Static Register Fabric, RC=3, no_mul 12,224 758
RCF Tile | Static Register Fabric, RC=21, no_mul 30,774 675
RCF Tile | Static Register Fabric, RC=3, mul 46,586 758
RCF Tile | Static Register Fabric, RC=21, mul 63,948 673
RCF Tile | Asymmetric Pass Register Fabric, NR=2, RC=3, no_mul 17,453 662
RCF Tile | Asymmetric Pass Register Fabric, NR=2, RC=21, no_mul 62,523 658
RCF Tile | Asymmetric Pass Register Fabric, NR=10, RC=3, no_mul 30,954 633
RCF Tile | Asymmetric Pass Register Fabric, NR=10, RC=21, no_mul | 109,547 629
RCF Tile | Asymmetric Pass Register Fabric, NR=2, RC=3, mul 51,749 660
RCF Tile | Asymmetric Pass Register Fabric, NR=2, RC=21, mul 98,878 655
RCF Tile | Asymmetric Pass Register Fabric, NR=10, RC=3, mul 64,601 630
RCF Tile | Asymmetric Pass Register Fabric, NR=10, RC=21, mul 150,220 620
RCF Tile | Symmetric Pass Register Fabric, NR=2, RC=3, no_mul 18,134 633
RCF Tile | Symmetric Pass Register Fabric, NR=2, RC=21, no_mul 63,203 629
RCF Tile | Symmetric Pass Register Fabric, NR=10, RC=3, no_mul 36,396 599
RCF Tile | Symmetric Pass Register Fabric, NR=10, RC=21, no_mul 128,736 585
RCF Tile | Symmetric Pass Register Fabric, NR=2, RC=3, mul 53,004 620
RCF Tile | Symmetric Pass Register Fabric, NR=2, RC=21, mul 99,558 620
RCF Tile | Symmetric Pass Register Fabric, NR=10, RC=3, mul 69,833 615
RCF Tile | Symmetric Pass Register Fabric, NR=10, RC=21, mul 167,946 580

Table 10.2: Typical HASTE Component Areas, Min delay

of the benchmarks do not need multipliers at all, since any multiplications in these kernels are

by small constant values and are efficiently implemented using shifts and adds.

10.6 Observations

As one would expect, fabrics with wider interconnect (larger values of RC) are somewhat slower
than those with more narrow interconnects. However, the differences are not as large as might
be thought. For the maximum frequency static register fabrics, the widest interconnect fabrics,
with RC = 21, were at most 24% slower than the narrowest interconnect fabrics with RC = 3.
The effect of interconnect width on speed were even less for the other fabric styles, less than 8%
for the asymmetric fabric and less than 10% for the symmetric fabric. The effect on area was
more dramatic, especially for the minimum area implementations, where more optimization was
possible to take advantage of the less complicated interconnect in fabrics with lower connectivities.

This can be seen in Figure 10.1(b), where the area varies by a factor of nearly 4 across the range

185



of RC values from 3 to 21. This is harder to see in Figurel(0.3, where the size of the 64-bit
multiplier, which is independent of the interconnect width, dominates the total area. A similar
range in areas can be seen as the connectivity is changed for the pass register fabrics in Figures
10.4 and 10.5. The interconnect value has a larger effect on area than the number of registers,
although fabric areas can vary by a factor of nearly 2.5 as the register file size ranges from 2 to
10. The full meaning of these hardware results will become clear once actual kernels are mapped
to different fabrics and the various tradeoffs inherent in mapping to different fabrics can be seen.

This will be explored in the next chapter.

186



Chapter 11

Area and Performance of Kernel
Implementations

The final set of experiments in this thesis compares implementations of kernels in HASTE fabrics
to implementations of those same kernels in a commercial FPGA and in a commercial 90 nm
standard-cell ASIC technology. The experiments were constructed so as to be as conservative
as possible; i.e. any assumptions made tended to make the ASIC and FPGA implementations
look smaller and/or faster and tended to make the HASTE implementation look larger and/or
slower than might likely be observed in practice. This chapter will detail the procedures used
to determine area and performance of an FPGA implementation, an ASIC implementation, and
implementation in each of the three HASTE ISAs on a range of fabrics, for each of the benchmark
kernels. Each of the first three sections will cover the procedures used and then review the results
for one the three implementation technologies. The final section of this chapter will compare
and analyze all three technologies. The overall design tool flow for kernel implementation was

introduced in Chapter 7 and Figure 11.1 is reproduced from that chapter for reference.

11.1 ASIC Implementations

An alternative to implementing the benchmark kernels in programmable logic would be to use
a standard semi-custom design flow and target the design to a standard-cell library. This is the
industry standard approach for designs which need ASIC performance but which cannot justify
the time and cost of full-custom design. It was expected that the ASIC implementations would

be significantly smaller and faster than either the HASTE or FPGA implementation, but it

187



ASIC
Area/Performance

FPGA
Area/Performance

Design
Compiler

@
4]
<]

|_
x

£
=

HASTE Kernel
Component + VHDL
VHDL

Fabric
Parameters

RCF VHDL
Models

Kemel
Mapping

Design
Compiler

Fabric
Area/Performance 4

HASTE Kernel
Area/Performance

- Spreadsheet

Figure 11.1: Hardware Implementation Tool Flow

188



was not clear initially just how much slower and larger the programmable logic implementations
can come to the ASIC approach. Therefore, all of the benchmark kernels were implemented in
a commercial standard-cell library for a 90-nanometer CMOS process. The remainder of this
section will detail the implementation process and the results obtained.

As with all of the implementations, it was assumed that memory access is handled by memory
access hardware on the same die as the application kernel hardware. This makes sense in that the
target environment for HASTE is a heterogeneous SOC, with integrated memory and I/O, as well
as other computing resources which may serve as sources or targets of I/O streams. Therefore,
the ASIC implementations do not consider I/O cells or pins, only logic and register cells. The
kernels are assumed to be rectangular regions of an SOC die, with fast, global interconnect to
the remainder of the chip. Since the kernels are relatively small, a single synchronous clock can
be used for the kernel logic and interface to the rest of the chip. This does not preclude the use
of other clock domains on the die or the use of asynchronous interconnect between the kernel

and other parts of the systems, but these details are outside the scope of this research.

11.1.1 Procedure

Many different synthesis runs were performed for each design. First, a minimal area design
(minAPipe) using the pipelined library was produced by setting no timing constraints and setting
an area constraint of 0. Next, a minimal clock period design (MinClk) was by reducing the
clock period until timing constraints could no longer be met, using no area constraints. Next,
minimal area designs for pipelined designs with clock periods of 1ns, 2 ns, 3 ns, 4ns, and 5ns

were produced by setting minimum clock period constraints and using no area constraints; the

Table 11.1: ASIC Synthesis Run Types

| Designation | Area Constraint | Delay Constraint

MinAPipe 0 None
MinClk None Min, ~ 1 ns
MinA2 None 2 ns
MinA3 None 3 ns
MinA4 None 4 ns
MinAb None 5 ns

MinA NP 0 None

189



synthesis tool first optimizes for delay and then for area. Manually setting maximum areas
and recompiling did not seem to give better results than those obtained automatically by the
synthesis tool. This same range of clock periods was used for the HASTE implementations as
well and represent a reasonable design space to explore trade-offs of speed and area. A minimal
area design was produced using the non-pipelined library; the area of this design was compared
to the combinational area of the minimal area pipelined design to determine if the pipelining
caused significant loss of efficiency in the design by not allowing for logic to be combined and

optimized across pipeline registers. The different runs are listed in Table 11.1.

11.1.2 Results

The ASIC implementations results for each of the benchmarks are shown in Table 11.2. The table
shows the results for each run for each benchmark. For each run, the minimum clock period and
associated frequency are shown. Next, the area devoted to combinatorial logic is shown, followed
by the area devoted to registers, and then the total area. No clock period and therefore no clock
frequency is shown for the minimal area runs; this wasn’t needed or relevant for the non-pipelined
versions, and the results obtained for the minimal area pipelined versions were incomplete due
to the lack of timing constraints and thus no relevant results were reported by the synthesis tool.

The results are fairly predictable; the minimum delay version is typically the largest, and there
is a generally clear trade-off between area and delay among the different runs. It is interesting
to note that the register area is nearly the same for all runs for each benchmark, as would be
expected, since the kernel design determines the pipelining and all performance differences are
determined solely by the combinational logic. Also, the logic area for the unpipelined run is very
near the logic area for the minimum area pipelined version. This indicates that their was little
or no logic optimization that could have been done had the logic not been divided with pipeline
registers. Some of the smaller benchmarks saw little or no difference between runs. Due to their
small size, there were few possible implementations for synthesis tools to target, resulting in the

small amount of variation.

190



Table 11.2: Benchmark Synthesis Results - ASIC

Benchmark Run Clock Freq Logic Register Total
Period (MHz) Area, Ares, Area,
12alaw MinClk 0.6ns 1667 3313 13963 17276
12alaw MinAl 1.0 ns 1000 2357 13983 16340
12alaw MinA2 2.0 ns 500 2212 13983 16195
12alaw MinA3 3.0ns 333 1996 13983 15979
12alaw MinA4 4.0ns 250 1846 13983 15829
12alaw MinAb 5.0ns 200 1837 13983 15820
12alaw MinAPipe N/A N/A 2223 13593 15816
12alaw MinA NP N/A N/A 2531 0 2531
dctl MinClk 0.8ns 1250 134844 114926 249770
dctl MinAl 1.0 ns 1000 107477 114926 222403
dctl MinA2 2.0 ns 503 97695 114927 212622
dctl MinA3 3.0ns 333 67568 114927 182495
dctl MinA4 4.0ns 250 49882 114927 164809
dctl MinAb 5.0ns 222 43977 114926 158904
dctl MinAPipe N/A N/A 40154 114926 249770
dctl MinA NP N/A N/A 40178 0 40178
fir8cpx MinClk 0.8ns 1250 217411 165009 382420
fir8cpx MinAl 1.0 ns 1000 212778 16035 377813
fir8cpx MinA2 2.0 ns 500 158479 164970 323449
fir8cpx MinA3 3.0ns 333 98078 164970 263048
fir8cpx MinA4 4.0ns 250 73847 164970 238817
fir8cpx MinAb 5.0ns 225 68279 164970 233249
fir8cpx MinAPipe N/A N/A 65021 166478 231499
fir8epx MinA NP | N/A N/A | 74235 0 74235
rgb2ycc MinClk 0.6ns 1250 42083 32433 74516
rgh2ycc MinAl 1.0 ns 1010 31588 32435 64023
rgb2ycc MinA2 2.0 ns 500 24109 32440 56549
rgb2ycc MinA3 3.0ns 333 15274 32433 47707
rgb2ycc MinA4 4.0ns 251 13712 32433 46145
rgb2ycc MinAb 5.0ns 225 13475 32433 45908
rgh2ycc MinAPipe N/A N/A 13398 32433 45831
rgh2ycc MinA NP N/A N/A 13550 0 13550
dec_cor MinClk 0.7ns 1430 11190 7770 18960
dec_cor MinAl 1.0 ns 1000 7855 7622 15617
dec_cor MinA2 2.0ns 500 5314 7762 13076
dec_cor MinA3 3.0ns 333 3927 7762 11689
dec_cor MinA4 4.0ns 250 3685 7762 11447
dec_cor MinAb 5.0ns 200 3645 7762 11407
dec_cor MinAPipe N/A N/A 3644 7762 11406
dec_cor MinA NP N/A N/A 3658 0 3658

191




Benchmark Run Clock Freq Logic Register Total
Period (MHz) Area Area Area
img_prew MinClk 0.7ns 1429 9381 5680 15061
img_prew MinA1 1.0 ns 1010 5660 5630 11290
img_prew MinA2 2.0 ns 508 3176 5626 8802
img_prew MinA3 3.0ns 382 3136 5626 8762
img_prew MinA4 4.0ns 277 3164 5626 8790
img_prew MinA5 5.0ns 277 3164 5626 8790
img_prew MinAPipe N/A N/A 3285 5451 8736
img_prew MinA NP N/A N/A 3164 0 3164
img_med MinClk 0.6ns 1695 2589 34105 36694
img_med MinA1 1.0 ns 1000 3570 33453 37023
img_med MinA2 2.0 ns 500 2106 33453 35559
img_med MinA3 3.0ns 431 2106 33453 35559
img_med MinA4 4.0ns 431 2106 33453 35559
img_med MinA5 5.0ns 431 2523 33435 35976
img_med MinAPipe N/A N/A 4218 31977 36195
img_med MinA NP N/A N/A 2110 0 2110
img_hp MinClk 0.7ns 1429 11598 12484 24082
img_hp MinAl 1.0 ns 1000 8279 | 12471 20750
img_hp MinA2 2.0 ns 510 6506 12450 17085
img_hp MinA3 3.0ns 333 4625 12460 17085
img_hp MinA4 4.0ns 251 3758 12459 16217
img_hp MinA5 5.0ns 223 3472 12460 15932
img_hp MinAPipe N/A N/A 3611 12228 15839
img_hp MinA NP N/A N/A 3407 0 3407
img_thresh MinClk 0.46ns 2174 1840 1120 2960
img_thresh MinA1 1.0 ns 2174 1840 1120 2960
img_thresh MinA2 2.0 ns 2174 1840 1120 2960
img_thresh MinA3 3.0ns 2174 1840 1120 2960
img_thresh MinA4 4.0ns 2174 1840 1120 2960
img_thresh MinA5 5.0ns 2174 3040 1120 4160
img_thresh MinAPipe N/A N/A 1840 1120 2960
img_thresh MinA NP N/A N/A 1840 0 1840
img_erode MinClk 0.46ns 2174 340 3923 4263
img_erode MinA1l 1.0 ns 2174 340 3923 4263
img_erode MinA2 2.0 ns 2174 340 3923 4263
img_erode MinA3 3.0ns 2174 340 3923 4263
img_erode MinA4 4.0ns 2174 340 3923 4263
img_erode MinA5 5.0ns 2174 340 3923 4263
img_erode MinAPipe N/A 2174 340 3923 4263
img_erode MinA NP N/A N/A 340 0 340
img_out MinClk 0.6ns 1694 559 2614 3173
img_out MinAl 1.0 ns 1000 470 2614 3084
img_out MinA2 2.0 ns 538 470 2614 3084
img_out MinA3 3.0ns 518 470 2614 3084
img_out MinA4 4.0ns 512 470 2614 3084

192




Benchmark Run Clock Freq Logic Register Total
Period (MHz) Area, Ares, Area,
img_out MinAb 5.0ns 541 1081 2614 3695
img_out MinAPipe N/A N/A 1061 2571 3631
img_out MinA NP N/A N/A 470 0 470
idea MinClk 0.9ns 1111 268986 239818 508804
idea MinAl 1.0 ns 1000 217451 239818 457269
idea MinA2 2.0 ns 500 199649 239818 439467
idea MinA3 3.0ns 333 142227 239820 382047
idea MinA4 4.0ns 250 107595 239818 347413
idea MinAb 5.0ns 208 91174 239818 330992
idea MinAPipe N/A N/A 82581 239819 322400
idea MinA NP N/A N/A 84461 0 84461

Overall, these are fast and relatively small implementations of the kernels. The designs are
dominated by register area and one could argue that they are over-pipelined, but these are still
small and fast designs, particularly for a design flow that is fully automated from assembly
language to silicon. Recent research shows that a full custom or semi-custom implementations
of datapath design can produced that are as much a smaller than fully-automated standard cell
implementations and commensurately faster [50]. However, since fully automated design flows
are being used, with minimal manual effort needed to implement the design, the performance
and area advantage of custom designs is not particularly relevant; any of the implementations
could be greatly improved with extensive designer attention. As discussed in Chapter 1, though,
it is increasingly rare that this level of design effort makes economic sense for anything other

than very high volume designs.

11.2 FPGA Implementation

Another method that could be used to implement the benchmark kernels would be to use an
FPGA. FPGA are becoming increasingly popular for computationally intensive kernels, since they
have become relatively standard, readily available, programmable parts that provide performance
nearer that of an ASIC than can be obtained from other programmable solutions such as general
purpose CPUs or DSPs. FPGA fabrics have mostly been implemented in specific FPGA devices

as a single packaged die with I/O buffers, and increasingly, other specialized hardware such as

193



clock generators and embedded memories. More recently, FPGA fabrics have been made available
as hard IP that can be used as part of an SOC. The usage being considered is this latter case,
since this fits with the intended application domain for HASTE.

FPGA manufacturers make public few details about the actual design of their chips or IP
blocks. Even basic information such as the number of transistors and die size for a particular
device are difficult to obtain. After much searching, a publicly available summary of a report
on a particular Xilinx FPGA was found. This report summary [54] was prepared by a company,
Chipworks, that publishes information they obtain by reverse-engineering commercial IC devices
by use of electron microphotography and other techniques. While access to the full report was
prohibitively expensive, the freely available summary did detail the die area of the Xilinx Spartan
3 XC35200 device, specifically 20.3 mm. Since the number of FPGA resources a particular
application uses can be determined from the FPGA synthesis tools, knowing the total die area
allows estimation of the die area used by the application. Since this device is fabricated in a
90-nanometer process, according to information provided by the manufacturer, it is then possible
to fairly compare die area of implementations in the FPGA with die area of implementations in
the semi-custom ASIC flow and the HASTE implementations.

Given the limited amount of information available about the FPGA, however, there is some
uncertainty in the area estimations for the FPGA implementations. In particular, not all of the
die area is used by logic that can be used for implementing applications. Significant portions of
the die area are consumed by I/O drivers and other special purpose logic. An examination of die
photographs for other FPGAs lead to the somewhat arbitrary assumption that 80% of the die
are is devoted to the user-programmable logic; this estimate is likely too low, so the area required
for the FPGA implementations will look better (better meaning smaller in this context) than is

likely the case in actuality.

11.2.1 Procedure

The same kernel VHDL that was generated by dag2vhdl and the same component library that
was used for the ASIC implementation was used for the FPGA implementation. The Xilinx
ISE Alliance design tools were used, in particular the Xilinx XST synthesis tool. XST was used

to synthesize the kernel design and the Xilinx supplied tools were used to place and route the

194



design for the Xilinx XC35200-5FT256, the exact same device referenced in the Chipworks report
summary.

The application was synthesized at the highest effort with all relevant optimizations enabled
and maximum speed as the primary objective. After the first synthesis, a clock period constraint
was set and repeatedly lowered until the timing constraint could not be met. After the application
was placed and routed, the timing analyzer tool was used to verify that the critical path for the
design did not include I/O delays, since the assumption is that the FPGA fabric is being used
as part of an SOC. Then the design was synthesized again with minimal area as the objective.
Configuration file sizes were determined by scaling the whole chip configuration file size by the
proportion of chip area used by the design. Table 11.3 shows the results obtained for the FPGA
implementations of the benchmarks. In some cases the design used more resources than are
actually available on the device. The area was still determined using the same method as was
used for the smaller designs in these cases, by just scaling the area linearly with the number of
slices in the design. As one would expect, the FPGA implementations are much larger and much
slower than the ASIC implementations. Note also that the configuration file sizes are much larger

than the kernel code sizes shown in Chapter 8, the very largest of which was less than 4 KB.

195



Table 11.3: FPGA Implementation Results

Benchmark | Run Clock | Slices| % of | Die Area | Config File Size (KBytes)
Freq Total
(MHz)
12alaw Max F. 251 236 12% 2.00 mm? 10.1
12alaw Min A. 198 227 12% 1.92 mm? 9.7
12alaw NP 48 73 4% 0.62 mm? 3.1
dct1l Max F. 243 2441 | 127% | 20.65 mm? 104
dct1l Min A. 83 2133 | 111% | 18.04 mm? 90.9
dct1l NP 33 1178 | 61% 9.96 mm? 50.2
fir8cpx Max F. 226 3913 | 204% | 33.1 mm? 166.8
fir8cpx Min A. 57 3661 | 191% | 30.97 mm? 156.1
fir8cpx NP 29 1901 | 99% | 16.08 mm? 81.0
rgb2ycc | Max F. 232 | 1104 | 58% | 9.34 mm?® 47.1
rgh2ycc Min A. 136 959 50% 8.11 mm? 40.9
rgb2ycc NP 41 525 27% 4.44 mm? 224
dec_cor | Max F. 239 212 | 11% | 1.79 mm?® 9.0
dec_cor Min A. 136 184 10% 1.56 mm? 7.9
dec_cor NP 38 140 7% 1.18 mm? 5.9
img_prew | MaxF. 243 247 | 13% 2.09mm? 10.5
img_prew | Min A. 140 192 | 10% | 1.62 mm? 8.2
img_prew | NP 41 158 8% 1.34 mm? 6.8
img_med Max F. 233 671 25% 5.68 mm? 28.6
img_med | Min A. 134 580 | 30% | 4.91 mm? 24.7
img_med NP 33 329 8% 2.78 mm? 14.0
img_hp Max F. 242 241 | 13% | 2.04 mm? 10.3
img_hp Min A. 141 189 8% 1.60 mm? 8.1
ing hp | NP 40 158 | 8% | 1.34 mm? 6.8
img_thresh | Max F. 251 171 9% 0.45 mm? 2.3
img_thresh | Min A. 142 150 8% 0.32 mm? 1.6
img_thresh | NP 36 112 6% 0.1 mm? 0.5
img_erode | Max F. 263 84 4% 0.71 mm? 3.6
img_erode | Min A. 140 72 4% 0.61 mm? 3.1
img_erode | NP 36 61 3% 0.52 mm? 2.6
img_out Max F. 253 110 6% 0.93 mm? 4.7
img_out Min A. 139 97 5% 0.82 mm? 4.1
img_out | NP 34 48 3% 0.41 mm? 2.1
idea Max F. 209 8448 | 440% | 71.46 mm? 360.1
idea Min A. 54 7503 | 391% | 63.46 mm? 319.8
idea NP 31 4812 | 251% | 40.7 mm? 205.1

196




11.3 HASTE Implementations

Given that many different mappings were done for each benchmark, and each mapping could be
implemented in a fabric with tiles of a different speed grade, a large amount of data was produced.
As discussed in the previous chapter, the half-width multiplier ALU was used for all fabrics. The
most interesting data is that shown in Table 11.4. For each benchmark, the “best” fabric for
each ISA was found and compared with the “best” ASIC and FPGA implementations. Total die
area and clock speed are shown for all implementations. In addition, the fabric dimensions and
parameters, as well as the tile area, are shown for each of the HASTE implementations. In order
to find the “best” implementation, the Throughput per Unit Area (TUA) for each implementation
was computed and normalized to the implementation with the lowest value in the same table.

Since all of the implementations compute the same number of results every clock cycle, this

clock fregq.
total area -

the slowest implementation, the Normalized TUA (NTUA) values are unitless. The higher the

metric can simply be computed as TUA = As all of the values are normalized to
NTUA value, the more results that can be computed by that implementation for that benchmark
per unit area of silicon die area, so highest NTUA corresponds to “best” in these rsults. The
absolute throughput per unit area was computed for every implementation, and the best for
each was found for each benchmark. Without exception, the best in this regard was the same
implementation found to be the fastest.

The results do show clearly that the limited interconnect fabrics (RC = 3) have the best
characteristics in terms of both area and speed. The area and delay costs of longer interconnect
clearly outweigh the advantages in this process technology, and as interconnect delays grow larger
relative to area in future technologies, the advantages of this local interconnect style should only

increase.

197



Table 11.4: Comparison of Best Implementations for Each Benchmark

Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

12alaw Depth | Width | Nrywo/re | pm? x10% | um? x 103 MHz Unit Area
ASIC - - - - 17.3 1667 1241
FPGA - - - - 2010.0 251 1.61
QISA 34 9 1/1/3 319 9748 758 1.0
RISA 27 2 3/1/3 22.1 1193 642 4.61
RRISA 27 2 3/3/3 231 1248 619 432
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

dctl Depth | Width | Nrywo/re | pm? x10% | um? x 103 MHz Unit Area
ASIC - - - - 249.8 1250 425.3
FPGA - - - - 20650 243 1.0
QISA 26 37 1/1/3 27.3 26225 758 2.46
RISA 60 3 13/1/3 55.2 9943 628 5.37
RRISA 35 6 7/3/3 31.9 6706 618 5.82
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

fir8cpx | Depth | Width | ~Nr/we/re | pm?x10% | pm? x 103 MHz Unit Area
ASIC - - - - 3824 1250 478.7
FPGA - - - - 33100.0 226 1.0
QISA 118 20 1/1/3 27.3 64336 758 1.73
RISA 95 3 12/1/3 36.5 10404 630 6.81
RRISA 48 6 7/3/3 319 9197 618 7.31
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

rgh2ycc | Depth | Width | Nrywo/re | pm? x10% | um? x 103 MHz Unit Area
ASIC 5 5 5 5 745 1250 6754
FPGA - - - - 9340.0 232 1.0
QISA 26 16 1/1/3 27.2 11341 758 2.69
RISA 29 3 6/1/3 26.3 2288 637 7.89
RRISA 18 6 2/3/3 20.9 2260 620 7.23
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

dec_cor | Depth | Width | Nr/wc/re | pm? x10% | pm? x 103 MHz Unit Area
ASIC - - - - 18.9 1250 491.7
FPGA - - - - 1790.0 240 1.0
QISA 8 16 1/1/3 27.3 3490 758 1.62
RISA 27 2 2/1/3 20.2 1093 660 291
RRISA 27 2 2/3/3 20.9 1130 620 2.68

198




Table 11.4: continued

Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

prew Depth | Width | ~rywo/re | pm?x 103 | um?x 103 MHz Unit Area
ASIC - - - - 15.1 1429 815.8
FPGA - - - - 2090 243 1.0
QISA 17 7 1/1/3 27.3 3244 758 2.01
RISA 17 2 4/1/3 23.7 807 640 4.65
RRISA 17 2 4/3/3 26.3 893 619 4.20
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

img med Depth | Width | Nr/wo/re | pm?x10% | pm? x 103 MHz Unit Area
ASIC - - - - 36.7 1695 2552
FPGA - - - - 5680 233 2.27
QISA 64 24 1/1/3 27.3 41873 758 1.0
RISA 55 2 12/1/3 36.5 4016 630 6.65
RRISA 33 4 8/3/3 35.5 4687 616 5.54
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

img_hp | Depth | Width | ~Nr/wo/re | pm?x10% | um? x 103 MHz Unit Area
ASIC - - - - 24.1 1429 502.1
FPGA - - - - 2040 241 1.0
QISA 21 3 1/1/3 27.3 1717 758 3.74
RISA 21 2 2/1/3 20.2 850 660 4.25
RRISA 21 2 2/3/3 20.9 879 620 3.91
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

thresh Depth | Width | Nr/we/re | pm? x10% | pm? x 103 MHz Unit Area
ASIC - - - - 3.2 1429 800.9
FPGA - - - - 450 251 1.0
QISA 17 2 1/1/3 27.3 927 758 1.47
RISA 17 2 2/1/3 20.2 688 660 1.11
RRISA 17 2 2/3/3 20.9 620 620 1.02
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

erode Depth | Width | Nrywo/re | pm? x10% | um? x 103 MHz Unit Area
ASIC - - - - 4.3 2173 1376.7
FPGA - - - - 710 263 1.0
QISA 9 2 1/1/3 273 491 758 417
RISA 9 2 2/1/3 20.2 364 660 3.16
RRISA 9 2 2/3/3 20.9 376 620 291

199




Table 11.4: continued

Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

img_out | Depth | Width | ~Nr/wo/re | pm?x10% | um? x 103 MHz Unit Area
ASIC - - - - 3.2 1694 1963.5
FPGA - - - - 930 253 1.0
QISA 7 4 1/1/3 27.3 763 758 3.65
RISA 10 2 2/1/3 20.2 405 660 3.88
RRISA 10 2 2/3/3 20.9 418 620 3.56
Fabric Tile Total Clock Normalized

Fabric | Fabric Type: Area, Area, Freq., | Throughput /

idea, Depth | Width | Nrywo/re | pm?x10% | um? x 103 MHz Unit Area
ASIC - - - - 508.8 1111 746.7
FPGA - - - - 71460 209 1.0
QISA 498 5 1/1/3 27.3 67880 758 3.82
RISA 265 2 12/1/3 36.5 19347 630 8.55
RRISA 265 2 12/3/3 71.8 38063 611 5.49

11.4 Comparisons

11.4.1 Speed

Figure 11.2 shows the clock frequency for the fastest implementations for each benchmark by
technology. The ASIC implementation is always the fastest and the FPGA implementation is
always the slowest. Of the HASTE implementations, the QISA implementation is always the
fastest, followed by the RISA, and RRISA implementations. This shows, not surprisingly, that
the simplest HASTE fabric, the static register fabric used for the QISA implementation, is the
fastest, followed by the next simplest, the asymmetric pass register fabric used for the RISA
implementations. The slowest fabric is also the most complicated, the symmetric pass register
fabrics used for the RRISA implementations. The QISA implementation is consistently more
than three times faster than the FPGA implementations and the RRISA and RISA implemen-
tations are consistently more than 2.5 times faster than the FPGA implementations. The ASIC
implementation frequencies vary widely, but are on average about twice as fast as the QISA

implementations.

200



2250

2000 /-—-\
1750 A h\

"

5\ 1500 !
o A.HJ
> 1230 u [mAsic
@ 1000 * FPGA
w ] v QISA
750‘ A RISA
RRISA
500 > RRISA
2500 —+———+—+—+—+—¢—+—+
0% % & 8 8 2 % & % % 53 %
T 3 § § §| 5 E :E: e ° =z
N £ 28
Benchmark

Figure 11.2: Frequency for Fastest Benchmark Implementations, by Technology.

201



11.4.2 Area

Figure 11.3 shows the area of the smallest implementations for each benchmark by technology.
Note that these results are shown on a log scale due to wide range of values. As one would expect,
the ASIC implementations are consistently 2 orders of magnitude smaller than the other imple-
mentations. The FPGA implementations are typically the largest implementations, although the
QISA implementations are several times larger in two instances and both the RISA and RRISA
are slightly larger for one benchmark. The QISA implementations are larger than either register
ISA, except for the applications that were already inherently level-planar. It should be noted
that the benchmark for which the HASTE ISA implementations are all larger than the FPGA
implementation is img-thresh, which is one of the narrowest benchmarks in terms of bitwidth,
in that it only deals with 8-bit or smaller values, so the 32-bit HASTE datapath is particularly

wasteful of resources

11.4.3 NTUA

Figure 11.4 shows the normalized throughput per unit area for each benchmark, by technol-
ogy. Note that the FPGA implementations are alway the worst by this metric, so all of the
other implementations are normalized to the FPGA implementation, which are given a value of
one. Again, the results are shown on a log scale. The ASIC implementations are around three
orders of magnitude better than the FPGA implementations by this metric. The RRISA and
RISA implementations range from 2 to 13 times better than the FPGA versions, and the QISA
implementations ranges from 1 to 9 times better. The only QISA implementations that were
better than either register ISA in terms of NTUA were the four small benchmarks mentioned
in Chapter 8 that were inherently level-planar and therefore did not require many additional
instructions for the queue implementations. The harmonic means of the NTUAs is 707.9 for the
ASIC implementations, 3.42 for the QISA implementations, 5.48 for the RISA implementations,
and 5.24 times better for the RRISA implementations (harmonic means are used here because

rates are being compared).

202



100,000

10,000 //\ /

LOOON\/‘ /

S S w2

,/'\ f v QISA
A RISA

» RRISA

Area, 10”3 Microns”™2

I—‘.\CD

g

I — _ o
22 8885 3 ¢ P -
T ® ® & & E g 2 B
o & S 9 £ o

o ©

Benchmark

Figure 11.3: Area for Smallest Benchmark Implementations, by Technology.

203



10,000

1'00()( /\ /./\

<
)
IE 100 m ASIC
¢ FPGA
v QISA
A RISA
10 » RRISA
[
4
ittty irE LYl
gEggyat EF 7
N £33
Benchmark

Figure 11.4: NTUA for Fastest Benchmark Implementations, by Technology.

204



11.4.4 Best Fabric

The previous section looked at the best implementation for each benchmark in each technology,
which required using many different HASTE fabrics, since some fabrics were better for some
benchmarks and other fabrics better for different benchmarks. A real HASTE system would
have a single fabric type that would be used for all benchmarks. In order to determine this, all
fabrics were evaluated to find the single best fabric for all the benchmarks. The harmonic mean
of TUA for all benchmarks was used as a metric and the single best fabric for each ISA was

found and are listed below:

ISA Best Fabric

QISA | NR1_WC1_RC3

RISA | NR4_WC1_RC3

RRISA | NR4_WC3_RC3

It is interesting to note that all of the best fabrics have the minimum connectivity possible,
with RC = 3. Also, a relatively small register file size of 4 is the best for both RISA and
RRISA. The best overall QISA fabric also happened to be the best fabric for each benchmark
individually. This was not true for RISA or RRISA; the best fabric was not the best for any
individual benchmark (note that a NR=4 and RC=4 fabric was best for img prew benchmark
for both RISA and RRISA, but it not the fastest version of this fabric). Of course, using a single
fabric for all benchmarks will have some cost in terms of performance for the benchmarks. Figure
11.5 shows the percentage of the best NTUA seen using the best fabric for the benchmark that
was achieved for each benchmark using the overall best fabric. Note that QISA is not included,
since the percentage would be 100% in each case. RISA showed a somewhat bigger cost than
RRISA for choosing a single fabric, with a penalty of greater than 50% seen for three benchmarks,
versus only 1 for RRISA. For both ISAs, the penalty was less than 20% for a majority of the
benchmarks. Figure 11.6 is a revision of Figure 11.4, using the single best fabric overall for the
RISA and RRISA implementations. There is little difference between the two figures, although
the advantage of RISA and RRISA as compared to QISA and FPGA are reduced.

205



NTUA for Common Fabric vs. Best
[0,
(]
2
|

m RISA
40‘Vv Y LORR|SA
0
30%
20%
10%
0% v o ¢ ¢ = o —
T3 FLE3EEggig
& € 3 g 2 S o B
N 5 ¥
Benchmark

Figure 11.5: NTUA Loss for Common Fabric Compared to Best Fabric

206



10,000

<
E 100 m ASIC
= ¢ FPGA
v QISA
A RISA
10 » RRISA

Benchmark

Figure 11.6: NTUA for Best Single Fabric Benchmark Implementations, by Technology.

207



11.5 Observations

The results in this chapter show that HASTE fabrics that are much better than FPGA fabrics in
terms of speed and NTUA, as well as area for all but two benchmarks. The kernel assembly files
sizes for HASTE are also much smaller than the configuration files for the kernel implementations
on FPGAs, as seen by comparing Table 11.3 with Tables 8.2, 8.3, and 8.4. The performance of
a real HASTE system would likely be even better than the results shown here, since it would be
implemented as much more efficient custom silicon, as opposed to the standard cells used here.
As expected, HASTE implementations were larger and slower than ASIC implementations. They
were typically two to three times slower than ASIC implementations and as much as a hundred
times larger. Once again, custom design of a HASTE fabric would greatly improve area and
performance. While this is also true of ASIC implementations, such custom design has to be
done for every different kernel, whereas once a custom HASTE fabric design is implemented, the
performance gains will apply to every kernel. This is the kind of design reuse that was discussed
in Chapter 1.

The differences between the three HASTE ISAs and RCF types were fairly small as compared
to the differences between HASTE and FPGAs or ASICs. Mappings of QISA kernels to static
register fabrics were slower than RISA or RRISA mappings to pass register fabrics. They were
also larger, with the exception of some very small kernels. RISA and RRISA mappings were very
similar, with a slight edge for the RISA mappings, due apparently to the fact that the asymmetric

pass register fabric is simpler than the symmetric pass register fabric.

208



Chapter 12

Conclusions and Future Work

12.1 Conclusions

In the HASTE ISA comparisons in Chapter 8, it was shown that QISA fared poorly in all of
the ISA metrics. RISA and RRISA were very close to each other in all metrics, with a slight
advantage for the RRISA in terms of the hardware latency and the hardware utilization. In
the area and performance evaluations in Chapter 11, the HASTE ISAs compared well to the
FPGA implementations, with clock speeds averaging more than twice as fast, and and as much
half the size. Given that the comparison is between a very highly optimized, full custom FPGA
design and an automated standard cell implementation of the HASTE fabrics, this shows a
significant advantage for HASTE, which would be even greater if the HASTE fabrics had the
extensive custom design and optimization of the FPGA. The register ISAs were slower than the
queue ISA, but were also smaller and had better normalized throughput per unit area values.
The RRISA and RISA implementations were very similar, although the RRISA implementations
were slightly slower and larger on average.

If absolute clock speed for the CTE is the most important consideration, than the QISA
implementations on the static register fabric may be the best. However, the code size and code
length disadvantages of the QISA kernels, as well as the overall inefficiencies of having to make
the entire application queue-legal and the need to use a special queue-based SPU, seem to clearly

outweigh the small performance advantages. The only QISA implementations that were better

209



than the register-based ISAs were the four very small benchmarks that were inherently level-
planar. Either the RRISA or RISA implementations provide nearly as good speed, smaller area,
and generally better throughput per unit area, when compared to QISA, as well as the ability to
use more conventional code for the non-kernel portions of the applications, and a conventional
(or near-conventional for RRISA) SPU. The clear superiority of fabrics with limited, highly local
interconnects is another important result. As discussed previously, this advantage should only
increase in future process technologies.

Perhaps the most important result is the demonstration that not only do HASTE architectures
work correctly, but they result in spatial fabrics that are much better than FPGA fabrics in terms
of both speed and area. In addition, HASTE architectures are much more easily programmable
and require a single executable. The kernel assembly files sizes for HASTE are also much smaller
than the configuration files for the kernel implementations on FPGAs, as seen by comparing
Table 11.3 with Figure 8.7. The performance of a real HASTE system would likely be much
better than the results shown here, since it would be implemented as much more efficient custom

silicon, as opposed to the standard cells used here.

12.2 Future Work

While this thesis outlined the basic requirements and functionality of HASTE systems, there
were several assumptions made about the fabrics that limit their suitability for real systems. In
addition there are many additional architectural concepts that can be applied to the HASTE
concept to improve its performance and efficiency, and to expand the range of kernels that can

be implemented on HASTE architectures.

12.2.1 Depth and Width Virtualization

In this thesis, it was assumed that the size of the fabric was exactly large enough to fit each
particular kennel. While this simplified experiments and analysis, it is not a valid assumption
for a real programmable fabric. This problem can be handled using the concept of hardware
virtualization. The PipeRench architecture demonstrated that depth virtualization of a pipelined

fabric can be done practically and automatically in hardware [18]. Since all of the best RISA

210



and RRISA fabrics were narrow, it would be possible to just use a relatively narrow fabric with
depth virtualization to allow for implementation of kernels of all sizes. This would preclude
the use of the queue ISA, since it is not possible to change the width of queue DFGs, another
advantage of the register-based ISAs. Virtualization of pipeline width is more complicated than
depth virtualization, but there are several possible techniques that should be explored. It may
also be possible to take a fixed size fabric and rearrange the interconnect to create pipelines of
different widths. For instance, a ten tile by ten tile fabric might be reconfigured as a five by
twenty fabric, a four by twenty-five fabric, or a two by fifty fabric. Some sort of virtualization,

either of depth, width, or both, is probably needed for any practical HASTE system.

12.2.2 Feedback

None of the application kernels exhibited inter-iteration feedback. Allowing this would allow for
the implementation of a wider range of applications. Feedback presents problems for a pipelined
fabric, however, and may require c-slow re-timing of the fabric or other technique that may
severely impact performance. Feedback may also be implemented through the memory interface

for feedback across many iterations.

12.2.3 Narrow Tiles

HASTE as shown here uses 32-bit tiles. This effects the area efficiency for applications that use
narrow operand bit widths. Using narrow tiles that operate on 16 or 8-bit data, for instance, and
that can be combined to operate on wider values would be one way to improve area efficiency. This
techniques has been implemented in several architectures, including PipeRench. The combined
executable property of HASTE makes this more complicated and may require the development

of new techniques.

211



Appendix A

Glossary

Column
CTE
DFG
Fy

Fy

GHAL

HASTE

ng

No

A set of tiles on different levels at the same postion within each stripe.
Code Transformation Engine

Dataflow graph.

Fabric Width

Fabric Depth

Generic HASTE Assebly Language. Form of architecture/ISA independent assembly
code used in the HASTE tool flow.

Hybrid Architectures with a Single, Transformable Executable
Number of inputs for an operation.

Number of outputs for an operation.

Set of computation operations

Set of data movement operations

Set of control flow operations

Set of computation operations that can run on the SPU.

Set of data movement operations that can run on the SPU.

212



Oss Set of control flow operationst that can run on the SPU.

Oy, Set of all operations that can run on the RCF.
Ope Set of computation operations that can run on the RCF.
Okm Set of data movement operations that can run on the RCF.

QISA Queue ISA
RCF Reconfigurable Computational Fabric
RISA Register ISA

Row A set of tiles at the same level in the fabric. Equivalent to a pipeline stage. Also

referred to as a stripe.
RRISA Relative Register ISA
SPU Sequential Processing Element
Stripe See Row

Tile Repeating element composing the RCF. Each tile consists of a register file and an

ALU.

213



Appendix B

HASTE ISA Reference

ADD 0x40

Add

Queue Formats: ADD, ADD2

Register Format: ADD routl, rinl, rin2

Description: Add word in1 to word in2. Result is out1.
Function: outl ¢ inl + in2
Queue POP inl, in2

PUSH (inl + in2)
Register GPR[routl] ¢ (GPR[inl] + GPR[in2])
ADDI 0x41 Add Immediate
Queue Formats: ADDI, ADDI2

Register Format: ADDI routl, rinl, imm(16)

Description:
outl.

Function:

Queue POP
PUSH

Add word inl to immediate value imm. Result is

outl ¢« inl + imm

inl
(inl + imm)

Register = GPR[routl] ¢ (GPR[rinl] + imm)

214

2,1



AND Ox4E And 2,K

Queue Formats: AND, AND2

Register Format: AND routl, rinl, rin2

Description: Bitwise Boolean AND of words in/ and in2. Place result in
outl.

Function: outl <« inl AND in2

Queue POP inl, in2
PUSH (inl AND in2)

Register R[routl] <« (R[inl] AND R[in2])

ANDI Ox4F And Immediate 2,1L.K

Queue Formats: ANDI, ANDI2
Register Format: ANDI routl, rinl, imm

Description: Bitwise Boolean AND of word in/ and immediate imm.
Place result in outl.

Function: outl « inl AND imm
Queue POP inl
PUSH (inl AND imm)
Register R[routl] « (R[rinl] AND imm)
DROP OxF6 Drop Q,K

Queue Formats: DROP

Register Format:  N/A

Description: Discard word at front of queue.
Function: T« inl
Queue POP inl

215




LIS OxEC Load Immediate Signed 2,1LK

Queue Formats: LIS, LIS2

Register Format: LIS imm

Description: Place sign-extended immediate imm in outl.
Function: outl « imm
Queue PUSH sign extended (imm)
Register (Rlroutl]) |0 « imm
(R[routl]) |ar <« sign bit of imm
LIV OxEB Load Immediate Unsigned 2,1LK
Queue Formats: LIU, LIU2
Register Format:  LIU imm
Description: Place zero-extended unsigned immediate imm in outl.
Function: outl « imm
Queue PUSH zero_ extended (imm)
Register (Rlroutl]) |0 « imm

(R[routl]) |sr < 0000000000000000

LPBGN OxDA Loop Begin

Queue Formats: LPBGN
Register Format:  LPBGN routl, rinl
Description: Begin iterating loop number of times equal to in/. For register

ISAs, store loop variable in outl, for queue ISA use
architected loop register.

Function: loop reg « inl
Queue POP 1inl (store in loop register)
Register R[routl] « GPR[rinl]

216




LPBGNI 0xDB Loop Begin Immediate I

Queue Formats: LPBGNI
Register Format:  LPBGNI routl, imm
Description: Begin iterating loop number of times equal to imm. For

register ISAs, store loop variable in out!, for queue ISA use
architected loop register.

Function: loop reg <« imm

Queue (store imm in loop register)
Register R[routl] <« imm

LPEND 0xDC Loop End

Queue Formats: LPEND addr
Register Format: ~ LPEND rinl, addr
Description: Decrement loop variable. Branch to addr if loop variable > 0.

For register ISAs, loop variable is in in/, for queue ISA it is
in architected loop register.

Function: loop reg--; branch to addr if > O
Queue loop reg--; branch to addr if > 0
Register R{rinl]--; branch to addr if > O
LUI O0xA2 Load Upper Immediate I,K

Queue Formats: N/A

Register Format: LUI imm

Description: Place 16-bit immediate imm into high bits of outl, zeroes into
lower bits.
Function: outl <« imm
Queue PUSH zero padded (imm)
Register (R[routl]) |10 « 0000000000000000
(R[routl]) |g « 1imm

217




MOVE OxE9 Move K

Queue Formats: N/A

Register Format:  MOVE routl, rinl

Description: Place value inl into outl.

Function: outl « inl

Register Rlroutl] « (R[rinl])

MUL OxF2 Signed Partial Multiply 2,K

Queue Formats: MUL, MUL2
Register Format: MUL routl, rinl, rin2

Description: Multiply two signed words, in/ and in2. Place low
word of result in outl.

Function: outl « inl x in?2
Queue POP inl, in2
PUSH (inl x in2) |0
Register R[routl] « (R[rinl] x R[rin2]) |io
MULI OxE1 Signed Partial Multiply by Immediate 2,,K
Queue Formats: MULI, MULI2
Register Format: MULI routl, rinl, imm
Description: Multiply signed word in/ by signed immediate imm. Place

low word of result in out!.
Function: outl <« inl x imm

Queue POP inl
PUSH (inl x imm) |10

Register Rlroutl] « (R[rinl] x imm) |

218




MULIU OxE3 Unsigned Partial Multiply by Immediate  2,1,K

Queue Formats: MULIU, MULIU2

Register Format: MULIU routl, rinl, imm

Description: Multiply unsigned word in/ by unsigned immediate imm.
Place low word of result in out1.
Function: outl «— inl x imm
Queue POP inl
PUSH (inl x imm) |10
Register Rlroutl] « (R[rinl] x imm) |0
MULT 0x46 Signed Multiply K,X

Queue Formats: MULT, MULTX

Register Format: MULT routl, rout2, rinl, rin2

Description: Multiply two unsigned words, in/ and in2. Place low
word of result in out/ and high word of result in ouz2.

Function: (outl, out2) « inl x in2
Queue POP inl, in2

PUSH (inl x in2) |, (inl x in2) |
Register R[routl] « (R[rinl] x R[rin2]) |io

R[rout2] « (R[rinl] x R[rin2]) |u:
MULTI OxE6 Signed Multiply by Immediate LXK

Queue Formats: MULTI, MULTIX

Register Format: MULTI routl, rout2, rinl, imm

Description: Multiply signed word in/ by signed immediate imm. Place
low word of result in out/ and high word of result in ouz2.

Function: (outl, out2) « inl x imm

Queue POP inl

PUSH (inl x imm) |0, (inl x imm) |ar

Register R[routl] «— (R[rinl] x imm) |0
R[routl + 1] « (R[rinl] x imm) |gr

219




MULTIU

OXE7 Unsigned Multiply by Immediate LXK

Queue Formats: MULTIU, MULTIUX

Register Format: MULTIU routl, rout2, rinl, imm

Description: Multiply unsigned word in/ by unsigned immediate imm.
Place low word of result in out/ and high word in outz2.
Function: (outl, out2) « inl x imm
Queue POP inl
PUSH (inl -+ imm) |10, (inl x imm) |gr
Register R[routl] «— (R[rinl] x imm) |10
R[routl + 1] « (R[rinl] x imm) |gr
MULTU OxES Unsigned Multiply K

Queue Formats: MULTU, MULTUX

Register Format: MULTU routl, rout2, rinl, rin2

Description: Multiply two unsigned words, in/ and in2. Place low word of
result in out/ and high word of result in out2.
Function: (outl, out2) « inl x in2
Queue POP inl, in2
PUSH (inl X in2) |, (inl x in2) |ar
Register R[routl] «— (R[rinl] x R[rin2]) |
Rlroutl + 1] « (R[rinl] x R[rin2]) |a:
MULU OxE2 Unsigned Partial Multiply 2K

Queue Formats: MULU, MULU2

Register Format: MULU routl, rout2, rinl, rin2

Description:
Function:

Queue

Register

Multiply two unsigned words, in/ and in2. Place low word of
result in outl.
outl « inl x in2

POP inl, in2
PUSH (inl x in2) |10

Rlroutl] « (R[rinl] x R[rin2]) |

220




NOP 0x00 No Operation

Queue Formats: NOP

Register Format:  NOP
Description: No operation.

Function: None.

NOR 0x54 Nor

2K

Queue Formats: NOR, NOR2

Register Format: NOR routl, rinl, rin2

Description:
outl.
Function: outl « inl NOR in?2

POP
PUSH

inl, in2
inl NOR in2

Queue

Register Rlroutl] « (R[inl]

Bitwise Boolean NOR of words in/ and in2. Place result in

NOR R[in2])

NORI OxEA Nor Immediate

2,,K

Queue Formats: NORI, NORI2

Register Format: NORI routl, rinl, imm

Description:
Place result in outl.
Function: outl « inl NOR imm
Queue POP inl

PUSH 1inl NOR imm
Register R[routl] « (R[rinl]

Bitwise Boolean NOR of words in/ and immediate imm.

NOR imm)

221




NOT Ox5F

Not 2,K

Queue Formats:

Register Format:

NOT, NOT2

NOT routl, rinl

Description: Bitwise Boolean NOT of word in. Place result in out!.
Function: outl « NOT inl
Queue POP inl

PUSH NOT inl
Register GPR[routl] <« (NOT GPR[inl])
OR 0x50 Or 2K
Queue Formats: OR, OR2

Register Format:

OR routl, rinl, rin2

Description: Bitwise Boolean OR of words in/ and in2. Place result in
outl.
Function: outl « inl OR in?2
Queue POP inl, in2
PUSH inl OR in2
Register R[routl] « (R[inl] OR R[in2])
ORI 0x51 Or Immediate 2,1 K
Queue Formats: ORI, ORI2

Register Format:

ORI routl, rinl, imm

Description: Bitwise Boolean OR of words in/ and immediate imm. Place
result in outl.
Function: outl « inl OR imm
Queue POP inl
PUSH inl OR imm
Register R[routl] « (R[rinl] OR imm)

222




PASS

0xDE Pass Q,2,K

Queue Formats: PASS, PASS2

Register Format:  N/A

Description: Queue only. Remove word at front of queue, place at end of
queue.
Function: outl « inl
Queue POP inl
PUSH inl
RECV 0xBO Receive Data 2,K

Queue Formats: RECV, RECV2

Register Format:  RECV routl, rinl

Description: Receive word from memory port given by in/. Place word in
outl. Address in memory port incremented after read.
Function: outl <« Receive word(Port = inl)
Queue POP inl
PUSH Receive word(Port = inl)
Register R[routl] <« Receive word(Port = R[rinl])
RECVB 0x60 Receive Data Byte 2,K

Queue Formats: RECVB, RECVB2

Register Format:  RECVB routl, rinl

Description:

Function:

Queue

Register

Receive signed byte from memory port given by inl. Place
sign-extended byte in out/. Address in memory port
incremented after read.
outl < Receive byte(Port = inl)

POP inl
PUSH Receive byte(Port = inl)

R[routl] <« Receive byte(Port = R[rinl])

223




RECVBP

0x61 Receive Data Byte Port Imm. 2,LK

Queue Formats: RECVBP, RECVBP2

Register Format: =~ RECVBP routl, port

Description: Receive signed byte from memory port given by port. Place
sign-extended byte in out/. Address in memory port
incremented after read.

Function: outl « Receive byte(Port = port)

Queue PUSH Receive byte(Port = port)

Register R[routl] <« Receive byte(Port= port)

RECVBPU OxF1 Receive Data Byte Port Imm. Unsigned  2,I,K

Queue Formats: RECBPU, RECBPU2

Register Format:  RECVBPU routl, port

Description: Receive unsigned byte from memory port given by port.

Place sign-extended byte in out/. Address in memory port
incremented after read.

Function: outl « Receive byte (Port = port)

Queue PUSH Receive byte (Port = port)

Register R[routl] <« Receive byte(Port = port)

RECVBU OxFO Receive Data Byte Unsigned 2K

Queue Formats: RECVBU, RECVBU2

Register Format:  RECVBU routl, rinl

Description:
Function:

Queue

Register

Receive unsigned byte from memory port given by in/. Place
byte in out/. Address in memory port incremented after read.
outl <« Receive (Port = inl)

POP inl
PUSH Receive byte(Port = inl)

R[routl] « Receive byte(Port = R[rinl])

224




RECVH

0Ox64 Receive Data Halfword 2,K

Queue Formats: RECVH, RECVH2

Register Format:  RECVH routl, rinl

Description: Receive halfword from memory port given by in/. Place half-
word in outl. Address in memory port incremented after read.
Function: outl « Receive halfword(Port = inl)
Queue POP inl
PUSH Receive halfword(Port = inl)
Register R[routl] <« Receive halfword(Port = R[rinl])
RECVHP 0x65 Receive Data Halfword Port Imm. 2,1LK

Queue Formats: RECVHP, RECVHP2

Register Format: RECVHP routl, port

Description: Receive halfword from memory port given by port. Place
halfword in out/. Address in memory port incremented after
read.

Function: outl « Receive halfword(Port = port)

Queue PUSH Receive halfword(Port = port)

Register R[routl] « Receive halfword(Port = port)

RECVHPU OxF5 Receive Data Halfword Uns. Port Imm.  2,I,K

Queue Formats: RECVHPU, RECVHPU2

Register Format: RECVHPU routl, port

Description:

Function:
Queue

Register

Receive unsigned halfword from memory port given by port.
Place halfword in outl. Address in memory port incremented
after read.

outl < Receive halfword(Port = port)

PUSH Receive halfword(Port = port)

R[routl] <« Receive halfword(Port = port)

225




RECVHU OxF4 Receive Data Halfword Unsigned 2K

Queue Formats: RECVHU, RECVHU2

Register Format: = RECVHU routl, rinl

Description: Receive unsigned halfword from memory port given by inl.
Place halfword in outl. Address in memory port incremented
after read.

Function: outl « Receive halfword(Port = inl)

Queue POP inl

PUSH Receive halfword(Port = inl)
Register R[routl] <« Receive halfword(Port = R[rinl])
RECVP 0xB1 Receive Data Port Imm. 2,ILK

Queue Formats: RECVP, RECVP2

Register Format:  RECVP routl, port

Description: Receive word from memory port given by port.
Place word in outl. Address in memory port incremented
after read.

Function: outl « Receive (Port = port)

Queue PUSH Receive (Port = port)

Register GPR[routl] <« Receive (Port = port)

SEL OxE8 Select 2,K.R

Queue Formats: SEL, SEL2, SELR, SEL2R

Register Format: SEL routl, rinl, rin2 (vin3 = rin2 + 1)

Description: If LSB of inl equals 1, place in2 in outl. Otherwise, place
in3.
Function: Forward: outl « (inl ? in2 : in3)
Reverse: outl « (inl ? in3 : 1in2)
Queue POP inl, in2, in3

PUSH (inl ? in2 : in3) [R: (inl ? in2 : in3)]

Register GPR[routl] < (GPR[rinl] ? GPR[rin2] : GPR[rin3])

226




SELX OxFA

Select X (Queue variant)

Q,2,K,R

Queue Formats:

SELX, SELX2, SELXR, SELX2R

Register Format:  N/A
Description: If LSB of in2 equals 1, place in/ in outl. Otherwise, place
in3 in outl.
Function: Forward: outl « (in2 ? inl in3)
Reverse: outl «— (in2 ? in3 inl)
Queue POP inl, in2, in3
PUSH (in2 ? inl in3) [R: (in2 ? in3 inl) ]
SELY OxFB Select Y (Queue variant) Q,2,K,R

Queue Formats:

Register Format:

SELY, SELY2, SELYR, SELY2R
N/A

Description: If LSB of in3 equals 1, place inl in outl. Otherwise, place
in2 in outl.
Function: Forward: outl « (in3 ? inl in2)
Reverse: outl «— (in3 ? 1in?2 inl)
Queue POP inl, in2, in3
PUSH (in3 ? inl in2) [R: (in3 ? in?2 inl) ]
SEND 0xB2 Send Data R,K

Queue Formats:

Register Format:

SEND, SENDR

SEND rinl, rin2

Description: Send word inl to memory port given by in2.
Function: Send(inl, Port = 1in2)
Queue POP inl, in2
Send (inl, Port = in2)
Register Send (R[rinl], Port = R[rin2])

227




SENDB 0x68 Send Data Byte R,K
Queue Formats: SENDB, SENDBR
Register Format: SENDB rinl, rin2
Description: Send byte in/ to memory port given by in2.
Function: Send byte (inl, Port = in2)
Queue POP inl, 1in2
Send byte(inl, Port = in2)
Register Send byte(R[rinl], Port = R[rin2])
SENDBP 0x69 Send Data Byte Port Immediate I,K
Queue Formats: SENDBP
Register Format: SENDBP rinl, port
Description: Send byte in/ to memory port given by port.
Function: Send byte (inl, Port = port)
Queue POP inl
Send byte(inl, Port = port)
Register Send byte (R[rinl], Port = port)
SENDH Ox6A Send Data Halfword R,K

Queue Formats: SENDH, SENDHR

Register Format:  SENDH rinl, rin2

Description: Send halfword in/ to memory port given by in2.
Function: Send halfword(inl, Port = in2)
Queue POP inl, in2

Send halfword(inl, Port = in2)

Register Send halfword(R[rinl], Port = R[rin2])

228




SENDHP 0x6B Send Data Halfword Port Immediate

I,K

Queue Formats: SENDHP

Register Format: SENDHP rinl, port

Description: Send halfword in/ to memory port given by port.
Function: Send halfword(inl, Port = port)
Queue POP inl
Send halfword(inl, Port = port)
Register Send halfword(R[rinl], Por t= port)
SENDP 0xB3 Send Data Port Immediate [,K
Queue Formats: SENDP
Register Format: SENDP rinl, port
Description: Send word inl to memory port given by port.
Function: Send (inl, Port = port)
Queue POP inl
Send (inl, Port = port)
Register Send (R[rinl], Port = port)
SEQ OxED Set If Equal 2 K

Queue Formats: SEQ, SEQ2

Register Format: SEQ routl, rinl, rin2

Description: Send out! to one if inl equals in2, zero otherwise.
Function: outl = (inl == 1in2)
Queue POP inl, in2
PUSH (inl == 1in2)
Register R[routl] = (R[rinl] == R[rin2])

229




SEQI OxEF Set If Equal Immediate 1,2,K

Queue Formats: SEQI, SEQI2

Register Format: SEQI routl, rinl, imm
Description: Send out! to one if inl equals imm, zero otherwise.
Function: outl = (inl == imm)
Queue POP inl
PUSH (inl == imm)
Register R[routl] = (R[rinl] == imm )
SETB 0xB5 Set Port Base Address R,K

Queue Formats: SETB, SETBR

Register Format: SETB rinl, address

Description: Send base address for port given by in/ to address.
Function: Set base address(address, Port = inl)
Queue POP inl

Set base address(address, Port = inl)
Register Set base address(address, Port = R[rinl])
SETBP 0xB7 Set Port Immediate Base Address I,K
Queue Formats: SETBP
Register Format:  SETB port, address
Description: Send base address for port to address.
Function: Set base address (address, Port = port)
Queue Set base address(address, Port = port)
Register Set base address (address, Port = port)

230




SETS 0xB8 Set Port Stride

Queue Formats: SETS, SETSR

Register Format:  SETS rinl, rin2

Description: Send stride for port given by in! to stride in rin2.
Function: Set stride(stride = in2, Port = inl)
Queue POP inl, in2

Set stride(stride = in2, Port = inl)
Register Set stride(stride = R[in2], Port = R[inl])
SETSI 0xB9 Set Port Stride Immediate

Queue Formats: SETSI

Register Format: ~ SETSIrinl, stride

Description: Send stride for port given by in/ to stride.
Function: Set stride(stride = stride, Port = inl)
Queue POP inl

Set stride(stride = stride, Port = inl)
Register Set stride(stride = stride, Port = R[inl])
SETSP OxBA Set Port Immediate Stride

Queue Formats: SETSP
Register Format:  SETB port, rinl

Description: Send stride for port to value in inl.

inl, Port = port)

Function: Set stride(stride

Queue POP inl
Set stride(stride = inl, Port = port)

Register Set stride(stride = R[inl], Port = port)

231




SETSPI 0xBB Set Port Immediate Stride Immediate I,K

Queue Formats: SETSPI

Register Format:  SETSPI port, stride

Description: Send stride for port to stride.

Function: Set stride(stride = stride, Port = port)

Queue Set stride(stride = stride, Port = port)
Register Set stride(stride = stride, Port = port)

SLL 0x56 Shift Left Logical 2,KR

Queue Formats: SLL, SLL2, SLLR, SLL2R

Register Format: SLL routl, rinl, rin2

Description: Shift word in/ left number of places indicated by in2. Place
result in out!.
Function: outl « inl << in2
Queue POP inl, in2
PUSH (inl << in2)
Register R[routl] « (R[rinl] << R[rin2])
SLLI 0x55 Shift Left Logical Immediate 2,1LK

Queue Formats: SLLI, SLLI2
Register Format: SLLIroutl, rinl, shamt

Description: Shift word in! left number of places indicated by immediate
shamt. Place result in outl.

Function: outl « 1inl << shamt

Queue POP inl
PUSH (inl << shamt)

Register R[routl] <« (R[rinl] << shamt)

232




SLT 0x5B

Set Less Than 2,K.R

Queue Formats:

Register Format:

SLT, SLT2, SLTR, SLT2R

SLT routl, rinl, rin2

Description: Set outl to 1 if inl is less than in2 , otherwise set outl to 0.
Function: outl « (inl < i2 2?2 1 0)
Queue POP inl, in2
PUSH (inl < in2 ? 1 0)
Register R[routl] « (R[rinl] < R[rin2] ? 1 0)
SLTI 0x5C Set Less Than Immediate 2,ILK

Queue Formats:

Register Format:

SLTI, SLTI2

SLTI routl, rinl, imm

Description: Set outl to 1 if inl is less than immediate imm , otherwise set
outl to 0.
Function: outl « (inl < imm ? 1 0 )
Queue POP inl, imm
PUSH (inl < imm ? 1 0)
Register R[routl] « (R[rinl] < imm ? 1 0)
SLTIU Ox5E Set Less Than Immediate Unsigned 2,1 K

Queue Formats:

Register Format:

SLTIU, SLTIU2

SLTIU routl, rinl, imm

Description: Set outl to 1 if inl is less than immediate imm , otherwise set
outl to 0.
Function: outl <« (inl < imm ? 1 0 )
Queue POP inl, imm
PUSH (inl < imm ? 1 0)
Register R[routl] « (R[rinl] < imm ? 1 0)

233




SLTU 0x5D Set Less Than Unsigned 2,K.R

Queue Formats: SLTU, SLTU2, SLTUR, SLTU2R

Register Format: SLTU routl, rinl, rin2

Description: Set outl to 1 if inl is less than in2 , otherwise set outl to 0.
Function: outl « (inl < i2 2 1 : 0 )
Queue POP inl, in2
PUSH (inl < i2 2 1 : 0)
Register R[routl] « (R[rinl] < R[in2] 2 1 : 0)
SNE OxEE Set If Not Equal 2K

Queue Formats: SNE, SNE

Register Format: SNE routl, rinl, rin2

Description: Set outl to 1 if inl is not equal to in2 , otherwise set outl to
0.
Function: outl « (inl !=i2 2 1 : 0 )
Queue POP inl, in2
PUSH (inl !'= i2 2 1 : 0)
Register R[routl] « (R[rinl] !'= R[in2] 2?2 1 : 0)
SNEI OxEO Set If Not Equal Immediate ILK,R

Queue Formats: SNEI

Register Format: SNEI routl, rinl, imm

Description: Set outl to 1 if inl is not equal to imm , otherwise set outl to
0.
Function: outl « (inl !=i2 2?2 1 : 0 )
Queue POP inl
PUSH (inl != imm 2 1 : 0)
Register R[routl] <« (R[rinl] != imm 2 1 : 0)

234




SRA Ox5A

Shift Right Arithmetic 2,K,.R

Queue Formats:
Register Format:

Description:
in

Function: outl

SRA, SRA2, SRAR, SRA2R
SRA routl, rinl, rin2

Shift word in/ right number of places indicated by in2. Shift
1 or 0 according to MSB to preserve sign. Place result in out1.

«— inl >> in?2

Queue POP inl, in2
PUSH (inl >> in2)
Register R[routl] « (R[rinl] >> R[rin2])
SRAI 0x59 Shift Right Arithmetic Immediate 2,ILK
Queue Formats: SRAI SRAI2

Register Format:

SRAI routl, rinl, shamt

Description: Shift word in/ right number of places indicated by shamt.
Shift in 1 or 0 according to MSB to preserve sign. Place result in
outl.
Function: outl « inl >> shamt
Queue POP inl
PUSH (inl >> shamt)
Register R[routl] <« (R[rinl] >> shamt)
SRL 0x58 Shift Right Logical 2,K.R

Queue Formats:

Register Format:

SRL, SRL2, SRLR, SRL2R

SRL routl, rinl, rin2

Description: Shift word in/ right number of places indicated by in2. Place
result in outl.
Function: outl « inl >> in?2
Queue POP inl, in2
PUSH (inl >> inZ2)
Register Rlroutl] « (R[rinl] >> R[rin2])

235




SRLI

0x57 Shift Right Logical Immediate 2,1LK

Queue Formats: SRLI, SRLI2

Register Format: SRLI routl, rinl, shamt

Description: Shift word shamt right number of places indicated by
immediate imm. Place result in outl.
Function: outl « inl >> shamt
Queue POP inl
PUSH (inl >> shamt)
Register R[routl] « (R[rinl] >> shamt)
SUB 0x44 Subtract 2,K.R

Queue Formats: SUB, SUB2, SUBR, SUB2R

Register Format: SUB routl, rinl, rin2

Description: Subtract word in2 from word in/. Place result in out!.
Function: outl « inl - in2
Queue: POP inl, in2
PUSH (inl - inZ2)
Register: R[routl] « (R[rinl] - R[rin2])
SUBI OxF7 Subtract Immediate 2,1 K
Queue Formats: SUBI, SUBI2
Register Format: SUBI routl, rinl, imm
Description: Subtract immediate value imm from word inl. Place result in
outl.
Function: outl « inl - imm
Queue: POP inl
PUSH (inl - imm)
Register: R[routl] « (R[rinl] - imm)

236




SUBIU OxFC Subtract Immediate Unsigned 21K

Queue Formats: SUBIU, SUBIU2

Register Format: SUBIU routl, rinl, imm

Description: Subtract immediate value imm from word in/. Place result in
outl.
Function: outl « inl - imm
Queue: POP inl
PUSH (inl - imm)
Register: R[routl] « (R[rinl] - imm)
SUBU 0x45 Subtract Unsigned 2,K.R

Queue Formats: SUBU, SUBU2, SUBUR, SUBU2R

Register Format: SUBU routl, rinl, rin2

Description: Subtract word in2 from word in/. Place result in out!.
Function: Forward: outl « inl - in2
Queue: POP inl, in2
PUSH (inl - inZ2)
Register : Rlroutl] « (R[rinl] - R[in2])
SWAP OxFD Swap Q,K

Queue Formats: SWAP

Register Format:  N/A

Description: Queue only. Swap two words at front of queue, place at end
of queue.

Function: (outl, out2) « (in2, inl)

Queue POP inl, in2

PUSH in2, inl

237




XOR

0x52 Exclusive Or 2,K

Queue Formats: XOR, XOR2

Register Format: XOR routl, rinl, rin2

Description: Bitwise Boolean XOR of words in/ and in2. Place result in
outl.
Function: outl « inl XOR in?2
Queue POP inl, in2
PUSH inl XOR in2
Register R[routl] « (R[inl] XOR R[in2])
XORI 0x53 Exclusive Or Immediate 2,1LK

Queue Formats: XORI, XORI2

Register Format: XORI routl, rinl, imm

Description: Bitwise Boolean XOR of words in/ and immediate imm.
Place result in outl.
Function: outl « inl XOR imm
Queue POP inl
PUSH inl XOR imm
Register
R[routl] « (R[rinl] XOR imm)
ZACC 0x53 Accumulate From Zero 2K

Queue Formats: ZACC, ZACC2

Register Format:  ZACC routl, rinl

Description:

Function:
Queue

Register

Starting with zero, accumulate values from rin/. Place
result in outl.

outl <« inl + acc (acc = acc + inl)
PUSH acc + inl (acc = acc + inl)

R[rinl] « (R[rinl] + acc)

238




Appendix C

Benchmark Kernels

Note: Source code for kernels used in the ATR, application are in Appendix F.

DCT1

/*jfdctint.

¥ X X X ¥ ¥ X X ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ ¥ ¥

*/

Copyright (C) 1991-1994, Thomas G. Lane.
This file is part of the Independent JPEG Group’s software.
For conditions of distribution and use, see the accompanying README file.

This file contains a slow-but-accurate integer implementation of the
forward DCT (Discrete Cosine Transform).

A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
on each column. Direct algorithms are also available, but they are
much more complex and seem not to be any faster when reduced to code.

This implementation is based on an algorithm described in

C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
Algorithms with 11 Multiplications", Proc. Int’l. Conf. on Acoustics,
Speech, and Signal Processing 1989 (ICASSP ’89), pp. 988-991.

The primary algorithm described there uses 11 multiplies and 29 adds.

We use their alternate method with 12 multiplies and 32 adds.

The advantage of this method is that no data path contains more than one
multiplication; this allows a very simple and accurate implementation in
scaled fixed-point arithmetic, with a minimal number of shifts.

#include <stdio.h>

239



#include <stdlib.h>

// Original file was jfdctint.c

// and was Copyright (C) 1991-1994, Thomas G. Lane.

// Modified 19May2003 by Ben Levine

// Removed references to external header files and fixed optiomns.
// 20May2003 - Ben Levine

// Added simple main() and sample input and output:

// Operation verified in MATLAB

//

typedef short INT16;

typedef long INT32;

#define ONE ((INT32) 1)

#define NUM_DATA 10000

#define DCTSIZE 8

#define BITS_IN_JSAMPLE == 8

#define CONST_BITS 13

#define PASS1_BITS 2

#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
#define FIX_0_298631336 ((INT32) 2446)

#define FIX_0_390180644 ((INT32) 3196)

#define FIX_0_541196100 ((INT32) 4433)

#define FIX_0_765366865 ((INT32) 6270)

#define FIX_0_899976223 ((INT32) 7373)

#define FIX_1_175875602 ((INT32) 9633)

#define FIX_1_501321110 ((INT32) 12299)

#define FIX_1_847759065 ((INT32) 15137)

#define FIX_1_961570560 ((INT32) 16069)

#define FIX_2_053119869 ((INT32) 16819)

#define FIX_2_562915447 ((INT32) 20995)

#define FIX_3_072711026 ((INT32) 25172)

/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/

#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (comst)))
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))

typedef int DCTELEM;

void fdctl (DCTELEM *data);

int main (void)

{

int i;

int *p_data;

p_data = malloc(DCTSIZExNUM_DATA*sizeof (DCTELEM)) ;

for (i = 0; i < (DCTSIZE * NUM_DATA); i++) {

p_datal[i] = (int) ((unsigned char)rand());

}

fdctl(p_data);

return O;

240



}

// 2 KERNELS

void fdctl (DCTELEM* data)

{

DCTELEM in0O, inl, in2, in3, in4, inb, in6, in7;
DCTELEM out0O, outl, out2, out3, out4, outb5, out6, out?;
DCTELEM tmpO, tmpl, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmpll, tmpl2, tmpl3, tmpl4;
DCTELEM =z1, z2, =3, z4, z5, z6;

DCTELEM *dataptr;

int ctr;

dataptr = data;

asm("dlpbgn™);

for (ctr = NUM_DATA; ctr >= 0; ctr--) {

in0 = dataptr[0];

inl = dataptr[1];

in2 = dataptr[2];

in3 = dataptr[3];

in4 = dataptr[4];

inb = dataptr[5];

in6 = dataptr[6];

in7 = dataptr[7];

tmp0 = in0 + in7;

tmp7 = in0 - in7;

tmpl = inl + in6;

tmp6 = inl - in6;

tmp2 = in2 + inb;

tmp5 = in2 - inb;

tmp3 = in3 + in4;

tmp4 = in3 - in4;

tmp10 = tmp0 + tmp3;

tmpl3 = tmp0 - tmp3;

tmpll = tmpl + tmp2;

tmpl2 = tmpl - tmp2;

out0 = (DCTELEM) ((tmp10 + tmpll) << PASS1_BITS);
out4 = (DCTELEM) ((tmp10 - tmpll) << PASS1_BITS);
tmpl4 = tmpl2 + tmpl3;

z1 = MULTIPLY(tmpl4, FIX_0_541196100);

out2 = (DCTELEM) DESCALE(zl1 + MULTIPLY(tmpl3, FIX_0_765366865),

CONST_BITS-PASS1_BITS);

out6 = (DCTELEM) DESCALE(z1 + MULTIPLY(tmpl2, - FIX_1_847759065),

CONST_BITS-PASS1_BITS);

/* 0dd part per figure 8 --- note paper omits factor of sqrt(2).

* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.

*/

z1l = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmpb5 + tmp7;

241



z6 = tmp4 + tmp5 + tmp6 + tmp7;

zb = MULTIPLY(z6, FIX_1_175875602); /* sqrt(2) * c3 */

tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-cl+c3+cb-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( cl+c3-cb+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( cl+c3+cb-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( cl+c3-cb-c7) */
z1 = MULTIPLY(zl1, - FIX_0_765366865); /* sqrt(2) * (c7-c3) */

z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-cl-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-cb) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += zb;
z4 += zb;

out7 = (DCTELEM) DESCALE(tmp4 + z1
outbs = (DCTELEM) DESCALE(tmpb + z2
out3 = (DCTELEM) DESCALE(tmp6 + z2
outl = (DCTELEM) DESCALE(tmp7 + z1
dataptr[0] = outO0;

dataptr[1] = outl;

dataptr[2] = out2;

dataptr[3] = out3;

dataptr[4] = out4;

dataptr[5] = out5;

dataptr[6] = out6;

dataptr[7] = out7;

asm("dlpend™);

dataptr += DCTSIZE; /* advance pointer to next row */
}

asm("dlpdone");

}

z3, CONST_BITS-PASS1_BITS);
z4, CONST_BITS-PASS1_BITS);
z3, CONST_BITS-PASS1_BITS);
z4, CONST_BITS-PASS1_BITS);

+ + + 4+

242



L2ALAW

~
*

This source code is a product of Sun Microsystems, Inc. and is provided
for unrestricted use. Users may copy or modify this source code without
charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Sun source code is provided with no support and without any obligation on
the part of Sun Microsystems, Inc. +to assist in its use, correction,
modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOQF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue
or profits or other special, indirect and consequential damages, even if
Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, California 94043

¥ X X X X ¥ X X X ¥ ¥ ¥ X X ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥

// Original file g711.c from MediaBench/g721
// 21May2003 - Ben Levine

// converted search function for seg_end to
// if statements

// Added simple main() and sample input and output:
/% INPUT: */

/* -8415 */

/* -4899 *x/

/* 6203 */

/* 4308 *x/

/* 14191 */

/* 741 *x/

/% 18113 */

/* -699 */

/* 20585 */

/% 13148 x/

/* 31634 x/

/* 20095 */

/* 13340 */

/* -986 */

/* -25257 */

/* 10803 */

243



/* -8823 */

/% -23590 */

/% 4375 */

/% 21168 */

/* QUTPUT: x/

/* B3 */

/% 6 %/

/% 141 x/

/* 133 */

/* 190 */

/% 242 x/

/% 164 x/

/% 112 x/

/% 161 x/

/* 188 */

/% 171 x/

/* 166 */

/% 191 x/

/* 123 */

/* 45 x/

/* 176 */

/* 52 x/

/* 34 x/

/% 132 x/

/% 161 x/

#define QUANT_MASK (Oxf) /* Quantization field mask. */
#define SEG_SHIFT (4) /* Left shift for segment number. x*/
#define DATA_SIZE 100

#include <stdlib.h>

void linear2alaw(int *pcm, unsigned int *alaw);
int main (void)

{

int i;

int *pcm_data;

unsigned int *alaw_data;

pem_data = malloc(DATA_SIZExsizeof (int));
alaw_data = malloc(DATA_SIZExsizeof (unsigned int));
for (i = 0; i < DATA_SIZE; i++)

{

pem_datali] = (rand() >> 15) - 32768;

}

linear2alaw(pcm_data,alaw_data);

return 0;

}

void linear2alaw(int *pcm, unsigned int *alaw)
{

int mask;

int seg;

unsigned char aval;

int pcm_val;

244



int i;

for (i = 0; i < DATA_SIZE; i++)
{

asm("dlpbgn™);

pem_val = pem[il;

if (pem_val >= 0)

{

mask = 0xD5; /* sign (7th) bit = 1 %/
}

else

{

mask = 0x55; /* sign bit = 0 */
pcm_val = -pcm_val - 8;

}

if (pem_val <= OxFF)

seg = 0;

else if (pcm_val <= 0x1FF)
seg = 1;

else if (pcm_val <= 0x3FF)
seg = 2;

else if (pcm_val <= Ox7FF)
seg = 3;

else if (pcm_val <= OxFFF)
seg = 4;

else if (pcm_val <= 0x1FFF)
seg = 5;

else if (pcm_val <= 0x3FFF)
seg = 6;

else if (pcm_val <= Ox7FFF)
seg = 7;

else

seg = 8;

/* Combine the sign, segment, and quantization bits.
if (seg >= 8) /* out of range, return maximum value.

aval = 0x7F ~ mask;

else {

aval = seg << SEG_SHIFT;

if (seg < 2)

aval |= (pcm_val >> 4) & QUANT_MASK;
else

aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
aval = aval ~ mask;

}

alaw[i] = (unsigned int)aval;
asm("dlpend™);

}

asm("dlpdone");

}

245

*/
*/



FIRS8CPX

#include <stdlib.h>

typedef unsigned char UINTS;

typedef unsigned short UINT16;

typedef unsigned int UINT32;

#tdefine NUM_DATA 10000

#tdefine SEED 12345

#define C1R 0x0148

#define C2R 0xc109

#define C3R 0x9121

#define C4R Ox4ffc

#define CBR 0x70b2

#define C6R Oxaall

#define C7R 0x9101

#define C8R 0xb712

#tdefine C1I 0x9612

#define C2I 0x8b19

#define C3I 0x0Ofal

#define C4I 0x9900

#define CHBI Oxbc32

#define C6I 0x1287

#tdefine C7I 0x4512

#define C8I 0x7612

void fir8cpx (UINT16* in_data, UINT32* out_data);
int main(void)

{

UINT16 *p_in;

UINT32 *p_out;

int i;

p_in = malloc(2+«NUM_DATA*sizeof (UINT16));
p_out = malloc(2*NUM_DATA*sizeof (UINT32));
srand (SEED) ;

for (i = 0; i < (NUM_DATA*2); i++)

{

p_in[i] = rand() >> 15;

}

fir8cpx(p_in,p_out);

return 0;

}

// 1 KERNEL

void fir8cpx (UINT16* in_data, UINT32* out_data)
{

UINT16 valA_R, valB_R, valC_R, valD_R, valE_R, valF_R, valG_R, valH_R;
UINT16 valA_I, valB_I, valC_I, valD_I, valE_I, valF_I, valG_I, valH_I;
UINT32 sum;

UINT32 outR, outI;

int i;

asm("dlpbgn™);

246



for (i=0;i<(NUM_DATA-8);i=i+2) {
valA_R = in_datali];

valA_I = in_datal[i+1];

valB_R = in_datal[i+2];

valB_I = in_datal[i+3];

valC_R = in_datal[i+4];

valC_I = in_datal[i+5];

valD_R = in_datal[i+6];

valD_I = in_datal[i+7];

valE_R = in_datal[i+8];

valE_I = in_datal[i+9];

valF_R = in_datal[i+10];

valF_I = in_datal[i+11];

valG_R = in_datal[i+12];

valG_I = in_datal[i+13];

valH_R = in_datal[i+14];

valH_I = in_datal[i+15];

outR = 0;

outR += valA_R

* C1R;
outR -= valA_I * C1I;
outR += valB_R * C2R;
outR -= valB_I * C2I;
outR += valC_R * C3R;
outR -= valC_I * C3I;
outR += valD_R * C4R;
outR -= valD_I * C4I;
outR += valE_R * CBR;
outR -= valE_I * CbI;
outR += valF_R * C6R;
outR -= valF_I * C6I;
outR += valG_R * C7R;
outR -= valG_I * C7I;
outR += valH_R * C8R;
outR -= valH_I * C8I;

out_datal[i] = outR;
outl = 0;

outl += valA_R * C1I;
outl -= valA_I * C1R;
outl += valB_R * C2I;
outl -= valB_I * C2R;
outl += valC_R * C3I;
outl -= valC_I * C3R;
outl += valD_R * C4I;
outl -= valD_I * C4R;
outl += valE_R * CbI;
outl -= valE_I * CBR;
outl += valF_R * C6I;
outl -= valF_I * C6R;
outl += valG_R * C7I;
outl -= valG_I * C7R;

247



outl += valH_R * C8I;
outl -= valH_I * C8R;
out_data[i+1] = outI;
asm("dlpend™);

}

asm("dlpdone");

}

248



RGC2YCC

// Original file was jccolor.c

// and was Copyright (C) 1991-1994, Thomas G. Lane.

// Modified 19May2003 by Ben Levine

// Removed references to external header files and fixed optiomns.
// Only using function rgb_ycc_convert, greatly modified.
// Modified so as not to require look up table.

// Also changed to use array pointers for input and

// output and not the data structures used in the JPEG code.
// Inputs are 8 bit RGB values, RGB for 1st pixel, followed by RGB for 2nd
// and so on. S8Similarly for 8-bit YCC output.

// 20May2003 - Ben Levine

// Added simple main() and sample input and output:

// Operation verified in MATLAB (use actual integer values;
// rounding errors large compared to FP)

//

#include <stdlib.h>

typedef long INT32;

typedef unsigned char UINTS;

#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))

#define MAXJSAMPLE 255

#define R_Y 19595

#define G_Y 38470

#define B_Y 7471

#define R_CB 11000

#define G_CB 21709

#define B_CB 32768

#define R_CR 32768

#define G_CR 27439

#define B_CR 5329

#define N_PIXELS 10000

#define SEED 12345

void rgb_ycc_convert (UINT8* rgb_image, UINT8+* ycc_image);
int main(void)

{

UINT8 *p_rgb;

UINT8 *p_ycc;

int i;

p_rgb = malloc(3*N_PIXELS*sizeof (UINTS8));

p_ycc = malloc(3*N_PIXELS*sizeof (UINT8));

srand (SEED) ;

for (i = 0; i < (N_PIXELS*3); i++)

{

p_rgbl[i] = rand();

}

rgb_ycc_convert(p_rgb,p_ycc);

249



return 0;

}

// 1 KERNEL

void rgb_ycc_convert (UINT8* rgb_image, UINT8* ycc_image)
{

INT32 1, g, b;

INT32 y,cb,cr;

int i;

asm("dlpbgn™);

for (i=0;i<N_PIXELS;i++) {
r = rgb_image[3%i];

g = rgb_image[(3%i)+1];
b = rgb_image[(3*i)+2];
y=(R_Y*1)+ (GY * g) + (BLY * b) + ONE_HALF;

cb = - (R.CB *r) - (G_CB * g) + (B_LCB * b) + (ONE_HALF * (MAXJSAMPLE+1));
cr = (R.CR * 1) - (G_CR * g) - (B_CR * b) + (ONE_HALF * (MAXJSAMPLE+1));
ycc_image[3*i] = (y >> SCALEBITS);

ycc_image [ (3%i)+1] (cb >> SCALEBITS);

ycc_image[(3*1)+2] = (cr >> SCALEBITS);

asm("dlpend™);

}

asm("dlpdone");

}

250



DEC_COR

#include <stdlib.h>
typedef unsigned char UINTS;
typedef unsigned short UINT16;
typedef unsigned int UINT32;
#define N_PIXELS 10000
#define SEED 12345
void dec_cor (UINT8* in_image, UINT16* out_image);
int main(void)
{
UINT8 *p_in;
UINT16 *p_out;
int i;
p_in = malloc(9*N_PIXELS*sizeof (UINT8));
p_out = malloc(N_PIXELS*sizeof (UINT16));
srand (SEED) ;
for (i = 0; i < (N_PIXELS*9); i++)
{
p_in[i] = rand() >> 23;
}
dec_cor(p_in,p_out);
return 0;
}
// 1 KERNEL
void dec_cor (UINT8* in_image, UINT16* out_image)
{
UINT8 pelA, pelB, pelC, pelD, pelE, pelF, pelG, pelH, pell;
UINT32 sum, stepl, step2, terml, term2, term3, term4, termb, term6;
UINT16 outpel;
int i;
asm("dlpbgn™);
for (i=0;i<N_PIXELS;i++) {
pelld in_image[9*i];
pelB = in_image[(9*i)+1];
pelC = in_image[(9*i)+2];
pelD = in_image[(9*i)+3];
pelE = in_image[(9*i)+4];
pelF = in_image[(9*i)+5];
pelG = in_image[(9*i)+6];
pelH = in_image[(9*i)+7];
pell = in_image[(9*1)+8];
sum = ((pelA + pelB) + (pelC + pelD)) + (pelE + pelE) + ((pelF + pelG) + (pelH
+ pell + 1));
// Divide sum by 10
stepl = sum << 14;
terml = stepl >> 4;
stepl >> b;
stepl >> 8;

term2
term3

251



term4 = stepl >> 9;

termb = stepl >> 12;

term6 = stepl >> 13;

step2 = terml + term2 + term3 + term4 + termb + term6;
outpel = step2 >> 14;

out_image[i] = outpel;

asm("dlpend™);

}

asm("dlpdone");

}

252



IDEA

#include <stdio.h>

#include <stdlib.h>

#define DATASETSIZE 20000

#define IDEAKEYSIZE 16

#define IDEABLOCKSIZE 8

#define IDEAROUNDS 8

#define IDEAKEYLEN (6xIDEARQUNDS+4) //52
#define INSIZE (IDEAKEYSIZE+DATASETSIZE)

#define QUTSIZE 124 //(2+xIDEAKEYLEN+2*DATASETSIZE)

#idefine M(x) ((x) & Oxffff)
#define SEED 12345

typedef unsigned int word32; //values are 0-4294967295

word32 ek[IDEAKEYLEN] =

{

0x£100,

0x1020,

0x3040,

0x5060,

0x7080,

0x90a0,

0xb0cO,

0x0020,

0x4060,

0x80a0,

OxcOel,

0x0121,

0x4161,

0x81al,

Oxcle2,

0xc101,

0x4181,

0xc202,

0x4282

};

#define MUL(x,y) (x = M(x-1), \
t16 = M((y)-1), \

£32 = x*t16 + x + t16 + 1, \
x = M(£32), \

t16 = t32>>16, \

x = (x-t16) + (x<t16))
static void ideaCipher(word32 *in, word32 *out);
int main(void)

{

int i;

word32 *p_in;

word32 *p_out;

p_in = malloc(DATASETSIZExsizeof (word32));

253



p_out = malloc(DATASETSIZE*sizeof (word32));

srand (SEED) ;

for (i = 0; i < DATASETSIZE; i++)

{

p_in[i] = randQ);

}

ideaCipher (p_in,p_out);
return 0;

}

static void

ideaCipher (word32 *in, word32 *out)

{
int i, j;
word32 *key;

word32 x1, x2, x3, x4, s2, s3;

//MUL temporaries
word32 t16;
word32 t32;
asm("dlpbgn™);

for(j=0; j<(DATASETSIZE/2); j++)

{

key = ek;

x1 = x2 = *in++;
x3 = x4 = *int+;

x1 = ((x1>>8) & 0x0000££00)
x2 = ((x2<<8) & 0x0000££00)
x3 = ((x3>>8) & 0x0000££00)
x4 = ((x4<<8) & 0x0000££00)

MUL(x1, 0x0102);
x2 += 0x0304;

x3 += 0x0506;
MUL (x4, 0x0708);
s3 = x3;

x3 "= x1;

MUL (x3, 0x090a);
s2 = x2;

x2 "= x4;

x2 += x3;
MUL(x2, 0x0bOc);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x0dOQe);
x2 += 0x0£10;

x3 += 0x080a;
MUL (x4, 0x0cQe);
s3 = x3;

x3 "= x1;

(x1>>24);
((x2>>8) & 0x000000£f);
(x3>>24);
((x4>>8) & 0x000000£f);

254



MUL (x3, 0x1012);
s2 = x2;

x2 "= x4;

x2 += x3;
MUL(x2, 0x1416);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x181a);
x2 += Oxlcle;

x3 += 0x2002;
MUL (x4, 0x0406);
s3 = x3;

x3 "= x1;

MUL (x3, 0x1c20);
s2 = x2;

x2 "= x4;

x2 += x3;

MUL (x2, 0x2428);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x2c30);
x2 += 0x3438;

x3 += 0x3c40;
MUL (x4, 0x0408);
s3 = x3;

x3 "= x1;

MUL (x3, 0x0c10);
s2 = x2;

x2 "= x4;

x2 += x3;

MUL (x2, 0x1418);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x5058);
x2 += 0x6068;

x3 += 0x7078;
MUL (x4, 0x8008);
s3 = x3;

x3 "= x1;

MUL (x3, 0x1018);
s2 = x2;

255



x2 "= x4;

x2 += x3;

MUL (x2, 0x2028);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x3038);
x2 += 0x4048;

x3 += 0xd0eO0;
MUL (x4, 0x£100);
s3 = x3;

x3 "= x1;

MUL (x3, 0x1020);
s2 = x2;

x2 "= x4;

x2 += x3;

MUL (x2, 0x3040);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x5060);
x2 += 0x7080;

x3 += 0x90a0;
MUL (x4, 0xb0c0);
s3 = x3;

x3 "= x1;

MUL (x3, 0x0020);
s2 = x2;

x2 "= x4;

x2 += x3;

MUL (x2, 0x4060);
x3 += x2;

x1l = x2;

x4 "= x3;

x2 "= s3;

x3 "= s2;
MUL(x1, 0x80a0);
x2 += 0xcOlel;

x3 += 0x0121;
MUL (x4, 0x4161);
s3 = x3;

x3 "= x1;
MUL(x3, 0x81al);
s2 = x2;

x2 "= x4;

x2 += x3;

256



MUL(x2, Oxcle2);

x3 += x2;
x1l = x2;
x4 "= x3;
x2 "= s3;
x3 "= s2;

MUL(x1, 0xc101);

x3 += 0x4181;

x2 += 0xc202;

MUL (x4, 0x4282);

xout++ = ((x1<<24) & 0x££000000) | ((x1<<8) & 0x00£f0000) | ((x3<<8) & 0x0000£f£00)
| ((x3>>8) & 0x000000ff);

xout++ = ((x2<<24) & 0x££000000) | ((x2<<8) & 0x00£f0000) | ((x4<<8) & 0x0000£f£00)
| ((x4>>8) & 0x000000ff);

asm("dlpend™);

}

asm("dlpdone");

}

257



Appendix D

Example Testbench

library IEEE,std;
use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use std.textio.all;
use work.io_utils.all;
ENTITY simple_test_top IS END simple_test_top;
ARCHITECTURE behavior OF simple_test_top IS

file in_vectors
file out_vectors
file output

COMPONENT
port (

simple
var_recvbu_0

var_recvbu_1

var_recvbu_2 :

clk
sendh_0

END COMPONENT;

: text open read_mode is "simple.in.2.trace";

: text open read_mode is "simple.out.2.trace";
: text open write_mode is '"STD_OUTPUT";

: in std_logic_vector(7 downto 0);

: in std_logic_vector(7 downto 0);

in std_logic_vector(7 downto 0);

: in std_logic;
: out std_logic_vector(7 downto 0) );

SIGNAL var_recvbu_0 : std_logic_vector(7 downto 0);
SIGNAL var_recvbu_l : std_logic_vector(7 downto 0);
SIGNAL var_recvbu_2 : std_logic_vector(7 downto 0);
SIGNAL clk : std_logic := ’17;
SIGNAL sendh O : std_logic_vector(7 downto 0);
constant ClockPeriod : time := 20 ns;

BEGIN

clk <= not clk after ClockPeriod/2;
uut: simple PORT MAP(
var_recvbu_0 => var_recvbu_0,

var_recvbu_1l => var_recvbu_1,

var_recvbu_2 => var_recvbu_2,

clk

=> clk,

sendh_0 => sendh_0 );
tb : PROCESS

258



variable InVectorLine : line;
variable QutVectorLine : line;
variable BufLine : line;

variable recvbu_O_var : integer;
variable recvbu_1l_var : integer;
variable recvbu_2_var : integer;
variable sendh_O_good : integer;
variable pipeDelay : integer := 4;
variable cycleCount : integer := 0;
variable errorFound : integer := 0;
BEGIN

var_recvbu_0 <= (others=>’0?);
var_recvbu_1 <= (others=>’0?);
var_recvbu_2 <= (others=>’0?);
while not endfile(in_vectors) loop
readline (in_vectors,InVectorLine);
if (cycleCount > pipeDelay) then
readline (out_vectors, OutVectorLine);
read_based(OutVectorLine, sendh_0_good) ;
end if;
if InVectorLine(l) = ’#’
read_based(InVectorLine,

then next; end if;
recvbu_O_var );
read_based(InVectorLine, recvbu_1_var );
read_based(InVectorLine, recvbu_2_var );
var_recvbu_0 <= std_logic_vector(to_unsigned(recvbu_0O_var,8));
var_recvbu_1 <= std_logic_vector(to_unsigned(recvbu_1_var,8));
var_recvbu_2 <= std_logic_vector(to_unsigned(recvbu_2_var,8));
if (cycleCount > pipeDelay) then
if (std_logic_vector(to_unsigned(sendh_0_good,8)) /= sendh_0) then
write(BufLine, string’("Error found for output sendh_0. Should be "));
write(BufLine, sendh_O_good); write(BufLine, string’(", value computed is "));
write(BufLine, to_integer (unsigned( sendh_0)));
writeline (output, BufLine);

errorFound := errorFound + 1;
end if;
end if;
cycleCount := cycleCount + 1;

wait for ClockPeriod;

end loop;

if (errorFound = 0) then
write(BufLine, string’("No errors found"));
writeline (output, BufLine);

else
write(BufLine, string’("ERRORS! Found "));
write(BufLine, errorFound);
write(BufLine, string’(" errors."));
writeline (output, BufLine);

end if;

wait;

END PROCESS;
END;

259



Appendix E

DAG for Simple Example Kernel in GML Format

graph [
directed 1
node [
id 0
nodelLabel "recvbu_0"
nodeType "INPUT"
nodeInputType "0_0"
nodeQutputType "1_1"
nodeWidth 9
nodelp "recvbu"
nodeDest10perand "$2"
nodeSrclOperand "P1"
ports [
port [
name "NULL"
x 0.0
y 0.0
]
port [
name "outl"
x 0.0
y 1.0
]
]
label "recvbu"
]
node [
id 1
nodeLabel "recvbu_1"
nodeType "INPUT"
nodeInputType "0_0"
nodeQutputType "1_1"
nodeWidth 9
nodelp "recvbu"
nodeDest10perand "$2"
nodeSrclOperand "P2"
ports [
port [
name "NULL"
x 0.0
y 0.0

260



port [
name "outl"
x 0.0
y 1.0
]
]
label "recvbu"

node [
id 2
nodeLabel "recv_2"
nodeType "INPUT"
nodeInputType "0_0"
nodeQutputType "1_1"
nodeWidth 9
nodelp "recv"
nodeDest10perand "$47"
nodeSrclOperand "P3"
ports [
port [
name "NULL"
x 0.0
y 0.0
1
port [
name "outl"
x 0.0
y 1.0
1
]
label "recvbu"

node [
id 3
nodelLabel "srli_0O"
nodeType "OP"
nodeInputType "1_1"
nodeQutputType "1_1"
nodeWidth 32
nodelp "srli"
nodeDest10perand "$2"
nodeSrcl0perand "$2"
nodeSrc20perand "0x2"
ports [
port [
name "NULL"

OO
OO

]
label "s1li"

261



node [

id 4
nodeLabel "addu_0O"
nodeType "OP"
nodeInputType "2_2"
nodeQutputType "1_1"
nodeWidth 32
nodelp "addu"
nodeDest10perand "$3"
nodeSrcl0perand "$2"
nodeSrc20perand "$2"
ports [
port [
name "NULL"
x 0.0
y 0.0
1
port [
name "inla"
x -0.66
y -1.0

port [
name "inlb"
x 0.66
y -1.0

]

port [
name "outl"
x 0.0
y 1.0
]

]

label "addu"

node [

id 6
nodeLabel "addiu_O"
nodeType "OP"
nodeInputType "1_1"
nodeQutputType "1_1"
nodeWidth 32
nodelp "addiu"
nodeDest10perand "$48"
nodeSrcl0perand "$3"
nodeSrc20perand "0x4"
ports [
port [
name "NULL"
x 0.0
y 0.0
1
port [
name "inl"
x 0.0
y -1.0
1
port [
name "outl"
x 0.0
y 1.0

262



label "addiu"

node [
id 6
nodeLabel "sltu_4"
nodeType "OP"
nodeInputType "2_1_1"
nodeQutputType "1_1"
nodeWidth 32
nodelp "subu"
nodeDest10perand "$44"
nodeSrcllperand "$47"
nodeSrc20perand "$3"
ports [
port [
name "NULL"
x 0.0
y 0.0
port [
name "inl"
x -0.66
y -1.0
]
port [
name "in2"
x 0.66
y -1.0

port [
name "outl"
x 0.0
y 1.0
]

]

label "sel"

node [
id 7
nodelLabel "sel_0O"
nodeType "OP"
nodeInputType "3_1_1_1"
nodeQutputType "1_1"
nodeWidth 32
nodelp "sel"
nodeDest10perand "$2"
nodeSrcllperand "$44"
nodeSrc20perand "$47"
nodeSrc30perand "$48"
ports [
port [
name "NULL"
x 0.0
y 0.0
]
port [
name "inl"
x -0.5
y -1.0
]
port [
name "in2"
x 0.0

263



]
port [
name "in3"
x 0.5
y -1.0
port [
name "outl"
x 0.0
y 1.0
]
]
label "sel"
node [
id 8

nodelLabel "send_0O"
nodeType "OUTPUT"
nodeInputType "1_1"
nodeQutputType "0_0"
nodeWidth 32
nodelp "send"
nodeDest10perand "P4"
nodeSrcl0perand "$2"
ports [
port [
name "NULL"
x 0.0
y 0.0
]
port [
name "ini"
x 0.0
y -1.0
]
]
label "send"

edge [
source 0
target 3
sourcePort "outl"
targetPort "inl"

1

edge [
source 1
target 4
sourcePort "outl"
targetPort "inla"

edge [
source 2
target 7
sourcePort "outl"
targetPort "inib"

edge [
source 2
target 6
sourcePort "outl"
targetPort "inla"

264



edge [
source 3
target 4
sourcePort "outl"
targetPort "inib"

edge [
source 4
target 5
sourcePort "outl"
targetPort "inl"

edge [
source 4
target 6
sourcePort "outl"
targetPort "inib"

edge [
source 5
target 7
sourcePort "outl"
targetPort "inlc"

edge [
source 6
target 7
sourcePort "outl"
targetPort "inla"

edge [
source 7
target 8
sourcePort "outl"
targetPort "inl"

node_style [
name "default_node_style"

style [
graphics [
fill "white"
outline "black"
width 1.0
]
]

265



Appendix F

ATR Sourcecode

#include <stdlib.h>
#include <stdio.h>
#define PIX_SORT(a,b,c) { if ((a)>(b)) PIX_SWAP((a),(b), (c)); }
#define PIX_SWAP(a,b,c) { (c) = (a);(a)=(b);(b)=(c); }
#define FRAME 10
typedef unsigned char UINTS3;
typedef unsigned int UINT32;
typedef int INT32;
int num_rows;
int num_cols;
int thresh (UINT8* in_image, UINT8* out_image, int thresh_val);
void img_med (UINT8* in_image, UINT8* out_image);
void img_hp(UINT8* in_image, UINT8* out_image);
void img_prew(UINT8* in_image, UINT8* out_image);
void img_erodel (UINT8* in_image, UINT8+% out_image);
void img_erode2(UINT8* in_image, UINT8* out_image);
void img_out(UINT8* in_image,UINT8#* orig_img, UINT8#* out_image);
int main(void)
{

char buffer[50];

FILE *input;

FILE *output;

int max_val;

int num_pixels;

UINT8 *in_img;

UINT8 *out_img;

UINT8 *tmpl_img;

UINT8 *tmp2_img;

char in[20];

char out[20];

char num[4];

int r,c;

int t_val;

int num_k = 0;

int num_on, min_on, max_on;

266



int done;

UINT8 pixel;

int i;

min_on = 500;

max_on = 5000;

for (i = 1; i <21 ; i++) {
strcpy (in,"flir/ATR");
if (i < 10) {

num[0] = 48 + i;

num[1] = 0;
} else if (i <20) {
num[0] = 49;
num[1] = 48 + (i - 10);
nmum[2] =0;
} else {
num[0] = 50;
num[1] = 48;
nmum[2] =0;

}
strcat (in,num) ;
strcat (in,".pgm") ;
strcpy (out,"out/out") ;
strcat (out ,num) ;
strcat (out,".pgm");
printf ("IN = %s OUT = %s\n",in,out);
input = fopen(in, '"r');
output = fopen(out, "w'");
fgets(buffer,50,input) ;
if (strcmp(buffer,"P5\n") != 0) {
printf("File ¥%s is not a PGM file!\n'",in);
return(l);
}
fscanf (input,"%d %d",&num_cols,&num_rows);
fscanf (input,"%d",&max_val);
if (max_val > 255) {
printf('"Max val = %d : Too large!\n", max_val);
return(l);
}
fprintf (output, "¥%s",buffer);
fprintf (output, "%d %d\n",num_cols,num_rows);
fprintf (output, "%d\n",max_val);
num_pixels = num_rows * num_cols;
if (1 ==1) {
in_img = malloc(num_pixels);
out_img = malloc(num_pixels);
tmpl_img = malloc(num_pixels);
tmp2_img = malloc(num_pixels);
}
fread(in_img,1,num_pixels,input);
img_med(in_img,tmpl_img) ;
img_hp(tmpl_img,tmp2_img) ;
img_prew(tmp2_img,tmpl_img) ;
num_k += 3;
done = 0;
t_val = 128;

267



while (done == 0) {
num_k += 1;
num_on = thresh(tmpl_img,tmp2_img,t_val);
if (num_on > max_omn) {
t_val += b;
} else if (num_on < min_on) {
t_val -= b;
} else {
done = 1;
}
}
img_erodel (tmp2_img,tmpl_img) ;
img_erode2(tmpl_img,tmp2_img) ;
img_out (tmp2_img,in_img,out_img);
num_k += 3;
fwrite(out_img,1,num_pixels,output);
fclose(input);
fclose(output) ;
}
return(0) ;
}
int thresh (UINT8* in_image, UINT8* out_image,int thresh_val)
{
UINT8 pelA;
UINT8 outd;
int i;
int tmp;
int num_pix;
int num_on = 0;

num_pix = num_rows * num_cols;
for (i=0;i<num_pix;i++) {
peldA = in_imagel[il;
if (peldA > thresh_val) {
outA = 255;
num_on++;
} else {
outA = 0
}
out_image[i] = outd;
}
return num_on;
}
void img_med (UINT8* in_image, UINT8* out_image)
{
UINT8 pelA, pelB, pelC, pelD, pelE, pelF, pelG, pelH, pell;
UINT8 tmp;
UINT8 #*pA, *pB, *pC, *pD, *pE, *pF, *pG, *pH, *pI;
UINT8 outpel;
UINT8* p0;
int i;
int num_pix;

pA = &in_image[0];
PB = &in_image[1];
pC = &in_image[2];

268



pD = &in_image[num_cols];
PE = &in_image [num_cols+1];
pF = &in_image [num_cols+2];
PG = &in_image[2*num_cols];
pH = &in_image[(2*num_cols)+1];
pPI = &in_image[(2*num_cols)+2];
p0 = &out_image[num_cols+1];
num_pix = (num_rows-2) * (num_cols-2);
for (i=0; i < num_pix; i++) {
pelA = pAlil;
pelB = pB[il;
pelC = pC[il;
pelD = pD[il;
pelE = pE[il;
pelF = pF[il;
pelG = pG[il;
pelH = pH[il;
pell = pI[il;
PIX_SORT(pelB, pelC, tmp) ;
PIX_SORT(pelE, pelF, tmp) ;
PIX_SORT(pelH, pell, tmp) ;
PIX_SORT(pelA, pelB, tmp) ;
PIX_SORT(pelD, pelE, tmp) ;
PIX_SORT(pelG, pelH, tmp) ;
PIX_SORT(pelB, pelC, tmp) ;
PIX_SORT(pelE, pelF, tmp) ;
PIX_SORT(pelH, pell, tmp) ;
PIX_SORT(pelA, pelD, tmp) ;
PIX_SORT(pelF, pell, tmp) ;
PIX_SORT(pelE, pelH, tmp) ;
PIX_SORT(pelD, pelG, tmp) ;
PIX_SORT(pelB, pelE, tmp) ;
PIX_SORT(pelC, pelF, tmp) ;
PIX_SORT(pelE, pelH, tmp) ;
PIX_SORT(pelE, pelC, tmp) ;
PIX_SORT(pelG, pelE, tmp) ;
PIX_SORT(pelE, pelC, tmp) ;
outpel = pelE;
pO[i] = outpel;
}
}
void img_hp(UINT8* in_image, UINT8* out_image)
{
UINT8 pelA, pelB, pelC, pelD, pelE, pelF, pelG, pelH, pell;
UINT8 #pA, #*pB, *pC, *pD, *pE, *pF, *pG, *pH, *pI;
INT32 sum, stepl, step2,step3, terml, term2, term3, term4;
UINT8 outpel;

UINT8* p0;

int i;

int num_pix = (num_rows-2) * (num_cols-2);
pA = &in_image[0];

pB = &in_image[1];

pC = &in_image[2];

pD = &in_image [num_cols];

PE = &in_image [num_cols+1];

269



pPF = &in_image[num_cols+2];
PG = &in_image[2*num_cols];
pH = &in_image[(2*num_cols)+1];
pPI = &in_image[(2*num_cols)+2];
p0 = &out_image[num_cols+1];

for (i=0;i<num_pix;i++) {
pelA = pA[il;
pelB = pB[il;
pelC = pC[il;
pelD = pD[il;
pelE = pE[il;
pelF = pF[il;
pelG = pG[il;
peld = pH[il;
pell = pI[il;
sum = (pelE << 3) + (pelA + pelB + pelC + pelD + pelF + pelG + pelH + pell);
// Divide sum by 10
step3 = sum >> 4;
if (step3 > 255) step3
if (step3 < 0) step3 =
outpel = step3;
pO[i] = outpel;
}
}
void img_prew(UINT8* in_image, UINT8* out_image)
{
UINT8 pelA, pelB, pelC, pelD, pelF, pelG, pelH, pell;
UINT8 *pA, *pB, *pC, *pD, *pF, *pG, *pH, *pI;
INT32 sumH, sumV, sum;
UINT8 outpel;
UINT8* p0;
int i;

= 255;
0;

int num_pix;
pA = &in_image[0];
PB = &in_image[1];
pC = &in_image[2];
pD = &in_image[num_cols];
pF = &in_image [num_cols+2];
PG = &in_image[2*num_cols];
pH = &in_image[(2*num_cols)+1];
pPI = &in_image[(2*num_cols)+2];
p0 = &out_image[num_cols+1];
num_pix = (num_rows-2) * (num_cols-2);
for (i=0;i<num_pix;i++) {
pelA = pAlil;
pelB = pB[il;
pelC = pC[il;
pelD = pD[il;
pelF = pF[il;
pelG = pG[il;
pelH = pH[il;
pell = pI[il;
sumH = (peld + pelD + pelG) - (pelC + pelF + pell);
sumV = (peld + pelB + pelC) - (pelG + pelH + pell);
if (sumH < 0) sumH = -sumH;

270



if (sumV < 0) sumV
sum = sumH + sumV;
if (sum > 255) sum = 255;
if (sum < 0) sum =0;
outpel = sum;

pO[i] = outpel;

-sumV;

}
}
int num_on_pixels (UINT8% in_image)
{
int i;
int num_on = 0;
int num_pix = (num_rows-2) * (num_cols-2);

UINT8 *pel;
pel = &in_image [num_cols+1];
for (i =0 ; i < num_pix ; i++ ) {
if (pellil == 255) {
num_on++;
}
}
return num_on;
}
void img_erodel (UINT8* in_image, UINT8* out_image)
{
UINT8 pell, pel2, pel3, pel4, pelb, pel6, pel7, pel8, pel9;
UINT8 #pA, #*pB, *pC, *pD, *pE, *pF, *pG, *pH, *pI;
UINT8 outpel;
UINT8* p0;
int i;
int num_pix;
pA = &in_image[0];
PB = &in_image[1];
pC = &in_image[2];
pD = &in_image [num_cols];
PE = &in_image [num_cols+1];
pF = &in_image [num_cols+2];
pG = &in_image [2*num_cols];
pH = &in_image[(2*num_cols)+1];
PI = &in_image [(2*num_cols)+2];
p0 = &out_image[num_cols+1];
num_pix = (num_rows-2) * (num_cols-2);
for (i=0;i<num_pix;i++) {
pell = pAlil;
pel2 = pB[il;
pel3 = pC[il;
peld = pD[il;
pels = pF[il;
pelé = pG[il;
pel7 = pH[il;
pel8 = pI[il;
pel9 = pI[il;
outpel = pell & pel2 & pel3 & peld & pelb & pel6 & pel7 & pel8 & pel9;
pO[i] = outpel;

271



void img_erode2(UINT8* in_image, UINT8* out_image)
{
UINT8 pell, pel2, pel3, pel4, pelb, pel6, pel7, pel8, pel9;
UINT8 #*pA, *pB, *pC, *pD, *pE, *pF, *pG, *pH, *pI;
UINT8 outpel;
UINT8* p0;
int i;
int num_pix;
pA = &in_image[0];
pB = &in_image[1];
pC = &in_image[2];
pD = &in_image [num_cols];
PE = &in_image [num_cols+1];
pPF = &in_image[num_cols+2];
PG = &in_image[2*num_cols];
pH = &in_image[(2*num_cols)+1];
pPI = &in_image[(2*num_cols)+2];
pP0 = &out_image[num_cols+1];
num_pix = (num_rows-2) * (num_cols-2);
for (i=0;i<num_pix;i++) {
pell = pA[il;
pel2 = pB[il;
pel3 = pD[il;
pel4 = pE[il;
pel5 = pE[il;
pel6 = pE[il;
pel7 = pE[il;
pel8 = pE[il;
pel9 = pE[il;
outpel = pell & pel2 & pel3 & peld & pelb & pel6 & pel7 & pel8 & pel9;
pO[i] = outpel;
}
}
void img_out(UINT8* in_image, UINT8* orig_img, UINT8* out_image)
{
int i;
UINT8 pel, check;
int row, col;
UINT8 outVal;
UINT8* pA;
UINT8* pB;
int rowl = -1000;
int coll = -1000;
int row2 = -1000;
int col2 = -1000;
int num_pix;
int diffrowl, diffcoll;
int diffrow2, diffcol2;
int have_markl = 0;
int have_mark2 = 0;
int inl, in2, inframe;
pA = &orig_img[0];
PB &in_image [ (FRAME*num_cols)+FRAME] ;
num_pix = (num_rows * num_cols);
row = 0;

272



col = 03
for (i = 0 ; i < num_pix; i++)

}

diffrowl = row - rowl;
diffrow2 = row - row2;
diffcoll col - coll;
diffcol2 col - col2;
if (diffrowl < 0) diffrowl =
if (diffrow2 < 0) diffrow2 =
if (diffcoll < 0) diffcoll =
if (diffcol2 < 0) diffcol2 =
inl = ((diffrowl < FRAME) &&
in2 = ((diffrow2 < FRAME) &&
inframe = inl | in2;
pel = pA[il;
if (i < num_pix) {

check = pB[il;
} else {

check = 0;

}
if (Yinframe) {
if (check == 255) {
if (have_markl == 1) {
have_mark2 = 1 ;
row2 = row + FRAME;
col2 = col + FRAME;
}
else {

have_markl = 1;
rowl = row + FRAME;
coll = col + FRAME;
}
}
}
if (inframe) {
outVal = pel;
} else {
outVal = 0;
}
out_image[i] = outVal;
col = col + 1;
if (col == num_cols) {
col = 03
row = row + 1;
}

{

-diffrowl;
-diffrow2;
-diffcoll;
-diffcol2;
(diffcoll < FRAME));
(diffcol2 < FRAME));

273



Bibliography

1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

International Sematech, “International technology roadmap for semiconductors.”
http://public.itrs.net/, December 2004.

D. Sylvester and H. Kaul, “Future performance challenges in nanometer design,” in Proceed-
ings of the 38th conference on Design automation, pp. 3-8, ACM Press, 2001.

D. Sylvester and K. Keutzer, “Impact of small process geometries on microarchitectures in
systems on a chip,” in Proceedings of the IEEE, vol. 89, pp. 467489, 2001.

R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulkarni,
“Pushing asic performance in a power envelope,” in Proceedings of the 40th Conference on
Design Automation, pp. 788-793, ACM Press, 2003.

W. Maly, “Ic design in high-cost nanometer-technologies era,” in Proceedings of the 38th
conference on Design automation, pp. 9-14, ACM Press, 2001.

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus ipc: the
end of the road for conventional microarchitectures,” pp. 248-259, 2000.

S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, pp. 23-29,
1999.

J. Hennessy, “The future of systems research,” Computer, vol. 32, no. 8, pp. 27-33, 1999.

K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, “System-level design: or-
thogonalization of concerns and platform-based design,” in IEEE Transactions of Computer-
Aided Design of Integrated Circuits and Systems, pp. 1523-1543, December 2000.

Xilinx, Inc., Xilinte  Virtez-II  Platform  FPGAs: Complete  Databook.
http://direct.xilinx.com/bvdocs/publications/ds031.pdf.

G. Estrin, B. Bussell, R. Turn, and J. Bibb, “Parallel processing in a restructurable computer
system,” IEEE Transactions on FElectronic Computers, pp. 747-755, 1963.

K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and software,”
ACM Comput. Surv., vol. 34, no. 2, pp. 171-210, 2002.

J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a reconfigurable coproces-
sor,” in IEEE Symposium on FPGAs for Custom Computing Machines (K. L. Pocek and
J. Arnold, eds.), (Los Alamitos, CA), pp. 12-21, IEEE Computer Society Press, 1997.

C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold, and
M. Gokhale, “The NAPA adaptive processing architecture,” in Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM ’98) (K. L. Pocek and

274



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. M. Arnold, eds.), pp. 28-37, IEEE Computer Society, IEEE Computer Society Press,
April 1998.

R. D. Wittig and P. Chow, “OneChip: An FPGA processor with reconfigurable logic,” in
Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines (J. Arnold and
K. L. Pocek, eds.), (Napa, CA), pp. 126-135, Apr. 1996.

T. Miyamori and K. Olukotun, “A quantitative analysis of reconfigurable coprocessors for
multimedia applications,” in Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines (K. Pocek and J. Arnold, eds.), (Napa, CA), pp. 2-11, IEEE Computer
Society, IEEE, April 1998.

H. Singh, G. Lu, E. Filho, R. Maestre, M.-H. Lee, F. Kurdahi, and N. Bagherzadeh, “Mor-
phosys: case study of a reconfigurable computing system targeting multimedia applications,”
in Proceedings of the 37th conference on Design automation, pp. 573-578, ACM Press, 2000.

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, “Piperench: A
virtualized programmable datapath in 0.18 micron technolog,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, 2002.

C. Ebeling, D. C. Cronquist, P. Franklin, and S. Berg, “Mapping applications to the RaPiD
configurable architecture,” in Proceedings of IEEE Workshop on FPGAs for Custom Com-
puting Machines (J. M. Arnold and K. L. Pocek, eds.), (Napa, CA), pp. 106-115, Apr.
1997.

K. Ebcioglu and E. R. Altman, “Daisy: dynamic compilation for 100architectural compati-
bility,” in Proceedings of the 24th annual international symposium on Computer architecture,
pp. 26-37, ACM Press, 1997.

J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Matt-
son, “The transmeta code morphing software: using speculation, recovery, and adaptive
retranslation to address real-life challenges,” in Proceedings of the international symposium
on Code generation and optimization, pp. 15-24, IEEE Computer Society, 2003.

Y. Chou and J. P. Shen, “Instruction path coprocessors,” in Proceedings of the 27th annual
international symposium on Computer architecture, pp. 270-281, ACM Press, 2000.

B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Patel, and S. S. Lumetta,
“Performance characterization of a hardware mechanism for dynamic optimization,” in Pro-
ceedings of the 84th annual ACM/IEEE international symposium on Microarchitecture,
pp- 1627, IEEE Computer Society, 2001.

D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the fill unit to work: dynamic opti-
mizations for trace cache microprocessors,” in Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture, pp. 173-181, IEEE Computer Society Press,
1998.

M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and W. mei W. Hmu, “A hardware
mechanism for dynamic extraction and relayout of program hot spots,” in Proceedings of the
27th annual international symposium on Computer architecture, pp. 59-70, ACM Press,
2000.

J. B. C. A. D. Binu K. Mathew, Sally A. McKee, “Algorithmic foundations for a parallel
vector access memory system,” in Proceedings of the twelfth annual ACM symposium on
Parallel algorithms and architectures, pp. 156 — 165, 2000.

275



[27] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C. Kuo,
R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama, “Impulse: Building a smarter
memory controller,” in Proceedings of the Fifth International Symposium on High Perfor-
mance Computer Architecture, pp. 70-79, 1999.

[28] C. Kozyrakis, “A media-enhanced vector architecture for embedded memory systems,” Tech.
Rep. CSD-99-1059, University of California at Berkeley, 1999.

[29] MIPS Technologies, http://www.mips.com, MIPS32 4KEc Processor Core Datasheet,
November 2002.

[30] ARM Holdings PLC, http://www.arm.com, ARM720T (Rev 8) Technical Reference Manual,
September 2000.

[31] T. J. Callahan and J. Wawrzynek, “Instruction-level parallelism for reconfigurable comput-
ing,” in Field-Programmable Logic: From FPGAs to Computing Paradigm (R. W. Harten-
stein and A. Keevallik, eds.), pp. 248-257, Springer-Verlag, Berlin, / 1998.

[32] F. R. C. Leiserson and J. Saxe, “Optimizing synchronous circuitry by retiming,” in The
Proceedings of the 3rd Caltech Conference on VLSI pp. 87-116, 1983.

[33] G. Kane and J. Heinrich, MIPS RISC Architecture. Prentice Hall, 1992.

[34] D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Tech. Rep. CS-TR-
1997-1342, 1997.

[35] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of control dependence
to data dependence,” in Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 177-189, ACM Press, 1983.

[36] T. Lindholm and F. Yellin, Java Virtual Machine Specification. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[37] L. S. Heath, S. V. Pemmaraju, and A. N. Trenk, “Stack and queue layouts of directed acyclic
graphs: Part 1. STAM Journal on Computing, vol. 28, no. 4, pp. 1510-1539, 1999.

[38] M. Budiu and S. C. Goldstein, “Fast compilation for pipelined reconfigurable fabrics,” in
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (S. Kaptanoglu
and S. Trimberger, eds.), (Monterey, CA), pp. 195-205, ACM Press, 1999.

[39] “Gtl: The graph template library.” http://infosun.fmi.uni-passau.de/GTL/.

[40] K. Khouri, G. Lakshminarayana, and N. Jha, “Impact: A highlevel synthesis system for low
power control-flow intensive circuits,” in Proc. Design Automation & Test in FEurope Conf.,
pp- 848-854, 1998.

[41] Intel, Intel386DX Microprocessor 32-Bit CHMOS Microprocessor Datasheet, December 1995.

[42] S. L. M. Junger and P. Mutzel, “Level planarity testing in linear time,” tech. rep., Zentrum
fur Angewandte Informatik Koln, Lehrstuhl Junger, 1999.

[43] G.De Micheli, Synthesis and Optimization of Digital Circuits. New York, NY: McGraw-Hill,
1994.

[44] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research, vol. 9,
no. 6, pp. 841-848., 1961.

276



[45] G. Chaitin, “Register allocation and spilling via graph coloring,” in Proceedings of the ACM
SIGPLAN 82 Symposium on Compiler Construction, pp. 98-105, 1982.

[46] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons systems,” in International Symposium on
Microarchitecture, pp. 330-335, 1997.

[47] “Texas instruments dsp developers resources.” http://dspvillage.ti.com.

[48] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and R. Laufer,
“Piperench: a co/processor for streaming multimedia acceleration,” in Proceedings of the
26th annual international symposium on Computer architecture, pp. 28-39, IEEE Computer
Society, 1999.

[49] T. Y. J. Ross Beveridge, Durga P. Panda, “Fort carson rsta data collection final report,”
tech. rep., Colorado State Technical Report., November 1993.

[50] W. J. Dally and A. Chang, “The role of custom design in asic chips,” in Design Automation
Conference, pp. 643—647, 2000.

[51] “Open cores.” http://www.opencores.org.
[52] Tezas Instruments TMS320C28xz DSP Users Manual. http://www.ti.com.
[53] A. Devices, Analog Devices ADSP-TS201S Users Manual.

[54] “Chipworks analysis reports - xilinx xc3s200{t256afq spartan 3 structural analysis.”
http://www.chipworks.com/reports/flyers/Xilinx/.

277



