
Abstract

Hybrid architectures, which are composed of a conven-
tional processor closely coupled with reconfigurable logic,
seem to combine the advantages of both types of hardware.
They present some practical difficulties, however. The
interface between the processor and the reconfigurable
logic is crucial to performance and is often difficult to
implement well. Partitioning the application between the
processor and logic is a difficult task, typically complicated
by entirely different programming models, heterogeneous
interfaces to external resources, and incompatible repre-
sentations of applications. A separate executable must be
produced and maintained for each type of hardware. A
novel architecture called HASTE (Hybrid Architecture
with a Single Transformable Executable) solves many of
these difficulties. HASTE allows a single executable to rep-
resent an entire application, including portions that run on
a reconfigurable fabric and portions that run on a sequen-
tial processor. This executable can execute in its entirety on
the processor, but for best performance portions of the
application are mapped onto the fabric at run-time. The
application representation is key to making this concept
viable, and several different ones were examined. Some
used a relatively conventional register instruction set
architecture (ISA) while others used a new queue-based
ISA. An ISA using a modified form of register addressing
has been shown to have the best overall characteristics and
should allow for the practical implementation of HASTE.

1. Introduction

Reconfigurable computing hardware has been shown to be a
flexible and high performance way to implement computationally
intensive applications, especially applications which operate on
streaming data and which have lots of exploitable parallelism.
Examples of reconfigurable computing architectures include
RaPiD [3], PipeRench [4], Imagine [5], and MATRIX [2]. The
majority of practical reconfigurable computing architectures
developed to date are not computationally complete, so they are
either used as coprocessors for a general purpose CPU, or include
a conventional processor as an integral part of the architecture. An
architecture that combines a CPU and reconfigurable hardware is
often referred to as a hybrid architecture. The reconfigurable
portion of a hybrid architecture will be referred to as the

reconfigurable unit (RU). Examples of hybrid architectures with a
closely coupled CPU and RU include OneChip [6], GARP [7],
and MorphoSys[1]. Hybrid architectures require that an
application be partitioned into two types of code, corresponding to
the two types of hardware. Highly parallel portions of the code
that operate on large amounts of data are often referred to as
kernels, and typically consist of an inner loop, or small set of
nested loops, in the original code. These kernels are converted
into a suitable configuration for the RU and executed on it, while
less parallel and/or more control-intensive portions of the code are
implemented on the CPU.

While they seem to provide the high performance of the
reconfigurable hardware, combined with the computational
completeness of the CPU, hybrid architectures do present some
drawbacks. They require the generation and maintenance of two
separate executables for each application: an executable for the
CPU and an executable, or configuration, for the reconfigurable
portion of the architecture. The task of partitioning the application
is often quite difficult. Typically the reconfigurable fabric is
programmed using either a specialized language or a hardware
description language, while the CPU is programmed using a
conventional high-level language. The need for two diverse
programming flows and computational models greatly
complicates the partitioning and development process.
Furthermore, a substantial amount of development time must be
spent to create interface hardware and software to allow the CPU
and RU to communicate and remain coordinated. The interface
between them must be at least somewhat specific to the particular
CPU and RU being used, which limits the portability of the
executables.

One view of the ideal hybrid architecture would be one that has
a complete and unified computational model, such that an entire
application could be programmed as a single entity, with no need
for interface programming or design. It would allow for both
conventional sequential execution on the processor and highly
parallel spatial execution on the reconfigurable fabric, without
requiring the designer to attend to the details of coordinating these
different modes of execution. In order to maximize performance,
there would be little or no overhead required to switch between
modes of execution, so that all of an application that could benefit
from execution on the RU could do so efficiently. Such an
architecture would have programming semantics and tool flow
closer to conventional software design than to hardware design,
expanding the pool of potential users.

The goal of our research is to allow a single executable to
represent both portions of the application, with the configuration
for the RU generated at run time. We call this idea HASTE,
Hybrid Architecture with a Single Transformable Executable.

Efficient Application Representation for HASTE:
Hybrid Architectures with a Single, Transformable Executable

Benjamin A. Levine and Herman H. Schmit
Department of Electrical and Computer Engineering

Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213
blevine@cmu.edu, herman@ece.cmu.edu

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

HASTE architectures meet most or all of the characteristics of the
ideal architecture described previously. HASTE is targeted
towards embedded systems and systems-on-a-chip that must
efficiently implement highly parallel applications that operate
primarily on streaming data. This category includes many
applications of interest, especially those in the signal, image and
video processing domains, as well as encryption, channel coding,
and other communication applications.

Figure 1 illustrates the HASTE concept. HASTE is made up of
three main components: a general purpose processor (CPU), a
reconfigurable computational fabric (RCF), and a hardware
compilation unit (HCU). The RCF is an array of reconfigurable
logic, reconfigurable interconnect, and storage, arranged to form a
pipelined datapath; it will be discussed in Section 2. The CPU is a
Von Neumann processor which operates sequentially on an
instruction stream and implements control flow as well as data
processing. It may be very similar to a conventional RISC
processor, or a more specialized processor architecture may be
used. Both the CPU and RCF share a common interface to
memory and IO. Some aspects of the different CPUs considered
in this research will be discussed in section 3. The HCU converts
a sequential instruction stream for the CPU into a configuration
for the RCF and is detailed in Section 4.

For simplicity, we will assume here that each kernel is
comprised of a single loop body which iterates a fixed number of
times and has a single entry point and a single exit point, although
we can accommodate more complex kernels in HASTE. The
beginning and end of each kernel is marked in the executable. The
CPU will execute the code outside of the kernel or kernels, then
execute one iteration of the loop body comprising a kernel while
the HCU creates a configuration for the RCF. On subsequent loop
iterations, the RCF uses this configuration to execute the loop
body as a pipelined datapath. Once the kernel is complete, control
passes back to the CPU. In a traditional hybrid architecture, this
kernel code could be compiled into an executable to run on the
processor, or synthesized to run on the reconfigurable logic, but it
would not be possible for it to be implemented as a single
executable that could run on both.

To make the HASTE concept work we must choose an
application representation which has a valid sequential semantic

and yet also contains the information necessary for the HCU to
create a spatial configuration. In this paper we will investigate and
compare several different application representations and
determine their efficiency. The idea of an application
representation in this context encapsulates several things,
including the form and encoding of the sequential instruction
stream, the associated CPU architecture needed to process the
stream, the way in which the kernels are configured in the RCF,
and the HCU algorithms used to convert the instruction stream
into the RCF configuration. Although somewhat different than the
traditional usage, we will refer to all parts of the application
representation as the instruction set architecture (ISA).

To explore the efficiency of different ISAs, we must first
describe what is meant by efficient. Efficient has several meaning
in this context. First, we need a compact sequential code
sequence. If we require many instructions to represent a kernel,
then the kernel will run slowly on the sequential processor. If our
representation requires us to make changes to the way we express
the non-kernel portions of the application as well as the kernels
themselves, then compact code is even more important. Secondly,
we would like an ISA that allows us to create configurations that
make an efficient use of the fabric. If we must have many extra
hardware resources to allow the HCU to create a configuration, or
if the configurations that it produces do not use the available
resources efficiently, then HASTE will be of limited usefulness.
The third kind of efficiency relates to how easy it is for the HCU
to transform the kernel sequential code into the fabric
configuration. We would like this to be a simple process so that
we don’t require a great deal of hardware for the HCU, and we
would also like this process to complete quickly, ideally in the
time it takes a single loop iteration to execute on the sequential
processor. We would like the total size of the executable to be
small. If we require each instruction to be large or if we require
many instructions, then the total executable size will be large,
which increases requirements for storage and instruction
bandwidth.

This paper is structured as follows: Section 2, 3, and 4 discuss
the fabric, the ISAs and CPUs, and the HCU, respectively. Section
5 shows our experimental results and Sections 6 and 7 discuss
some conclusions and possible future work.

Figure 1: HASTE in operation. The HCU creates a configuration for the RCF at run-time.

Memory and IO space

CPU RCF

HCU

Memory and IO space

CPU RCF

HCU

Control
Handoff

Serial Execution Mode
and Hardware Compilation

Switch to
Spatial Execution Mode

ACTIVE

IDLE

Memory and IO space

CPU RCF

HCU

Control
Handoff

Return to Serial Execution Mode

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

2. Hardware Structures and Models

2.1. Reconfigurable Fabric

The efficiency of different ISAs depends in some cases on the
specific characteristics of the RCF used. Some ISAs require that
the RCF have certain characteristics in order for it to be used at
all. In order to enable exploration of as large a design space as
possible, a generic and parameterizable model of the
reconfigurable fabric will be used. This model assumes that the
fabric consists of coarse grained functional units, register files,
and programmable interconnect, arranged to form a pipelined
datapath, as shown in Figure 2. Each pipeline stage, or stripe, is
composed of several processing elements and two programmable
interconnect networks. Each processing element contains a
programmable functional unit (FU), and a register file (RF). One
interconnect network allows the FUs in one stripe to read values
from the RFs in the same stripe. The other interconnect network
allows the FUs in one stripe to write values into the RFs in the
next stripe. Our fabric model can represent a wide range of fabrics
using only a few base parameters. A somewhat simplified version
of the model was used for this study; the relevant parameters are
listed in Table 1

Customized datapaths for each specific application kernel are
implemented by programming the functional units, register files,
.and interconnect. A single configuration word specifies the
necessary programming for each processing element, including
the portion of the interconnect networks associated with that
processing element. A set of one configuration word for each
processing element in a stripe provides all of the necessary
information to configure that stripe. Each configuration word is
composed of several fields, with each field corresponding to a
particular hardware structure. The hardware model specifies the
specific fields that make up the configuration word for each
processing element. The number and types of fields required will
vary between different ISAs. A detailed diagram of the processing

element model is shown in Figure 3.

2.2. Functional Unit

For the purposes of this paper, we will use a single functional
unit type, with the number of operands that it accepts, P, equal to
2, and the bitwidth of the those operands fixed at some arbitrary
value, B. In addition, we will specify that the bitwidth of all of the
other components of the datapath as equal to B as well. All
functional units are identical and all can execute any of the
operations that we specify as being legal for the RCF. The details
of the configuration of the functional unit are not relevant to our
investigation of the different ISAs and so we will abstract the
functional unit configuration to consist of a single field, FUNC.
The value of FUNC can be determined solely from the sequential
instruction itself by a simple table lookup in the HCU.

2.3. Register File

The register file in each PE is parameterized by three values: F,
the number of registers; PW, the number of write ports; and PR,
the number of read ports. Each register file entry contains a single
B-bit wide word. For this study, all register files with F larger than
one are pass register files. A pass register file is one in which all
register values which are not overwritten in the current stripe are
passed to the corresponding registers in the register file in the
same column in the next stripe, where column refers to all of the
processing elements at the same horizontal location in each stripe
in the fabric. The simplest register file has parameters {F = 1, PW
= 1, PR = 1}, and corresponds to a single register. If F > 1, then
we need to specify the register for each read and write, so we will
need PR read address fields, each labeled RAx, where x is the
corresponding read port number, and PW write port address fields,
each similarly labeled WAx. The write address fields also
incorporate a write enable bit, which is not shown separately for
clarity. This means that we will have a field WA1 for the case
when F = 1, and this field is solely a write enable bit.

2.4. Interconnect

The interconnect model is shown in Figure 4. There are two
sets of interconnect wires, as shown in sub-figure (a). One set

RF RF RF

FU FU FU

RF RF RF

FU FU FU

READ INTERCONNECT

WRITE INTERCONNECT

RF RF RF

FU FU FU

RF RF RF

FU FU FU

READ INTERCONNECT

WRITE INTERCONNECT

RF RF RF

FU FU FU

RF RF RF

FU FU FU

READ INTERCONNECT

Processing
Element

Column

Stripe

Figure 2: Three stripes of a six column wide fabric.

TABLE 1 : Hardware Model Parameters

Global Parameters
Fabric width (number of columns) W
Functional Unit Parameters
Operand bitwidth B
Number of operands P
Register File Parameters
Number of words F
Number of read ports PR
Number of write ports PW
Interconnect Parameters
Read span SR
Write span SW

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

connects the register files in a stripe with the functional units in
the same stripe. These wires perform reads of values in the
register files. Each register file read port connects to a read bus
and can be read in one or more PEs. Each read bus can be read by

SR PEs, including the source PE, where SR is the read span. Each
PE can read from PR local read buses, which are those originating
in the current PE, and (SR.PR) - PR remote read buses, which
originate in other PEs in the same stripe. SR is always odd and the
PEs that are connected are always symmetrical, so SR = 3 means
the current PE and the PEs to the immediate right and left can read
the value; SR = 5 means that two PEs on either side and the
current PE can all read the value, and so on. In Figure 4, we see
examples of read spans equal to 1,3, and 5 in (b), (c), and (d),
respectively. The functional unit operands are selected from the
read buses using operand select muxes. Since we are assuming
two operands per FU, there will be two operand select muxes,
labeled OSM1 and OSM2 in Figure 3. Each operand select mux
can chose from (SR.PR) read buses. A configuration field for
each operand select mux will needed, OS1 and OS2.

The second set of interconnect wires connects the functional
units in a stripe with the register files in the next stripe. These
wires perform writes of results produced by the functional units
into register files. The architecture has an associated write span,
SW, similar to the read span, which determines how many
different register files each functional unit can write to. In Figure
4, we see examples of write spans equal to 1,3, and 5 in (e), (f),
and (g), respectively. If the write span is larger than one, a write
select mux is required for each write port. These are shown as
WSM1...WSMPW an Figure 3. Each write select mux has an
associated configuration field, WS1 through WSx.

3. Application Representations for HASTE

3.1. Original Kernel Representation

We will only explore how to represent the applications kernels
that we wish to run on the RCF. The rest of the code will run on
the processor only and is not of central concern here; only the
code that must run on both processors is of interest for this paper.
The kernels that we are mapping to the RCF are initially
represented as a data-flow graph (DFG), a directed-acyclic graph
where each node represents an instruction and each edge
represents an operand. Inputs and outputs to the DFG are all
memory loads and stores. Each node in the DFG is assigned aFigure 3: Processing element model.

Register
File

R. Addr.
Port 1

R. Addr.
Port 2

R. Addr.
Port PR

R. Data
Port 1

. . .

W. Addr./En
Port 1

W. Addr./En
Port PW

...

W. Data
Port 1

W. Data
Port 2

W. Data
Port PW

. . .

...

. . .

Functional
Unit

WS1

WS2

WSPW

Write
Select
Muxes

Write
Buses

WA1 WA2 WAPW

RA1

RA2

RAPR

Local Read
Buses

Operand
Select
Muxes

OS1

OS2

FUNC

...

Remote
Read
Buses

R. Data
Port PR

. . .

W. Addr./En
Port 2

R. Data
Port 2

OSM1

OSM2

WSM2

WSM1

...
...

. . .

. . .

WSMPW

...

. . .

...

. . .

RF RF RF

FU FU FU

RF RF RF

FU FU FU

RF RF RF

FU FU FU

RF RF

FU FU

FU FU FU

RF RF RF

FU FU FU

RF RF RF

FU FU FU

RF RF RF

FU FU

RF RF

RF RF RF

FU FU FU

RF RF RF

FU FU FUStripe N-1

Stripe N

Stripe
N+1

Stripe N

Stripe N

Stripe
N+1(a) Inter- and intra-

stripe connections

(b) Read span = 1 (c) Read span = 3 (d) Read span = 5

(b) Write span = 1 (c) Write span = 3 (d) Write span = 5

Writes

Reads

Figure 4: Interconnect model showing different read and write spans.

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

level, such that all input edges to the node originate in nodes in a
higher level, and all output edges terminate in a node at a lower
level. No control is explicitly represented in the DFG, although
control can be incorporated in a DFG using techniques such as if-
conversion [8]. DFGs are a standard way to represent portions of
an application and are generated by most compilers.

The kernel DFGs may need to be modified to use with the
different HASTE ISAs and fabrics. We need to ensure that the
kernels will run and give the same results on both processors. So
the executable for each kernel must have a valid sequential
semantic and also must contain enough information to allow for
the construction of a valid spatial semantic. A spatial semantic, in
this context, means information about the placement of operations
and the connections between operators to produce the same results
as the sequential semantic; in effect, placement and routing of the
fabric. This means that the executable must be somewhat specific
to the particular fabric it will be run on.

The DFG may first need to be modified so as to create a valid
sequential instruction sequence. It then may need to be modified
so as to be implementable on fabrics with a specific set or range of
parameters. This may require the addition of instructions that
move data in the fabric and/or processor. No instructions which
do actual computation will be added, changed, or removed, so the
underlying computation being performed will not change. The
position of operands in the DFG may also be changed, changing
the instruction ordering in the corresponding instructions stream.

3.2. Queue ISA

The easiest kind of ISA for the HCU to convert is a queue ISA,
which is an ISA targeting a queue machine. More details of queue
machine operation can be found in [11], but the basics will be
repeated here. A queue machine is analogous to the more familiar
stack machine, such as the Java Virtual Machine [10], except that
it uses an operand queue rather than an operand stack. Given some
arbitrary stream of instructions, it may be possible to reorder them
so that they can run on a queue processor, but this is not true of
most instruction sequences. Fortunately there is a correspondence
between certain properties of a DFG and correct ordering of
instructions for a queue machine. Any data flow graph that is both

level and planar will produce an instruction sequence that will run
correctly on a queue machine [12]. A level graph is one that can
be drawn with the nodes in rows such that every edge goes from a
node in one row to a node in the next row and no edge skips a row.
An example of a non-level graph and a level graph are shown in
Figure 5(a) and Figure 5(b), respectively. A planar graph is one
that can be drawn without any edges crossing. An example of a
graph that is both level and planar is shown in Figure 5(c).

By adding new nodes to the data flow graph, we can produce a
level-planar graph from any arbitrary DFG, so queue machines
can be used to implement any instruction sequence, if certain
queue manipulation instructions are allowed. These instructions
are SWAP, which replaces edges that cross, and PASS, which
allows instructions to cross levels. In the queue CPU, a PASS
instruction removes an operation from the head of the queue and
places it on the tail of the queue, and a SWAP instruction removes
two instructions from the head of the queue, reverses their order
and places them on the tail of the queue. The process of making a
graph level and planar is shown in Figure 5. The level planar
property of the DFGs limits the range of fabrics that can be used.

Since the operands for the queue ISA are determined solely by
their position in the operand queue, the instruction format is very
compact. Only a single byte is needed to specify the instruction.
Constants are supplied in succeeding bytes if needed. The
instruction encoding for all ISAs are shown in Figure 6 and the
queue instruction format is shown in Figure 6(a). It consists of a
single 8 bit field labeled OP.

3.3. Register File ISA

A traditional register ISA seems to be a logical choice. This

Figure 5: Queue ISA DFG transformation.

3 2 1 0

5 4

7 6

10 9 8

3 2 1 0

5 4

7 6

10 9 8

P P

P P

3 2 1 0

5 4

7 6

10 9

8

P P

P P

PPP S

PP S

(a) Non-level, non-
planar Graph

(b) Level Graph

(c) Level-planar Graph

P PASS node

S
SWAP node

OP [6] RS1 [R] RS2 [R] RD [R] OPX[11]

CONST[16]

N
R

N
R

3R+20

2R+24

2R+25

3R+21

OP [6]

OPX[11]

CONST[16]

 RS1 [R] RD [R]

 RS1 [R] RS2 [R] RD [R]

 RS1 [R] RD [R]

SR1 [R] OPX[10:0]

CONST[15:0]

N
R

N
R

3(R+F)+17

2(R+F)+22

OPX[10:0]

CONST[15:0]

SO1 [T] SR2 [R] SO2 [T] DR [R] DO [T]

SR1 [R] SO1 [T] DR [R] DO [T]

SR1 [R] SO1 [T] SR2 [R] SO2 [T] DR [R] DO [T]

SR1 [R] SO1 [T] DR [R] DO [T]

3(R+F)+18

2(R+F)+23

OP [8] 8

OP [6]

OP [6]

OP [6]

OP [6]

OP [6]

OP [6]

(c) Relative Register ISA

(b) Register File ISA

(a) Queue ISA

R
K

R
K

R
K

R
K

R
K

R
K

R
K

R
K

R
K

R
K

Figure 6: Instruction formats for all ISAs.

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

makes the construction of the CPU easy, since a conventional or
nearly conventional processor architecture can be used. However,
extracting parallelism and constructing a spatial configuration
from code produced by a standard compiler is an extremely
difficult, if not impossible, task. It is necessary to produce
executables in this register ISA that allow for the creation of a
configuration that can be implemented on the fabric that they will
be run on. Thus the compiler must know the base parameters of
the fabric and the algorithms used by the HCU, and modify the
DFG accordingly. It does this by producing a spatial configuration
as part of the compilation pass. Then register assignments are
made and the sequential code can be written out. One restriction
on this ISA type is that the number of architected registers in the
CPU limits the number of live variables that we can have in
fabric. In order to support large kernels, a large number of
registers are needed. This in turn requires more bits to represent
the source and destination registers and may require a large
instruction size, thus increasing code size.

Another problem is that the task of the HCU is very
complicated. Since operands are identified only by register
numbers, the HCU must keep track of the location of these values
and route the fabric accordingly. There is no correspondence
between the architected register file number used in the CPU and
the register location in the fabric. To completely specify the
location of a register in the fabric, we must know the column of
the register file and the number of the register file entry. Note that
there will typically be more registers in a single row of the fabric
than there are registers in the CPU. Values stored in a single
register in the CPU may be stored multiple places in the fabric.
This greatly increases the amount of hardware required and may
require longer than one loop iteration to convert the executable.

We must make a few modifications to a typical register ISA to
make it work with HASTE. First of all, we need to give
information to the HCU as to the location of each instruction. For
our fabric, this means the row and column location. If we assume
that instructions are issued from left to right and from the top row
to the bottom, then determining the location is quite easy if each
row is filled with instructions. If each row is not full, then we need
some way to indicate when to start placing instructions on the next
row. We can either include a bit in each instruction that is set to
indicate the end of a row or add an instruction that indicates the
end of a row. This would be ignored (treated as a No-op) by the
sequential processor. We will compare both options and use
whichever one impacts efficiency the least. Another modification
is necessary if we have a fabric with limited interconnect. In the
fabric, if an operation needs operands that are in columns too far
apart to be read in any single PE, than one or both operands must
be moved. A move instruction can be implemented to read
operands from one column and write to another. The HCU
interprets a move instruction as a routing directive that reads a
value from a register in one column and writes it to a register in a
column some number of columns to the left or right. The move
instruction would be treated as a No-op by the sequential
processor, since the value being moved would still be referred to
by the same register number and be in the same location in the
CPU’s register file. Both moves and new row indicators only need
to be added to portions of the executable to be run on the RCF.

Our register file ISA instruction encoding is based on the

MIPS32 ISA [9]. Our instruction encoding is shown in Figure
6(b). There are two relevant instruction formats, one with three
registers specified and one with two registers and a constant. We
modify only the size of the register fields, requiring them to be
some width R, where R is the number of bits needed to address all
registers in our register file. Each register field has an additional
register kill bit, labeled RK. The register kill bit indicates to the
HCU that the current value of a specific register will not be used
again and it can stop tracking the location of that value in the
fabric. We may also want to add a single bit, labeled NR, to
indicate a new row. If the new row bit is not used, new rows are
indicated by a new row instruction, which is ignored by the CPU.

3.4. Relative Register ISA

Determining the routing for the PEs is difficult for a register file
ISA because the only available information about operands is the
CPU register file number. Another problem is that we are limited
in the size of the application by the size of the architected register
file. Rather than require the HCU to determine which register file
and register entry to read and write operands to and from, it would
be nice if this information was present in the executable. An
efficient way to do this is shown in Figure 7. In Figure 7(a) are
two example instructions. Each register is addressed by a register
number and an offset. The meaning of this in the RCF is
straightforward. The register number refers to a register in the
register file of each PE in the fabric. There are F of these registers,
using our fabric model parameters. The offset refers to the column
location of the register file in the fabric, relative to the current
column. So in our example, the SUB instruction’s first operand is
located in register 2 at offset -1, meaning the column one to the
left of where the instruction is being implemented, and the second
operand is in register 3 at offset 0, meaning the current PE. The
total number of columns we can address should be the same as the
read span. Figure 7(b) shows the locations of operands for the
example instructions.

The meaning of type of register addressing in the CPU is less
clear. One way to implement this ISA would require the CPU to
use a register file with a sliding window. The row location of each
instruction would need to be tracked in the CPU and the register
file window indexed accordingly. The size of the window is
dependent on the read and write spans and the size of each register
file in the fabric. Since the movement of the register file window
is predictable, register values that aren’t needed can be cached,

Figure 7: Relative register addressing.

R0 R1

R2 R3

R0 R1

R2 R3

R0 R1

R2 R3

R0 R1

R2 R3

PE 0 PE 1 PE 2 PE 3

-1.R0
-1.R1
-1.R2
-1.R3
0.R0
0.R1
0.R2
0.R3

+1.R0
+1.R1
+1.R2
+1.R3

-1.R0
-1.R1
-1.R2
-1.R3
0.R0
0.R1
0.R2
0.R3

+1.R0
+1.R1
+1.R2
+1.R3

ADDSUB

-
-
-
-

-
-
-
-

...
SUB -1.R2, 0.R3, 0.R1
ADD -1.R0,+1.R3,+1.R1
…

(a) Sample
instructions SUB

ADD

-
-
-
-

-
-
-
-

(c) Register
addressing in CPU

(b) Register
addressing in RCF

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

allowing for a very large register file and thus allowing for very
wide fabrics. Some kernels will require modification of their DFG
to allow for operands to be read from locations outside the register
window; this can be done by using move instructions, as
discussed for the register file ISA. These move instructions will
be needed for all portions of the application, not just the kernels.
We will also need new row indicators just as for the register file
ISA and these will also be needed for the whole application, since
we need to properly index the register window. The register
addressing in the CPU is shown in Figure 7(c). Each register is
indicated by a register number field of size R, with R large enough
to represent F registers, and an offset field of size T, with T large
enough to represent the larger of SW and SR. Except for the
register file, we can use a mostly standard RISC CPU for this ISA.

4. HCU Operation

The hardware compilation unit accepts a stream of sequential
instructions and produces a set of configuration words for the
reconfigurable fabric. It must do this stripe-by-stripe, in the order
that the instructions are presented, and must do so as quickly as
possible, ideally within a single iteration of the loop. Different
ISAs will require different HCU algorithms. Since we would like
the architecture to be scalable to very large fabrics, HCU
algorithms which require access to an entire row at once are not
feasible. The HCU algorithm must also be feasible to implement
in a reasonable amount of hardware. Describing the HCU
hardware in detail would be beyond the scope of this paper.
However, the different algorithms can be described such that
comparisons between their complexity can be made and the
relative difficulty of implementing them in hardware can be
estimated. We will use the HCU model shown in Figure 8 for all
HCU algorithms. This model consists of two main portions, an
issue unit, which receives the sequential instruction stream from
the CPU, and does some amount of processing on the instructions,
and a chain of configuration stations, one for each column of the
fabric, where the final configuration word for each PE is
determined.

The HCU reads an instruction each clock cycle into the issue
unit. A lookup table is maintained in the HCU to convert the
operation field or fields of the instruction into a suitable value for
the FUNC field of the configuration word. The lookup table may

also contain other information about the instruction needed by the
HCU algorithm, such as the number of operands. The issue unit
passes the decoded instruction, and possibly other data, into the
first configuration station. Each clock cycle instructions advance
from one configuration station to the next. When a row is
complete, the configuration for the stripe is passed into the fabric.
For some ISAs, additional processing is required in the
configuration stations to complete the generation of the
configuration. Configuration stations may be connected together,
if needed to generate the configuration word, but only a limited
number of configuration stations may be so connected, so that we
can maintain some limitation on the amount of interconnect
required. Only the C configuration stations nearest the issue unit
can be connected together in an arbitrary manner; all others must
simply pass a predetermined set of data in one direction, to the
adjacent configuration station which is located farther from the
issue unit. C is equal to the larger of the read span and the write
span for register file ISA and relative register ISA, and is equal to
zero for the queue ISA. The simplest HCU algorithm is for the
queue ISA and it will be discussed next.

4.1. HCU Algorithm for Queue ISA

A queue ISA requires only a simple fabric architecture. It needs
only a single register in the register file {F = 1, PW = 1, PR = 1},
writes all results to the same column, and reads from some range
of adjacent columns {SW = 1, SR >= 3}. This architecture doesn’t
need register file addresses or write select muxes, so it has only
four fields, OP, OS1, OS2, and WA1.

Listing 1 shows pseudocode for the queue ISA HCU algorithm.
In the pseudocode listings in this paper, courier font is used to
indicate fields and signals present in the hardware, normal text
indicates variables in the pseudocode with no direct equivalent in
hardware or functions implemented as hardware components, and
italic text indicates pseudocode. Portions of the code represent the
functionality of the issue unit and portions the functionality of the
configuration stations. Since we are representing hardware, the
code represents concurrent processes, as they would be expressed
in a hardware description language. However, we are using higher
level constructs to describe the algorithms here so that the length
of the listings is much less than would be needed for an HDL.

The issue unit needs to maintain two queues of column

Issue
Unit

PE

Data Data Data Data

PE PE

Instruction

PE

Data Data

PE

. . .

Connected Config Stations

Data
Config
Station

1

Config
Station

2

Config
Station

3

Config
Station

C

Config
Station

C+1

. . .

PE

Config
Station

W
Data. . .

...
...

...
...

...
...

Figure 8: HCU hardware model.

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

numbers to track the locations of operands. One, called this,
tracks the column location of operands which will be used in the
current row and the other, next, maintains the column location of
operands which were produced in the current row and will be used
in the next row. The queue ISA instruction has just one 8-bit field,
OP. The lookup table in the HCU returns the number of inputs and
outputs for each OP, as well as the value for the FUNC field of the
config word. Each output of the current instruction is represented
by an entry in the next queue. Since each instruction starts at
position 0, at the left of the fabric, a 0 is inserted into the queue.
As each instruction is shifted onto the config stations, the location
of operands for the next row in the next queue are incremented,
to reflect that the position of each instruction is also increasing by
one column. If the current instruction does have an output, the
WA1 field is set, enabling a write to the register. The WA1 field
from the previous row is maintained in each config station to
enable use of the proper value in the current configuration word.
This is necessary because register write values for the current PE
are actually associated with the previous PE in the same column
(see Figure 3).

The location of each input for the current instruction is
retrieved from the this queue. These locations are shifted onto
the configuration stations as column numbers COL1 and COL2.
The config station logic decodes these column numbers into mux
settings for the OS1 and OS2 fields using the known column
location of the config station. If there are no more operands in the
this queue, the HCU starts a new row, and all configuration
words in the config stations are shifted down into the fabric. The
contents of the next queue are copied into the this queue, since
they will be used as inputs in the new row.

Listing 1: Queue ISA

Issue Unit:
Inputs: OP
Outputs: FUNC_C, COL1, COL2, WA1_C
for each instruction:

[FUNC_C, numInputs, numOutputs] <= lookup(OP);
for i = 1 to numOutputs {enqueue 0 in next}
for all elements in next {increment element};
if (numInputs != 0 and this is empty) {

this = next;
clear next;
start new row;

}
if (numInputs > 0) COL1 <= dequeue value from this;
if (numInputs = 2) COL2 <= dequeue value from this;
if (numOutputs = 1) WA1_C <= 1 else WA1_C <= 0;

Configuration Station:
Inputs: FUNC_C, COL1, COL2, WA1
Outputs: FUNC, OS1, OS2, WA1

OS1 <= decodeMux(COL1, station position);
OS2 <= decodeMux(COL2, station position);
FUNC <= FUNC_C;
WA1 <= prevWA1;

on new row: prevWA1 <= WA1_C;

4.2. Register File and Relative Register HCU
Algorithms

The HCU algorithms for the register file ISA is shown in
Listing 2. Space does not permit detailing its operation. The HCU
code for the relative register ISA is very similar to Listing 2 and
will not be shown here. The relative register ISA algorithm is
much simpler to implement than the register file ISA, because
register locations can be determined directly from the instruction,
without needing to maintain a table of equivalent register
locations. Both register ISA algorithms are more complex than the
queue ISA algorithms and much of the processing for both occurs
in the configuration stations, and so must be duplicated across the
width of the fabric. This means that these algorithms require many
times more hardware than is needed for the queue ISA, although
the hardware is fairly simple for the relative register ISA. Both
register ISA algorithms have another drawback; most of the
configuration is generated only when a new row is issued, and
several clock cycles are required for the generation of the
configuration. Thus it will take longer than one loop iteration on
the CPU for the HCU to complete the RCF configuration.

Listing 2: Register file ISA

Issue Unit:
Inputs: OP, OPX, RS1, RS2, RD, RK1, RK2
Outputs: FUNC, RS1_C, RS2_C, KR1, KR2, RD_C
for each instruction:

if (OP = NEWROW or newrow bit set), start new row;
else:
[FUNC, numInputs, numOutputs] <=

lookup(OP, OPX, CONST);
if (numOutputs > 0) RD_C <= RD;
if (numInputs > 0), RS1_C <= RS1, KR1 <= RK1;
if (numInputs > 1), RS2_C <= RS2,KR2 <= RK2;

Configuration Station:
Inputs: FUNC, RS1_C, RS2_C, KR1, KR2, RD_C
Outputs: FUNC, OS1, OS2, WA1, RA1...RAx
on new row:

RS1Locs <= queryLoc(RS1_C,K1);
RS2Locs <= queryLoc(RS2_C,RK2);
RS1Loc <= nearest(RS1Locs);
RS2Loc <= nearest(RS2Locs);
bus1 = requestRead(RS1Loc, RS1_C,KR1);
bus2 = requestRead(RS2Loc, RS2_C,KR1);
OS1 = decodeMux(bus1, RS1Loc);
OS2 = decodeMux(bus2, RS2Loc);

for each read request(regNum, regKill) {
reg <= location found in register table;
enqueue [reg, regNum, regKill] on readList;

}
remove duplicates from readList;
for each entry in readList;

portNumber <= next open read port;
RA[portNumber] <= reg;
if (regKill = 1), remove regNum from register table;
return portNumber for read to requestor(s);

WA1 <= next open entry in register file;

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

5. Experimental Results

There are five metrics that we will use to evaluate the different
ISAs. The first is code length, the total number of sequential
instructions in the executable. Code length is important since it
controls the time required to execute the kernel on the sequential
processor and also the time required to convert the application
from the sequential form into a configuration for the RCF. The
number of instructions for each kernel is initially the same, but as
we have seen, the different ISAs may require the addition of new
instructions, not in the original kernel, that will increase the
number of instructions. These added instructions include the move
and new row operations for the register ISAs and the pass and
swap operations for the queue ISA. The code length is the number
of instructions in the original kernels plus the number of added
instructions of all types. The second metric, hardware utilization,
measures the percentage of the fabric doing actual computation.
The width of the fabric times the number of stripes determines the
total number of PEs needed for the application. Only those PEs
holding operations that are part of the original kernel are
considered to be doing useful work, so the hardware utilization is
defined as the number of instructions in the original kernel
divided by the number of PEs needed. The third metric is the code
size, which refers to the number of bytes needed to represent the
application. This depends on two factors; the size of each
instruction and the number of instructions (code length). Since we
are using the same basic instructions, the instruction size is mostly
dependent on the bits needed to encode operand sources and result
destinations, as can be seen in Figure 6. Both register ISAs may
also use new row bits if these are found to be create more compact
code than new row instructions. The fourth metric is the HCU
algorithm complexity. We have only a qualitative measure for
this, which was discussed in the previous section. The fifth metric
is the number of pipeline stages needed for the application, which
effects the latency of the applications.

In order to explore the efficiency of the ISAs, a variety of
benchmarks were mapped to reconfigurable fabrics using each
ISA. A program called AppMapper was created, which
implements the necessary transformations to create valid DFGs
for specific fabrics and ISAs. The benchmarks and their
characteristics are listed in Table 2. The benchmarks are kernels
from various application domains, including signal processing,
image processing, and cryptography, and they vary widely in size
and structure.

For the queue ISA case, the DFG for each kernel was made
level planar as described previously. Several different heuristics
were used for each step of the process and the best overall results
were kept. Since each queue ISA instruction is a single byte, the
total code size is equal to the number of instructions. The fabric
width for the queue ISA was determined by the maximum graph
width, which is minimized during the levelling process. The write
span for the queue ISA is always one, and the read span does not
effect the efficiency of the encoding, so the only mapping
performed was to a fabric with write span = 1 and an arbitrarily
wide read interconnect. For the register file and relative register
ISA, the efficiency of the encoding is dependent on the
interconnect of the fabric being mapped to and the width of the
fabric. The register file ISA always uses a write span of one, but
the read span was varied from three to complete interconnect. For
the relative register ISA equal read and write spans were used,
again varied from three to complete interconnect. For both ISAs,
the width was increased to the point where increasing the width no
longer affected the mapping. Every possible width and read span
combination was mapped to. In Table 3, the best results for each
ISA are shown, with the best results determined by counting the
code length as most important, followed by hardware utilization,
code size, and number of stripes as least important. The register
file ISA shows a distinct trade-off between short code length and
high hardware utilization and so two sets of results are shown.
The other ISAs had high correlation between short code length
and high hardware utilization so only one set of results is shown.

TABLE 2 : Benchmark Applications

Name Description
Number
of levels

Number of
instructions

dct dct transform 9 114
fft fast Fourier transform 7 88
fir 10 tap FIR filter 25 94
haar Haar transform 7 62
idea IDEA encryption 168 311
n-queens discrete math problem 12 28
over video “over” operator 10 41
perm matrix permutation 16 29
quantize JPEG quantize 27 122
rc6 RC6 encryption 25 78

Total: 306 967

TABLE 3 : ISA Mapping Results

Code
Length

HW Util
%

Code
Size

of
Stripes

Code
Length

HW Util
%

Code
Size

of
Stripes

Code
Length

HW Util
%

Code
Size

of
Stripes

Code
Length

HW Util
%

Code
Size

of
Stripes

dct 446 16% 446 31 114 100% 570 19 114 100% 570 19 114 100% 570 19
fft 688 9% 688 36 88 100% 440 11 88 100% 440 11 88 100% 440 11
fir 128 40% 128 26 118 78% 590 40 94 73% 470 32 109 73% 436 32

haar 107 26% 107 10 62 97% 310 16 62 97% 310 16 62 97% 310 16
idea 1214 21% 1214 207 495 44% 2475 176 357 37% 1785 168 311 46% 1555 168

nqueens 53 29% 53 14 57 54% 228 13 28 54% 140 13 32 54% 128 13
over 55 47% 55 11 41 93% 205 11 41 93% 205 11 41 93% 164 11
perm 107 13% 107 16 29 66% 145 22 29 66% 145 22 29 48% 145 20

quantize 522 15% 522 58 138 85% 690 36 124 70% 620 29 131 85% 524 36
rc6 240 17% 240 28 94 72% 470 27 84 41% 420 27 80 72% 400 27

Total 3560 18% 3560 437 1236 65% 6123 371 1021 56% 5105 348 997 66% 4672 353

Queue ISA Register File ISA - Best Code Length Register File ISA - Best HW Util % Relative Register ISA

SUBMITTED TO THE 2003 IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES

6. Conclusions

All three of the ISAs studied here seem feasible for use with
HASTE architectures. The queue architecture requires only very
simple HCU hardware. However, the high instruction count
overhead required to make DFGs level planar makes the queue
ISA representation very inefficient in all metrics except for total
code size. The instruction count is more than three times as long
as for the original kernels and nearly 50% more stripes are
required than there were original levels. The hardware utilization
is less than 20% for the entire benchmark set and never more than
50% for any single benchmark. The code size is small since each
instruction is only a single byte. Using the queue ISA requires the
use of a queue processor, requiring the design of an entirely new
kind of processor architecture. Using the queue processor requires
that all portions of the application be transformed into level planar
DFG form, incurring high overhead for the entire application.

The register file ISA allows for a range of mappings that can
allow a significant trade-off between hardware utilization and
code length for many applications. When optimized for either
metric, the results were almost as good as the relative register
ISA, the best for both metrics. The code size was typically larger
than for the relative register ISA. An instruction encoding almost
identical to a MIPS processor can be used for this ISA, with the
addition only of new row bits and register kill bits. These could
easily be stripped from each instruction to be run on the CPU and
so a nearly standard MIPS core could be used. The HCU hardware
for the register file ISA is quite complicated, however, and
requires extra configuration latency.

The relative register ISA achieves high efficiency on all metrics
except code size and has the best hardware utilization and shortest
code length of all the ISAs. It also requires relatively simple HCU
hardware, although not as simple as the queue ISA. It does require
some modifications to a standard MIPS core, but only to the
register file. Based on these results, the relative register ISA
appears to be the best candidate for the HASTE architecture.

7. Future Work

Now that the characteristics of the ISAs are known, it is
possible to proceed with the complete specification of the HASTE
ISA and construction of a HASTE simulator. Simulation of entire
applications of interest will provide more information on the
performance of these architectures and help motivate future
research. Design of a complete HASTE micro-architecture using a
hardware description language would be desirable to determine
the actual hardware requirements and determine specific power
and performance measures in particular process technologies.
This would allow for more direct comparison between HASTE
architectures and other computing hardware. The parameterizable
fabric model is well suited for use in an automated layout
generator, which would allow the exploration of a wide range of
different fabric types as part of any detailed exploration of
hardware performance. There are also numerous architectural
possibilities to be explored, including the use of smaller (perhaps
4- or 8-bit) functional units and the fabric and the automatic

composition of these to form wider units as needed, assuming
some indication of required bitwidth in the instruction encoding.

ACKNOWLEDGEMENTS

This work was made possible by IBM Corporation and the
Semiconductor Research Corporation, who support Mr. Levine’s
research with an IBM/SRC Graduate Fellowship.

REFERENCES

[1] Singh, H.; Ming-Hau Lee; Guangming Lu; Kurdahi, F.J.;
Bagherzadeh, N.; and Chaves Filho, E.M., “MorphoSys: an
integrated reconfigurable system for data-parallel and com-
putation-intensive applications,” IEEE Transactions on
Computers, Vol. 49, No. 5, May 2000, pp. 465-481.

[2] Mirsky, E. and DeHon, A., “MATRIX: a reconfigurable
computing architecture with configurable instruction distri-
bution and deployable resources,” in Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Ma-
chines, April 1996, pp.157-166.

[3] Cronquist, D.C.; Fisher, C.; Figueroa, M.; Franklin, P.; and
Ebeling, C, “Architecture design of reconfigurable pipe-
lined datapaths,” in Proceedings of the Conference on Ad-
vanced Research in VLSI, March 1999, pp. 23-40.

[4] Schmit, H.; Whelihan, D.; Tsai, A.; Moe, M.; Levine, B.;
and Taylor, R.R., “Piperench: a virtualized programmable
datapath in 0.18 micron technology,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 2002, pp. 63-
66.

[5] Kapasi, U.J.; Dally, W.J.; Rixner, S.; Owens, J.D.; and
Khailany, B., “The imagine stream processor,” in Proceed-
ings of the IEEE International Conference on Computer De-
sign, 2002, pp. 282- 288.

[6] Wittig, R.D. and Chow, P., “OneChip: an FPGA processor
with reconfigurable logic,” in Proceedings of the IEEE Sym-
posium on FPGAs for Custom Computing Machines, April
1996, pp. 126-135.

[7] Callahan, T.J.; Hauser, J.R.; and Wawrzynek, J., “The Garp
architecture and C compiler,” IEEE Computer, Vol. 33, No.
4, Apr 2000, pp. 62-69.

[8] J. Allen, K. Kennedy, and J. Warren, “Conversion of control
dependence to data dependence,” in Proc. 10th Annual Sym-
posium on Principles of Programming Languages, January
1983.

[9] MIPS Technologies, MIPS32™ Architecture for Program-
mers Volume II: The MIPS32™ Instruction Set, http://
www.mips.com/publications/processor_architecture.html

[10] Lindholm, Tim and Yellin, Frank, The Java Virtual Ma-
chine Specification, 2nd. edition, Java Series, Addison-
Wesley, USA, 1999

[11] Schmit, H.; Levine, B.; Ylvisaker, B, “Queue Machines:
Hardware Compilation in Hardware,” in Proceedings of the
IEEE Symposium on Field Programmable Custom Comput-
ing Machines, April 2002.

[12] L. Heath, S. Pemmaraju, and A.Trenk, “Stack and Queue
Layouts of Directed Acyclic Graphs: Part {I}”, in SIAM
Journal on Computing, vol. 28, no. 4, 1991, pp 1510-1539.

